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1. Introduction 

Microwave and high frequency tomography constitutes challenging electromagnetic inverse 
problems aiming at the reconstruction of its internal σ-, εr- and/or Ǎr- distributions. The object 
to be imaged is embedded in a lossy homogeneous background medium. This is surrounded 
by a fictitious (or real) surface preferably of canonical shape (circular, rectangular, cylindrical 
or spherical) over which a number of antennas (electrodes at lower frequencies) are evenly 
distributed. The hardware implementing the modality should be able to successively activate 
each one of them, while setting all the other antennas to a receive state operating as sensors. 
Instead of requiring all antennas to operate in both transmit and receive modes, a subset of 
antennas can be configured in transmit mode only (activated in turn) while a preferably larger 
subset is configured in receive only mode (passive sensors), all of them performing 
simultaneous measurements. In this manner the object is illuminated each time from a 
different angle creating a scattered field to all possible directions, which is sampled by the 
receiving antennas. The locations and number of transmit antennas should be designed to 
cover the required spatial illuminations (projection angles), while the number of the evenly 
distributed receiving antennas should fulfill the spatial sampling laws. An alternative 
configuration mimicking the one already used in X-Ray Computer Tomography (CT) and 
Magnetic Resonance Imaging (MRI) seems preferable and highly recommended for the 
microwave imaging. Spesifically, for two-dimensional imaging a single active antenna along 
with an array of sensing-passive antennas could be placed on a circular-colar possibly plastic 
platform surrounding the object to be imaged. In turn by rotating this supporting structure the 
object can be illuminated from all possible projection angles. For a three-dimensinal imaging 
the hosting platform could be a plastic cylinder holding multiple antenna ring arrays, each 
ring having one active and multiple passive antennas. Each antenna is activated successively 
in time while the whole cylinder is roteated providing all possible illuminations and data 
recording-sampling by all sensing antennas “simultaneously”. The information gathered by 
this measurement procedure constitutes the dataset to be exploited by the imaging algorithm 
to reconstruct the object’s internal properties distributions. This constitutes a challenging 
mathematical-computational and engineering problem since it is proved to be a highly non-
linear and ill-posed inverse problem.  
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Analytical methods can be employed only for simple canonical geometries but these are 
valuable since they may serve as exact reference methods to validate numerical techniques. 
Hence, for the practical arbitrary shaped and inhomogeneous bodies numerical techniques 
are inevitable. It is on these approaches that the following chapter is elaborating.  

For the reconstruction algorithm to be implemented a realistic as far as possible computer 
model of the practical structure is necessary. For this purpose the geometry is discretized 
including the appropriate antenna (or electrodes) modeling by following an engineering 
compromise between accurately reflecting the structure and the required computational 
resources. A usual approach is to consider a “virtual body area” of canonical shape large 
enough to contain the unknown irregularly shaped actual object with its unknown σ, εr, Ǎr 
distributions. The properties of the background media outside this virtual surface are 
assumed known as it is practically selected as desired. The also virtual surface carrying the 
transmit/receive antennas is larger than the “virtual body area” but also embedded in the 
known background medium. Theoretically, this background media extends to infinity, 
however in order to implement a numerical technique a finite solution domain should be 
established. Hence, another fictitious surface enclosing the whole structure constituting the 
solution domain “truncation surface” is considered. In turn this truncation surface must not 
disturb the electromagnetic field solution or to be “transparent” to the impinging waves. 
The numerically discretized model includes everything within the truncation surface, but 
the inverse problem unknowns are only the constitutive parameters within the “virtual 
body area”. By the aid of the discretization this “virtual body” is comprised of a number of 
pixels for two-dimensional (2-D) or voxels for three-dimensional (3-D) geometries. Each one 
(ith) of them is assumed locally homogeneous with constant but unknown (σi, εri, Ǎri) 
properties which are in principle different for each pixel/voxel, forming the so-called piece-
wise constant distribution. Now, the aim of the reconstruction is exactly the evaluation of 
these three vectors [σ]=[σi], [εr]=[εri] and/or [Ǎr]=[Ǎri], by exploiting the dataset acquired 
from field measurements carried out on the real object. Numerous different approaches are 
established for the exploitation of this information. The most usual approach which is also 
elaborated herein is to formulate a cost function based on the least square method, which 
will be in turn minimized employing some type of optimization techniques. For this 
purpose an initial (σio, εrio, Ǎrio) distribution, usually simply a homogeneous one is assumed 
and the measurement procedure is mimicked through computer simulations. Namely, for 
each active antenna the forward problem corresponding to the solution of a vector wave 
equation or in general the numerical solution of Maxwell’s equations, yields the field 
distribution all over the receiving antennas. Exactly the field calculated on the receiving 
antennas, when gathered from all illuminating active antennas, it setup a calculated dataset. 
On the other hand the field calculated all over the structure and particularly over the 
“virtual body area” is exploited within the methodology elaborated herein for the 
evaluation of a “Sensitivity” or “Jacobian” matrix. This is obtained through a closed form 
sensitivity equation established through a combination of an “Adjoint Network Theorem” 
following the Electromagnetics Reciprocity Theorem approach. Its entries exactly reflect the 
sensitivity of the calculated field at each sensing antenna with respect to a differential 
change of each pixel/voxel unknown parameter. With the availability of this information an 
algorithm minimizing the differences between measured and calculated fields (the complete 
datasets) based on a least square approach is established, which herein is efficiently 
implemented exploiting the sensitivity matrix in its closed form expression.  
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At this point two serious problems are introduced related to the inherent properties of the 
“sensitivity matrix”. Firstly, its entries depend on the unknown properties (σi, εri, Ǎri), hence 
the system to be solved is a non-linear one. Secondly, this sensitivity matrix is usually an ill-
posed one or a singular matrix. This latter means that if a singular value decomposition is 
performed (not eigenvalue since this is a rectangular MxN matrix, where the number of 
measurements M should be much greater than the number (N) of unknowns as M>>N in 
order to confront measurement errors, noise and ill-posedeness) the maximum singular 
value appears a few orders of magnitude larger than the minimum one. This inherent 
property is closely related to the measurement (generally the data collection) setup and can 
be significantly improved by intuitive techniques. Returning to the nonlinearity its direct 
consequence is that the resulting parameters (σi, εri, Ǎri) provided by the Minimization first 
iteration are not the true ones but only a better approximation, if the reconstruction process 
was successful. Hence, the whole procedure should be repeated again and again until the 
difference between the measured and the calculated dataset becomes comparable to the 
expected measurement error and/or the required convergence is achieved. Obviously, at 
each iteration a new sensitivity matrix and a new data set is evaluated and used.  

In the following sections the reader will be introduced to the employed approaches from 
both the mathematical-computational as well as the electromagnetics point of view. But 
mostly the open research challenges will be pointed out motivating new research and paths 
toward RF-Microwave imaging practical implementation.  

The forward and inverse problems general characteristics are discussed in the second 
section, after the introduction to high and microwave frequencies imaging modalities. The 
procedure to formulate and numerically solve the forward problem is given in the third 
section, for both the high (MHz) and microwave regimes. Within the foarth section the cost 
function is first setup and the Perturbation Methodology for its direct iterative solution is 
then introduced step-by-step from static to microwave imaging. The fifth section elaborates 
on the establishment of the “sensitivity Equation” based on the “Adjoint Network Theorem” 
for the microwave band and its equivalent “Electrical Networks Compensation Theorem” 
for the MHz range. Before presenting the forward and inverse problem numerical results 
(sixth section) the importance of the study of the sensitivity or Jacobian matrix is pointed 
out. This is a very promising research area especially when modern Principal Component 
Analysis (PCA) or its counterpart Proper Orthogonal Decomposition (POD) approaches are 
employed. Either PCA or POD are based on a Singular Value Decomposition of the 
sensitivity matrix (rectangular matrix) by an algebraic manipulation of its eigenvectors. 
These techniques present prospects for novel and computationally efficient methodologies 
for both the forward and the inverse problem solution.  

The last section is devoted to numerical results. A series of successfully reconstructed 
conductivity and permittivity distributions for both the MHz and the microwave regimes 
will be presented. The algorithm performance will be discussed and possible improvements 
constituting future research areas will be suggested. 

2. Forward problem & inverse problem characteristics 

The first step in the course of establishing an imaging modality refers to the construction of 
the appropriate computer model, which should reflect the practical geometry as closely as 
possible. This model serves in twofold, first it should enable an approach which mimics the 
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measurement procedure and secondly it should offer the ability to represent the unknown 
distribution (σ, εr or both) as a set of successively improved-updated variables. Mimicking 
the measurement procedure refers to the solution of the governing differential equations, 
identified as a generalized Laplace or Poisson equation in MHz range, while the full wave 
Maxwell equations must be considered in the microwave regime. The practical bodies of 
interest are of arbitrary shape and present a complicated inhomogeneous internal structure 
in both σ and εr.  

In general, these objects should be represented as three dimensional (3-D) models, however 
in this case both the forward and the inverse problems become very complicated with high 
computational demands. Besides these, the data collection or measurement strategy is also 
complex. The possibility of a two-dimensional modeling even an approximate one could be 
very convenient, since it could simplify the forward problem solution, restricting the data 
collection approaches to just a few and overally resulting to a straightforward reconstruction 
algorithm. The question is when the involved approximations are acceptable and whether 
these introduce any fictitious mathematical or numerical complications? Let as elaborate 
next on the issue of a 3-D versus a 2-D modeling. 

2.1 Non-linearity and Ill-conditioning of the inverse problem 

The issue of two-dimensional modeling is not rhetorical, since it has been extensively exploited 
in most of the established imaging modalities like x-rays computerized tomography (CT). 
However, there is a significant difference between x-rays and electromagnetic tomography in 
that x-rays propagate along straight lines, but in contrary electric current and electromagnetic 
waves in general flow (stream-) lines are curved whenever they intercept an interface where 
the conductivity or permittivity changes [e.g. from (εr1, σ1) to (εrz, σz)], as it usually happens in 
biological structures. This causes severe problems not only in worsening the option of a 2-D 
approximation but also in rendering a non-linear inverse electromagnetic problem. A 
fundamental reasoning for this difficulty is explained by the fact that current streamlines or 
wave propagation directions curvature strongly depends on the conductivity (σz/σ1) and 
permittivity (εz/ε1) contrast at these interfaces. But these contrasts are indeed the unknown 
quantities to be sought by the electromagnetic imaging algorithm. Namely, when the inverse 
problem is finally formulated into a discrete system of equations the stiffness matrix elements 
will depend on the unknown (σ, εr) distributions hence comprising a non-linear system. In 
general, this phenomenon can be identified as an internal scattering and/or diffraction which 
is equally present in Acoustical or Ultrasonic imaging. 

Besides the non-linearity, the streamlines curvature appearing in bodies with very high σ or εr 
contrast (e.g. between blood and fat or bone tissues) results to regions with very high current 
densities (e.g. blood) while at others this is very low (in fat or bone). Similar high variations 
occur in the electric field intensities mainly due to the high ǆr constrast. This is exactly what 
causes the high variation in the sensitivity of the measured quantity (voltage or electric field) 
with respect to the unknown ǔ or ǆr values. To understand this phenomenon assume a tissue 
(area) which is isolated from the current flowing through the body, this will in turn present a 
very low sensitivity as it cannot affect the injected current, which will not be able to “see” 
it. Hence, its σ or εr values cannot be reliably reconstructed. Mathematically, this high 
variation in the sensitivity over the body to be imaged is depicted as a high singularity or 
high ill-conditioning in the “Jacobian” matrix [J], which comprises the inverse problem 
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matrix (as [J][J] T). As will be explained latter the severity of ill-conditioning is defined by the 
ratio of the larger to the smaller singular value of the Jacobian matrix (singular instead of 
eigenvalue since the Jacobian matrix is rectangular due to the requirement of a number of 
measurements higher than the number of unknown σ, εr degrees of freedom). 

Summarizing the above, the imaging modality elaborated herein constitutes a highly non-
linear and ill-conditioned (singular) inverse problem. The next issue to be discussed refers to 
the assumptions involved in a two-dimensional approximation. 

2.2 Two-versus three-dimensional modeling 

Theoretically an object can be represented by a two-dimensional model (2-D) if it is 
homogeneous and uniformly extends to “infinity” along a direction perpendicular to the 
modeled cross-section, which can be arbitrary shaped and inhomogeneous. The question is 
now, under what assumptions the current density, the electric potential or electric field 
intensity of a practical three-dimensional (3-D) object can be replicated over one of its cross-
sections (2-D model)? Once again recall that this approach is very well suited for x-rays CT 
mainly because x-rays travel along straight lines and hence their measured intensity 
involves information relevant to the inhomogeneities (varying tissue) along the straight line 
from the transmiter to the receiving sensor. Thus by attaching an array of sensors in the 
same plane with the source as shown in Fig.1a, all measured intensities depend on the 
specific enclosed cross-section. Besides that the specific source location yields an 
illumination from a corresponding angle of view, called a “projection angle” from physical 
optics. It is, thus, found very convenient to locate the source and the receivers-sensors 
equidistantly along a circular bar (a plastic collar). Rotating this circular structure results to 
an illumination of the imaged cross-section from any possible angle of view, to be defined at 
the desired number enabling the image reconstruction. 

A similar configuration could be in principle setup for the electrical impedance (EIT) or 
microwave tomography by planning an array of electrodes or antennas on a single plane 
around the desired cross-section as shown in Fig.1b and 1c respectively.  

Focusing on EIT or MHz tomography the current density injected through the driven-active 
electrode (source) is curved around the objects of lower conductivity (Fig.1), but the same 
phenomenon occurs along the third dimension perpendicular to the cross-section under study. 
Consequently, the injected current density which offers the means to extract the information 
regarding the conductivity distribution to be imaged, cannot be restricted to flow only across 
the electrodes plane. Instead this current is spread in all directions around the active electrode 
and respectively it is collimated from all directions toward the current-sink active electrode. 
Thus, the coplanar voltage-sensing electrodes yield measurements infected by conductivity 
inhomogeneities above or below the studied cross-section. Additionally, it is impossible to 
estimate the total current flowing across the electrodes cross section. To explain the difficulty, 
assume that a 5mA current (I=5mA) is injected during the actual EIT measurements, the 
question is what is the current value to be applied to the active electrode in the 2-D model? 
This should be only the fraction of the 5mA actually flown through the electrode cross-section, 
otherwise by assuming a 5mA value yields overestimated calculated voltages at the electrodes. 
Besides this problem, by restricting the current to flow in a single plane in the 2-D model, its 
density becomes higher within the highly conducting areas. This phenomenon results to 
higher sensitivity related to these areas and causes the Jacobian matrix to be fictitiously more 
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singular than its actual 3-D form. Exactly similar behavior is observed in MHz and microwave 
imaging where the role of high conductivity regions is also played by the high permittivity 
areas, especially as the source frequency is increased.  

 

   
   (a)             (b)  

Fig. 1. (a) Current density distribution of an inhomogeneous 2-D model at low frequencies 
(b) Electric field distribution of an inhomogenous dielectric (ǆr) at microwave frequency. 

The above observation regarding the higher singularity of the 2-D model as compared to a 
3-D model is very important and should be utilized as a guide toward the establishment of 
more robust imaging techniques. In particular, most of these complexities stems from the 
attempt to solve (simulate) the forward problem as a 2-D cross-sectional model, rather than 
caused from the 2-D inverse problem formulation. Hence, whenever the simplification of the 
2-D setup is sought, it is a very good idea to adopt the corresponding electrode/antennas 
coplanar setup (e.g. Fig.2b, 2c) along with a uniform (σ, εr) distribution in the axial direction, 
which yields a 2-D inverse problem formulation. However, a finite axial length is considered 
and a 3-D numerical technique is employed to solve the forward problem. The important 
benefit of this approach refers to the removal of the deviations between measured and 
calculated voltages or electric field intensities. Besides that, the fictitious higher sensitivity 
matrix singularity is reduced to the inherently existing as well.  
 

 

Fig. 2. a) An x-ray setup for cross-sectional imaging, different illumination by rotating the x-
ray platform. 
b) An electrode array for cross-sectional impedance tomography. 
c) An antenna array for cross-sectional microwave imaging, that could be setup on a plastic 
“transparent to electromagnetic waves” collar just like the x-rays CT. 
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A more sophisticated trend toward singularity reduction or as sometimes assumed “toward 
optimal imaging setup” aims at the establishment of the optimum current density 
distribution for EIT or in the MHz range and respectively “optimal electric field intensity” 
distribution. As explained above all the involved complications stem from the current or 
field streamline curvature which depends on the unknown (σ, εr) discontinuities. But it is 
intuitively expected for EIT that these curvature may become smoother (or streamlines 
tending toward straight lines) when the active electrodes (both injecting and current sink) 
is increased. This phenomenon can be diaesthetically understood by realizing that all 
current (or field) streamlines are emanating from the source or converging toward the 
sink electrode, traveling toward all possible directions. Thus, their curvature becomes 
maximum for point electrodes and smooths down as its size is increased. This approach 
was forced to its limits in the EIT case by the groups of Isaacson [7] and Lionheart [8], 
where the active electrodes were increased at the limit of almost covering the entire 
object’s surface, retaining only small gaps between them for isolation. This, voltage or 
electric field sensing electrode or antennas do not presume any large surface and they 
could retain a small size even almost infinitesimal (point sensing electrodes). Recall that 
the primary aim of this trend is to reduce the sensitivity or Jacobian matrix singularity, 
explicitly by reducing the ratio of its larger to the smaller singular value. Conversely 
means smoothing out the sensitivity over the body surface or volume by forcing more 
current to flow through low conductivity regions and lowering the current density within 
high conductivity areas. However, the Authors experience shows that one should not 
exaggerate in increasing the electrode or antenna surface, but the current should be 
allowed to follow its natural paths through the object, since this is indeed the mechanism 
of extracting information from the object interior. As a rule of thumb the electrode or 
antenna size could be increased only up to the point that the singularity becomes 
manageable by the reconstruction algorithm, which should withstand relatively high 
sensitivity variations. In turn the rotation of the active antenna illuminating the structure 
from all possible angles would ensure a higher overall-total information extraction. 

2.3 Dual mesh discretization 

Returning back to the different forward (3-D) and inverse 2-D model, another characteristic 
should be taken into account, which is related to the calculation accuracy and the desired 
imaging spatial resolution. Starting from the latter it depends on the available number of 
linearly independent measurements, which is in turn defined by the number of active and 
sensing electrodes/antennas, as it will be explained later on. Also, keep in mind that 
measured values are corrupted by noise and the measurement inaccuracies, including 
quantization noise introduced during the analog to digital conversion. Thus a reliable 
inversion scheme requires a quite higher number of measurements (M equal to the number 
of equations) than the number of unknowns (N) in order to cancel out these inaccuracies 
through minimization. As a rule of thumb the number of equations should be almost double 

than that of the unknowns (M2N). Conversely the number of electrodes/antennas 
corresponds to the achievable spatial voltage or filed intensity sampling, but it is actually 
defined by the practical setup as the electrode/antenna size and the hosting object 
dimensions on which these will be attached. Concluding the above parameters define an 
upper limit in the achievable number of unknowns (N) and hence the offered inverse 
problem spatial resolution-discretization. Thus the in principle continuous (σ, εr) 

www.intechopen.com



 
Medical Imaging 

 

154 

distribution should be discretized into N locally homogeneous elements comprising the so 
called piece-wise constant distribution (σi, εri, i=1-N). This is actually formed by the 
“reconstruction-mesh”, which is in general a 3-D one (Fig.3a), but it could also restricted to a 
2-D assembly of bars with in general arbitrary cross-section (Fig.3b with brick bars). 

 

 
(a)     (b) 

 
(c)     (d) 

Fig. 3. Examples of reconstruction coarse meshes and forward fine meshes as: reconstruction 
(a) 3-D and (b) 2-D cases, forward: (c) 3-D and (d) 2-D cases corresponding to the structures 
(a) and (b) respectively. 

The reasoning described above yields usually a coarse reconstruction mesh, which is always 

inappropriate for the forward problem solution. This one purpose is to ensure calculations 

providing an accuracy of the same order as the available measurements. In the low 

frequency EIT case it was proved by Barber and Seagar [9] that an accuracy of the order of 

0.1% is necessary for a reliable reconstruction. On the other end, in the microwave regime it 

is widely understood that an acceptable simulation asks for a discretization with elements 

size smaller than one tenth of the wavelength (ǌ/10) for Moment Method (MoM) or Finite 

Element techniques (FEM), while the finest mesh of ǌ/32 is asked by Finite Difference Time 

Domain (FDTD) to ensure its stability. In any case trying to fulfill these requirements a very 

fine mesh is necessary for the forward problem solution, which also yields piece-wise 

constant (σ, εr) distributions. However, the inverse problem will be iteratively linearized first 

around the 0 0( , )r   initial guess and subsequently around the most recently updated 

( , )k k
r   distribution at its k-th iteration. Multiple forward problem solutions are then 

required on this ( , )k k
r   distribution, hence the “forward” and “reconstruction” meshes 

should be compatible. A very straight forward approach is to subdivide each of the 

reconstruction mesh into smaller forward mesh elements, as shown in Fig.3(c)-(d). Even 
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though the forward mesh elements comprising each reconstruction cell have the same 

constitutive (σi, εri) parameters, this subdivision in necessary in order to fullfill the 

voltage/field interpolation requirements. Explicitly, in most cases linear interpolation 

functions are considered within the established numerical techniques (MoM, FEM, FDTD). 

In turn the field variation especially around fine structures and around conductors are very 

high, thus asking either for highly non-linear interpolation functions or conversely very fine 

mesh of linearly interpolated elements (ǌ/10 up to ǌ/32). 

Overally, up to now the basic configuration and limiting characteristics for the forward and 
inverse problems are explained. We are, thus, ready to proceed to the description of forward 
problem governing equations and their numerical solutions. 

3. Forward problem 

Electromagnetic problems are obviously governed by Maxwell equations in their full vector 
differential form, which in general include a temporal variation [10]. Even well-known, their 
solute, ion for complicated extremely inhomogeneous structures like the Human body 
constitutes a formidable task, especially when the conductivity anisotropy of skeletal and 
myocardial muscle is to be considered. Since, the inverse problem asks for multiple forward 
solutions (at least one for each illumination-projection angle) at each of its iterations, then a 
computationally efficient technique is inevitable. For this purpose a series of simplifications 
are necessary in order to reduce the involved complexity. 

3.1 Excitation rationale  

The temporal dependence could be employed in imaging modalities, since radar type 
techniques could be employed, but these are efficient for electrically large bodies 
(dimensions of multiple wavelengths) located at distances of at least a few wavelengths 
away from the illuminating source. Besides that pulsed-waveform excitation could be 
exploited for imaging in general, where the received pulse delay (ƦǕ) in respect with the 
transmitted one provides the useful phase difference (Ʀφ). In turn based on Ʀφ the ratio of 
imaginary to real part of the voltage or electric field is readily calculated, while the in 
principle required phase sensitive sensors are replaced by “scalar” measuring only their 
amplitude. As will be explained next, this information is directly proportional to (ǆr/ǔ) or 
inversely proportional to the dielectric loss tangent [tanǅ=ǔ/(ǚǆ0ǆr)] of the media profile to be 
reconstructed. This imaging approach could be classified as a “multistatic phase” radar and 
it is very challenging as well as a promising modality, especially regarding the involved 
relative simplification of the sensing-measuring instrumentation. However, it has only 
received a very limited attention and to the Authors knowledge, there was only one Russian 
group working on that, [11]. Conversely, most of the research groups activated in the field 
in MHz and microwave imaging (including our own) assume time harmonic (sinusoidal) 
excitation due to its simplicity in the forward problem solution, thus the following analysis 
will be restricted to this case. Note that this excitation eliminates the temporal dependence 
but also avoids (dues not account for) the materials frequency dispersion ǔ(ǚ), ǆr(ǚ) which 
introduce more difficulties. In contrary this dispersion can be exploited as an additional 
degree of freedom enabling “dynamic imaging” or calibration purposes and even a spectral 
imaging by performing measurements and reconstructing the media profile at multiple 
frequencies (σ(ωi), εr(ωi)) selected at appropriate steps (Ʀωi). 

www.intechopen.com



 
Medical Imaging 

 

156 

3.2 Time harmonic fields & currents 

Maxwell equations for the time harmonic excitation of the form j te   are significantly 

simplified since the temporal variation is substituted as / t j   , while the actual field 

   t r t r, , ,
  
   and source quantities  t r,

 
  are replaced by the corresponding complex 

phasors      , ,E r H r J r
    

 as:  

     j tt r E r e, Re 
  
  (1a) 

     j tt r H r e, Re 
  
  (1b) 

     j tt r J r e, Re 
  
  (1c) 

In turn Maxwell equations for time harmonic fields read: 

 0 rxE -j H  
 

 (2a) 

 0 rxH j E J   
  

 (2b) 

 D E       
  

 (2c) 

 0 0 0
scalar

B H H





        
    

 (2d) 

Where the source quantities current ( )J


 and charge (ρ) densities should obey the continuity 

equation: 

 /J t j       


 (3) 

Additionally, for the conducting media assumed herein there is a conduction current ( )cJ


 

flowing at any arbitrary point (movement of charges due to coulomb forces and the 

presence of electric field) as cJ E
 

. Thus, the current density J


 appearing in (2b) is 

comprised of the conduction current cJ


 and the current impressed by the source as impJ


. 

Substituting in (2a) we may define an equivalent complex permittivity ǆc or an equivalent 

complex conductivity ǔc as: 

 0 r 0 rc cxH j jimp imp impE E J E J E J            
       

 (4) 

where 

 c 0 rc 0 r 0 r
0 r

 (1 tan ) 1j j
       

 
 

     
 

 (5a) 

 0 rc eff j        (5b) 
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Note that the term related to the actual permittivity (ǆ) is known as displacement 

current   0d rJ E t j E     
  

. A usual question regarding the body inherent bioelectric 

sources has actually no place herein since their spectral content is restricted to less than 

about 10KHz. Thus the impressed current in equation (4) is solely due to the source injecting 

current or illuminating the body. For safety reasons the injected current density should be 

less than 10mA/cm2 according to recommendation included in [12]. Besides these, recall the 

possible anisotropy issue which only concerns the conductivity of skeletal muscular tissues 

and the myocardium. Both of them exhibit a fibrous structure, where each fiber has a high 

conductivity interior surrounded by a thin low conductivity membrane. It is this structure 

that causes the conductivity anisotropy where parallel (along) the fibers it is σ//=7.3mS/cm 

while transverse to them it is only σ=0.49mS/cm. The question is how to include this 

anisotropy into the computer model. Mathematically the anisotropy is accounted for by a 

second rank tensor , but this could be only convenient if one of the coordinate axis could 

be oriented parallel to the muscle fibers. However, these fibers are curved and even twisted, 

hence they could be only represented by a full 3×3 tensorial . It is, indeed, very easy to 

model a diagonal tensor of either   or r  parameters, but the mathematical and 

computational complexity of full tensor parameters is tǐo high to be considered in most 

cases. Thus, herein the inherent muscles anisotropy will not be considered. 

Returning back to Maxwell equations (2), it is well understood that the divergence equations 
(2c) and (2d) can be derived from the curl equations (2a) and (2b) by using continuity equation 
(3). Thus one may easily conclude that it is only necessary to solve the implicit pair of curl 
equations (2a), (2b) in conjunction with the boundary conditions for the tangential to the 
various media-tissue interfaces electric and magnetic field components. Recall that the latter 
are indeed obtained from the corresponding integral form laws resulting from the same curl 
equations, [10]. However, one should keep in mind that this conclusion is exactly valid only 
when an exact analytical solution is sought. In contrary when numerical solutions are adopted 
along with the internal structure discretization accompanied by approximate interpolation 
functions within each piece-wise homogeneous element, then the aforementioned “exact” 
conditions can be violated, resulting to field distributions not obeying the divergence 
conditions. Even though this could be kept in mind as a possible source of inaccuracies, 
usually their effects can be negligible. Thus there is indeed a very powerful method to 
discretized and solve the interdependent pair of vector curl differential equations (2a) and (2b), 
such as the Finite Difference Frequency Domain (FDFD) method established in our previous 
work, Lavranos [13] in two-dimensional curvilinear coordinates and currently been extended 
to 3-D structures as in Lavdas [14]. This approach can easily account for material anisotropy as 
well, within the usual FD limitations regarding the interfaces spatial resolution. Even though 
this is a promising approach we have not yet employed it within inverse problem solutions, 
but instead the Finite Element Method (FEM) is mostly employed for this purpose. Since FEM 
is formulated in an integral form, it is more convenient to decouple the two curl equations in 
order to formulate two separate vector wave equations for the electric and the magnetic field 
respectively as, e.g. Jin [15] or Volakis [16](p.5) : 

 2
0 r 0

r 0

1
x -k j impxE j E J

 
 

  
      

   

  
 (6a) 

www.intechopen.com



 
Medical Imaging 

 

158 

 2
0 r

rc rc

1
x -k

J
xH H x

 
  

      
   

 
 (6b) 

Either wave equation could be solved employing FEM after constructing a functional (or 
weak form) to be minimized. This task is achieved utilizing either a variational approach or 
the Galerkin approach, e.g. Cangellaris [17]. The choice among the two wave equations is 
mainly undermined by the more convenient enforcement of boundary conditions. For the 
biomedical applications the media-tissues are non-magnetic (Ǎ=Ǎ0) and the inhomogeneity 
is approximated by step changes in conductivity and permittivity. Thus the related 
boundary conditions are directly enforced to the electric field as Dirichlet type. Conversely, 
if ones solves for the magnetic field the same boundary condition would be translated into a 
Newmann type and a differentiation after the solution (prone to numerical errors) would be 
performed to evaluate the desired electric field. Hence, it is preferable to choose a 
straightforward solution of the electric field wave equation (6a). 

Observing equation (6a) and following its solution in the next section one would realize that 

this is anything else but a trivial task, involving huge computational resources to solve over a 

Human body or just a Human torso. For this reason two simplifications will be presented next, 

a quasi-static approach valid for the frequency range up to a few MHz and a second approach 

with unidirectional dipole sources (aligned along the z-axis) and even a 2-D scalar Helmholtz 

wave equations excited by “line sources” which significantly reduce the involved complexity. 

3.3 Quasi-static approach 

Observing equations (2a) and (2b) one may recall the basic understanding that the 

electromagnetic waves are created and propagated due to the temporal variation of 

impressed current source which is inherited to the generated field. Explicitly, a time 

depended impressed current generates a temporally changing magnetic field through (2b). 

In turn the varying magnetic field /H t j H     
 

produce an electric field with an 

identical time variation through (2a). This /E t j E   
 

 regenerates a changing magnetic 

field through (2b) and this cycle is infinitely repeated producing a propagating wave. 

However, this “chain” becomes very weak or breaks when either jωǍ=jωǍ0Ǎr or jωε=jωε0εr 

quantities become very small (where ε0=8.854x10-12F/m and Ǎ0=4Ǒ10-7Η/m). Biological 

tissues are non-magnetic Ǎr=1 while due to their high water content they present a very high 

dielectric constant which starts from about εr1000 (or more) at 100KHz range and reduced 

to about εr80 in the microwave (GHz) range. Based on this reasoning it was long ago 

realized, e.g. Price 1979 [18], that magnetic effects can be ignored for frequencies lower than 

about 10MHz. Namely, the electric filed generated by magnetic field temporal variations 

becomes negligible. From the wave propagation point of view the wavelength in a media 

εr100 at f=10MHz is 0 3g r m     (and ǌ0=c/f), which means that at a distance 

d=ǌg/4=75cm the field or voltages changes due to wave propagation from its maximum 

value to zero and vice-versa. Hence for a thorax with larger dimension of about 40cm the 

10MHz frequency constitutes indeed an upper limit.  

In view of the above, the ignorant question asks then “from where comes the varying 
electric field and the desired electric potential”? Now we have to reconsider the divergence 
equation (2c) and the charge conservation law (3) as: 
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 0E E V    
 

 (7a) 

 E V           
  

 (7b) 

 J j E j V j                 
    

 (7c) 

Equations (7b) and (7c) seems to be in contradiction since, they call for different voltage 
definition or making V to voltage uniqueness. Here comes the original Maxwell observation, 
e.g. see Jackson [19]( p.238), that one could differentiate (2c) and substitute in charge 
conservation equation as: 

 

0(2 )

0(3) 0

DD Jc
tt t
D

or JJ
tt





                               

  


 (8a) 

Substituting the constitutive relations J E


and D E into (8a) and restricting ourselves 

to time harmonic fields we get: 

 ( ) 0j E      (8b) 

In turn utilizing (7a) the so called generalized complex Laplace equation is obtained: 

   0c r V   


 (8c) 

where: 

      c r j r     
 

 (9) 

However, besides this classical approach, (8c) can be obtained by dividing (7c) with jǚ and 
adding the result to (7b). Charge density at the operating frequency indeed exist over the 
metallic electrodes obeying (7c), but these can be taken into account through the boundary 
conditions to be enforced on the voltage distribution during the FEM formulation of the 
Newmann type: 

 
on the electrode

on the body air interface
c

o

J
V V

j j j V
n n j

n

  
 


              

 (10) 

where V/n denotes the normal derivative at the interface. At this point is important to 

note that (10) applies to both active-driven as well as passive (sensing) metallic electrodes, 

since current and charge density is induced on them. Most important is that the field and 

current singularity at metallic edges is a local phenomenon and thus it occurs at any 

frequency from DC to microwaves. Referring to a classical electromagnetics text book, e.g. 

Collin [10](p.25), field components normal to the edge as well as current density 

components parallel to the edge exhibit a singular behavior tending to infinity as 1 /  , 

where ǒ the distance from the edge. Conversely, field components parallel to the edge and 
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current density normal to that vanish as ǒ0. This is an important behavior and it should be 

taken into account when an accurate modeling is sought. To clarify this behavior the current 

density on a patch electrode driven by a current 1 is shown in Fig.4a and the induced current 

density on a passive electrode is sketched in Fig.4b. Note that the corresponding integrals 

denote the total current I on the driven and zero on the passive electrode. Obeying equation (3) 

the charge density on the active or passive electrodes exhibits identical singular behavior. 

 

 
(a)     (b) 

Fig. 4. Current density on metallic strip electrodes exhibiting the inherent singularity as a) 
emanating from an active electrode and b) induced on a passive electrode, e.g. [19](p.165) 

3.4 Wave equation for microwave sources in biological media 

The forward problem for the microwave imaging is governed by the wave equations (6a) or 

(6b). It was explained before that the electric field wave equation (6a) offers a 

straightforward enforcement of boundary condition at the different lossy dielectric 

interfaces as a rigid-Dirichlet type. Besides that, observing the first term of equation (6a) this 

could be significantly simplified for the non-magnetic biological media as Ǎ=Ǎ0=const or 

Ǎr=1. In contrary the corresponding first term of (6b) is complicated as it contains the 

spatially dependent complex ( )rc rc r  
. In view of this clarification the electric field wave 

equation (6a) can be simplified by utilizing the identity: 

 2( )E E E     
  

 (11) 

For the divergence of E


 we may again exploit the original Maxwell observation [19](p.238) 

as given in equation (8c) which is generally valid and using the symbolism (5a) ǆc=ǔ+jǚǆ, 
then (8c) reads: 

  ( ) ( ) 0 ( ) ( ) ( ) ( ) 0c c cr E r r E r E r r          
         

 (12a) 

or 

 
( ) ( )

( )
( )

c

c

E r r
E r

r





   
   

  (12b) 
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Substituting equation (12b) into (11) and the resulting expression back into (6a) the desired 
electric field wave equation for biological media is obtained: 

 2 2
0 0

0

( )
r r r imp

E j
E k j E j J

j

    
  

    
           

    
 (13) 

It is now convenient to define a complex inhomogeneous wavenumber ( ) K r
 

in the usual 

form as: 

 2 2
0

0

( )
( ) ( )r r

r
K r k r j

 


 
  

 

 
 (14) 

With the aid of (14) the electric wave equation reads 

 
2

2 2
02

( ) ( )
( ) ( ) ( ) ( )

( )
r imp

E r K r
E r K r E r j J r

K r
 

       
 

       
  (15) 

where ( )r


 denotes the source spatial vector. 

3.5 Two dimensional structure-inhomogeneous cross-section 

The convenience offered by a two dimensional imaging are already explained in section II.2 

along with the necessity of solving a three-dimensional forward problem. The geometry 

considered in this case is a cylindrical structure with an arbitrary shaped cross-section but 

uniform along its axial ẑ -direction. Likewise the material complex permittivity to be sought 

is inhomogeneous in the (xy) cross section but uniform along the z-direction, like an 

assembly of different dielectric bars, as ( ) ( , )c cr x y  . Due to the uniformity in the axial ẑ -

direction the structure can be considered as an inhomogeneously loaded lossy dielectric 

open waveguide of arbitrary cross-section which is excited-illuminated by different type of 

sources. In view of this uniformity the electromagnetic field within and outside this open 

waveguide could be expressed as a superposition (expansion) of an in general infinite 

number of modes either propagating or evanescent just as classically done in the mode-

Matching technique. Even though this is a very promising approach to our knowledge it has 

not yet being exploited for imaging purposes. Let us give a formal description of such a 

methodology. For each one of the possibly excited modes the field dependence in the ẑ -

direction can be denoted as: 

 ( , , ) ( , ) ij z
i iE x y z e x y e 
 

 (16a) 

 ( , , ) ( , ) ij z
i iH x y z h x y e 


 (16b) 

where ǃi is the ith mode complex propagation constant. When ǃ is real or exhibits a small 

imaginary part due to losses, then it represents a propagating wave. Conversely, when ǃ is 

purely imaginary then it represents an evanescent or non-propagating wave which can be 

excited by the source but is exponentially attenuated away from that. Namely, it exists only 
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around the source, it does not transfer energy but it only stores electric and magnetic energy 

in its neighborhood, thus contributing only to the reactive part of the source (antenna) input 

impedance. In order to utilize the eigenmode expansion approach the characteristics of 

every possible mode, its eigenfunctions ( , ), ( , )i ie x y h x y


 and the complex propagation (ǃi) 

constant should be estimated first. The corresponding expansion formally reads: 

 
1 1

( . ) ij z
ei i ei i

i i

E w E w e x y e 
 



 
  
  

 (17a) 

 
1 1

( . ) ij z
mi i ei i

i i

H w H w h x y e 
 



 
  

 
 (17b) 

Where wei and wmi represent the modal amplitudes or weighting factors which depend on 

the source type and its location, see for example our work [20]. These can be estimated 

through a power conservation low which is the basis of a mode matching technique. 

Explicitly, each specific source can be enclosed inside a fictitious box inside which the field 

is described with the aid of a numerical technique on a fine mesh exploiting the knowledge 

of source modeling, e.g. Volakis [16](p.238). Outside the fictitious surface the eigenfunctions 

(17) is considered and the weighting factors wei and wmi are evaluated through field 

continuity conditions across this psudo surface. It is important to keep in mind that the 

power conservation low should be enforced, which is preferably formulated in conjunction 

with the modes orthogonality properties, e.g. [21]. 

The above mode matching approach pressumes the knowledge of the eigenvalues (ǃi) and the 

eigenfunctions i, hie


which for the considered inhomogeneous cross-section can only be 

acquired numerically. For this purpose the wave equation (6a) shall be formulated as an 

eigenvalue problem and the usual approach is based on the separation of both the electric field 

e


 and the nabla    differential operator into axial ( ẑ ) and transverse (t) components as: 

 ˆ ˆ ˆ ˆ,t z t x y t ze e ze and e e x e y h h zh     
   

 (18a) 

 ˆ ˆ ˆ ˆ,t t tz j z x y
z x y

  
         

  

   
 (18b) 

The detailed procedure given in a lot of textbooks, e.g. Volakis et al [16](p.98) is summarized 

as follows: 

 t t t z te e e j e ẑ( )       
    

 (19) 

Which can be substitute into (6a) to yield a pair of differential equations for the axial (ez) and 

transverse ( te


) field components as: 

   2
0

1
0t t t t z t rc t

r r

e j e j e k e
  

 
 

         
 

    
 (20a) 
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 2
0

1
ˆ ˆ( ) 0t t z t rc z

r

e j e z k e z 


 
       

 

  
 (20b) 

The pair of equations (20) constitutes the eigenproblem to be solved numerically. Observing 

that the transverse component te


 mainly occurs a product jǃ te


, the eigenproblem in further 

simplified by letting t tj e e 
 

 and multiplying (20a) by jǃ yields: 

  2 2
0

1 1
t t t t z t rc t

r r

e e e k e 
 

 
          

 

      (21a) 

 2 2 2
0

1
ˆ ˆ( )t t z t rc z

r

e e z k e z  


 
       

 

    (21b) 

Equations (21) constitute the desired eigenproblem for the ǃ eigenvalue. The interested 
reader may contact our previous work [22] on open waveguides which was carried out 
within Dr. Allilomes doctoral thesis [23] also available online (in Greek). 

Even though the above 2-D analysis offered some simplification the forward problem still 
remains complicated and computationally demanding. A truly two-dimensional approach 
presumes the sources to be two dimensional, i.e. tending to infinity along the z-axis, just as 
in the case of an “infinite line source”. 

3.6 Two dimensional object excited by infinite line sources 

The field of an infinite electric line source embedded in a homogeneous media is well 
studied and can be found in any classical electromagnetics textbook, e.g. Balanis [24]( p.571). 
Since the line source is infinite its current density must be constant and if it is considered 
aligned along the z-axis, then: 

Line Source: 

 
2

ˆ ˆ( ) ( )L

I
J r J z z

A
     

    (22) 

where I is a sinusoidal current (I=I0ejωt) and ǒ the polar radial coordinate transverse to ẑ , as 
A let the line source cross section assumed very small. 

For a homogeneous medium the field generated by an infinite line source is a Transverse 

Magnetic (TMz), Hz=0 with only and axial electric field ˆ
zE E z


 and its transverse 

eigenfunction is identical to a cylindrical Hankel function of the second type (2)
0 ( )H k  

assuming that the line source is at ǒ=0, for details in [24]( p.571). For the case of the 

inhomogeneous cross-section the TM nature of the wave is exactly preserved, thus ˆ
zE E z


 

and Ex=Ey=0. Besides that the two-dimensional complex dielectric profile is uniform along the 

z-axis or ( ) / 0cd r dz 


 and consequently from equation (14) it is ( ) / 0K r z  


. In view of the 

above simplifications the third term of equation (15) vanishes as also explained by Fang [25] : 

 2 2

2 2

0
( ) ( ) 0

( ) / 0

x yE E
E r K r

K r z

    
   

  
  (23) 
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Consequently, the wave equation (15) is reduced to a scalar Helmholtz equation: 

2-D & Line Source: 

 2 2
2 2 0( ) ( ) r ZLE r K E r j J   

  
 (24) 

A more practical structure to be considered herein is comprised by the same lossy dielectric 
profile ǆc(x,y) but with a finite extend in the z-direction and illuminated by a circular array of 

infinitesimal ẑ -directed dipoles located ǂt the mid z-plane and encircle the object to be 

imaged. Even though this can again be classified as a 2-D inverse problem and solved 
accordingly, the corresponding forward problem is governed by the 3-D wave equation (6a) 
or (15) and it will be solved with the aid of a 3-D finite element method. 

3.7 Variational formulation 

The finite element will be employed for the numerical solution of either the generalized 
Laplace equation (8c), the scalar wave equation (24) or the general vector wave equation 
(6a). For each case the structure will be discretized with the aid of the appropriate forward 
fine mesh. The first step of this procedure refers to the formulation of the differential 
equation into an appropriate integral functional or weak formulation which will, in turn, be 
minimized to obtain the numerical solution. Let us start from the simpler case. 

3.7.1 Functional for the generalized laplace equation  

For these relatively simple scalar problems the variational formulation is usually adopted. 
According to the approach, e.g. Jin [15]( p.72), the differential equation (8c) along with its 
boundary conditions yields the functional to be minimized. These are as follows: 

1. Neumann boundary conditions at the active current electrodes and along the body-
surrounding air interface: 

 
0

, ondrivenelectrodes

,on body-air interface
c

J
V

j V
n j

n

  



  


 (25) 

where /V n   is the potential derivative in the direction normal to the unknown object 

surface. 

2. Mixed Dirichlet and Neumann boundary conditions between different media regions-
object elements (i,j) as: 

 i jV V  and 
ji

ri rj

VV

n n

 
 

   (26) 

These are natural boundary conditions which are an inherent property of the differential 
equation (8c). Namely, these are automatically imposed through the FEM solution of (8c). 
Note that the above does not include any Dirichlet condition, namely only the derivatives 
are defined (delta change), hence the resulting solution will be floating and thus non-
unique. To avoid this problem at least one point must be grounded (V=0) 
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Absorbing boundary conditions 

At this point recall that the Generalized Laplace equation solution domain is basically 

infinite, since for high frequency sources (i.e. in the MHz range) the electric field  E


and the 

related scalar potential (V) extends in the air to “infinity” obeying in general the 

Sommerfeld radiation condition. Explicitly, for very low frequencies the static potential in 

the air surrounding the structure vanishes since the conduction current cJ E
 

is zero and 

0  in the air. However, as frequency (ω) is increased a significant displacement current 

d oJ j E
 

flows in the air around the structure and this phenomenon must be taken into 

account. But, for a numerical solution the analysis domain must be finite and restricted if 

possible to the actual body of interest. For this purpose the solution domain is enclosed 

within a fictitious closed surface of canonical shape on which “transparent Absorbing 

Boundary Conditions (ABC)” are enforced. Transparent ABCs means that they should not 

disturb the field distribution but conversely to behave like perfect absorbers (if possible), 

absorbing any wave incident on them without any reflection, just like a termination load. 

For the two dimensional forward mesh of Fig.5a enclosed within a fictitious circular 

contour-C, the quasi-static potential ABCs read [15](p.97): 

 
1V

V
ln


  

  on circle c   (27) 

where 2 2x y   the radial polar coordinate.  

The three dimensional structure of Fig.6b is enclosed within a fictitious cylindrical surface 

on which the appropriate ABCs should be imposed. In order to understand the ABCs in 

both 2-D and 3-D structures it worths to recall that these are extracted from a generalized 

type of boundary conditions, [15](p137). For this purpose let us write the generalized 

Laplace (8c) or Poisson equation in the general form of: 

 
cx cy cz

V V V
V f

x x y y z z
   

                          
 (28a) 

Considering the solution domain enclosed within a closed surface 1 2S S S   on which two 

type of boundary conditions can be imposed as: 

Dirichlet Boundary Condition: 

  V   on S1 (28b) 

General (mixed Dirichlet & Newmann) Boundary Condition  

 ˆ
cx cy cz

V V V
n V q

x y z
   
   

     
   

 on S2 (28c) 

where n̂ the outward unit normal vector. Besides these the field and consequently the scalar 

electric potential should obey the Sommerfeld radiation condition at infinity which reads, 
[15](p.8) or [16]( p.8): 
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 3-D:     ˆlim 0o
r

r jk r


     
 

 (29a) 

where orE H 
 

and 2 2 2r x y z   ,which states that the field is comprised of an 

outgoing wave with dependence ojk re  as r  . For a two-dimensional case (29a) where 

ˆ
zE E z


(e.g. TMz modes) or ˆ

zH H z


(for TEz modes) equation (29a) reduces to: 

    lim 0z o z
r

jk


 
     

 
 (29b) 

where orz z zE H  . The question is now how to express (29b) in the general form of (28c) 

to be applied on the fictitious boundary truncating the solution domain, by keeping in mind 

that E V 
 

. Additionally it has been proved that for a 2-D case the potential (the static or 
the quasi-static approximation) asymptotically behaves as [15](p.97): 

 2-D: lnV A   as    (30a) 

where A is a constant. 

For a three-dimensional domain the potential in the homogenous background (i.e. air) and 
at a large distance from its sources behaves as [15](p150): 

 
A

a
r

  (30b) 

where 2 2 2r x y z   . 

For the two dimensional case let 0V z    and the 2-D ABC (27) is obtained from (28c) by 

letting q=0 and Ǆ=1/(ρlnρ). Note, that inside the fictitious surface-S there is always an air 
layer (ǆrx= ǆry= ǆrz=1), hence (28c) reads: 

 
1

ˆ
ln

V V
n V

x y  
  

   
  

 (31a) 

For a circular fictitious surface it is ˆ ˆn  and for a large enough radius the left hand side of 
(29) is reduced to V   to yield the ABCs of (27), (the related vector identities see e.g. 
Balanis [24] (appendix II) 

Likewise, for the three dimensional domain eq.(28c) yields the absorbing boundary 
conditions. 

For a spherical fictitious surface with radius rc large enough the absorbing boundary 
conditions take the form: 

 
1V

V
r r


 


 (31b) 

which, in turn, can be expressed through (28c) by letting Ǆ=1/r, q=0 and ˆ ˆn  .  
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(a)      (b) 

Fig. 5. The object to be imaged is surrounded by the illumintating or sensing antennas array 
and is enclosed within a fictitious surface “transparent” to electromagnetic waves on which 
ABCs are imposed: (a) 2-D and (b) 3-D configuration. 

For the scalar microwave case where Ǚ=Ƨz or Hz equation (29a) yields the absorbing 

boundary condition along a cruved fictitious surface as,  

 
1

2
z

o zjk



 

 
     

 (31c) 

3.7.2 Functional for generalized Laplace equation 

With the aid of the variational technique the generalized Laplace equation (8c) along with 

the boundary conditions (25), (26) or their general form (28) and the corresponding ABCs in 

(27), are found to be equivalent to the minimization of the following functional: 

 2 2

1 1

1
( ) ( ) ( ) ( )

2
e

M M
e e

c
e e

V V
F V dxdy JVd F V

x y

 
  

 
    

 
      (32) 

where M is the total number of elements and e is the area of each e-element. Note that the 

variational formula (32) is valid for either real or complex quantities according to [15](p.76) 

and the references therein. For F(V) to be minimized, its partial derivatives with respect to 

the elements nodal voltages must be zero, namely: 

 
( )

0 1,2,...,
i

F V
for i n

V




   (33) 

where n is the total number of nodes. 

3.7.3 Functional for the vector and scalar wave equations 

A variational technique can be employed to formulate the microwave functional for the 

vector wave equation (6a) along with the appropriate boundary conditions and the 

corresponding Absorbing Boundary Conditions. The resulting functional reads [15]: 
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         21 1
ˆ ˆ3-D:

2 2

ˆ

o
o rc

rV S
ABCs

s

V source

jk
F E E E k E E dV r E r E dS

j J EdV






 
   

            
   

 

 

 



       







 (34) 

Likewise, the scalar wave equation (24) when a 2-D structure is illuminated by a line source 
results to the functional: 

  
22

2 21 1 1
2-D:

2 2 2
s

z z
o rc z o z z z

S S source
ABCs

E E
F E k E dS jk E dl j J E dS

x y r
 



                        
  





  (35) 

The surface integral in eq.(34) is defined over the fictitious cylinder truncating the 

solution domain. Likewise the line integral in eq. (35) is defined along a fictitious circle 

(ƥS) terminating the 2-D mesh. Both these integrals express the absorbing boundary 

condition. 

3.7.4 Finite element solution of the forward problem 

For both the quasi static and the microwave approach the structure must be discretized 
utilizing a dual mesh. A fine one for the forward problem and a coarse mesh for the 
inverse problem, as shown in Fig.3. The coarse mesh is defined only over the object to be 
imaged (Fig.6), while the fine-forward mesh covers the whole solution domain up to the 
fictitious line or surface enclosing all constituents including antennas of electrodes. 
Besides that every coarse element is subdivided in a number of smaller fine mesh 
elements. The nodal FEM approach is employed for the MHz potential estimation as well 
as the 2-D scalar Helmholtz equation involving only Ez component referred bellow as 
scalar FEM. Conversely, the edge elements technique is adopted for the 3-D vector wave 
equation. Since, for the reconstruction mesh the body under consideration is split into 
cubic (or rectangular) elements with constant σ and εr, so a piecewise homogeneous model 
is constructed as: 

  
1

1 within k-th element
, ,

0 elsewhere

E

c ck k k
k

x y   



  


  (36) 

Even though FEM is well described in numerous textbooks, e.g. [15], [16] and [17] for 

multigrid approaches, a short description of the basic interpolation functions and the related 

element matrices is given next, since they are necessary for the definition and evaluation of 

the Jacobian-Sensitivity matrix.  

3.7.5 Scalar nodal 2-D approach 

Either the potential in the functional (32) or the Ez component of (35) are discretized 
employing first order linear triangular elements with the unknowns (degrees of freedom) 
defined on their nodes as: 
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 2-D triangular: 
3

1

e e e
i i

i

N 


  (37) 

where e eV  or e
zE respectively. The scalar interpolation or basis function are given by: 

  1
, 1,2,3

2

e e e e
i i i ie

N a b x c y i   


 (38) 

e  area of the e-th element, 1 2 3 2 3 1 2 3 1 3 2, ,e e e e e e e e e e ea x y y x b y y c x x      , 2 3 2 3 2 3, , , , ,e e e e e ea a b b c c  

can be found by cyclic interchange. The above interpolation functions include unknown 

coefficients related to the element geometry and its material constitutive parameters. These 

are estimated by applying the interpolation functions at the points where the field or 

potential is sampled, in this case the element nodes. The resulting system of equations is 

analytically solved for these unknowns in terms of the potential or field values at the nodes. 

These are, then, substituted back into the interpolation function. In turn, this can be readily 

exploited in the conditions minimizing the FEM functional like that of equation (33) through 

an analytical evaluation of the derivatives with respect to the unknown potentials (Vi) or 

field components Ezi. Observe at this point that the involved surface integrals over the 

solution domain (e.g. (32) or (35)) are discriminated into a sum of integrals over each 

element. The latter yields a system of equations of the form: 

  e e e e
cY V I           (39) 

or respectively: 

    e e e
c z zK E B J           (40) 

Within the classical FEM the above element equations are assembled to from a unified 

system matrix representing the whole solution domain. Hence, this matrix should include 

all boundary conditions along with the illuminating sources and passive substructures like 

sensing electrodes or antenna models as well. The latter is useful and it should be accounted 

at least when the methodology is matured, but it is for now neglected. Regarding the 

important absorbing boundary conditions these are usually imposed through the closed 

contour integral over ƥS in equations (32) and (35). For this purpose the contour ƥS is 

discretized into line segments coinciding with the corresponding edge of the peripheral 

triangles (as depicted in Fig.6) 

The corresponding line element matrices are as follows: 

 Quasi-static ABCs: 
2

ln
s

s o

V
K j dl

 

    (41) 

 2-D microwave ABCs:   1

2
s o i j sK jk N N d

r

    
   (42) 
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Fig. 6. Example of coarse mesh overlapping a fine mesh, for 2-D rectangular object enclosed 
in a fictitious circle (ƥS). The contour ƥS is discretized using line segments which coincide 
with the corresponding edge of the peripheral triangles 

The last term to be included here is the feeding sources contribution through the 
corresponding terms of equations (32) and (35). Herein the simplest possible sources are 
considered, i.e. infinitesimal electrodes or dipoles respectively. In both cases the current 
density is approximated as uniform ignoring the field/current singularity at the edges (a 
phenomenon which should be included in a most complete version), thus given by the ratio 
of the feeding current (I) to the antenna or electrode cross section (A) like J=I/A. The related 
integrals over the source yield the right hand side [I] or B(Jz) respectively. The resulting FEM 
system of equations takes the form: 

 Quasi static FEM:      cY V I     (43) 

 2-D microwave FEM:      c z c zK E B J             (44) 

Classical numerical techniques can be employed to solve systems (43) or (44), but it is useful 

to keep in mind that multiple solutions are necessary (for each inverse problem iteration), 

one for each illuminating antenna or active electrodes pair position. Hence a technique 

based on the inversion of the system matrix like the LU decomposition is very convenient, 

since the solution for each kth-right hand side is obtained by a simple multiplication as 
1k kV Y I           . 

3.7.6 Vector edge elements FEM 

For the volume integral of the electric field vector in the functional of (34) first order 

tetrahedral vector-edge elements are employed. The electric field E


within each tetrahedral 

is expanded in terms of the FEM basis functions as, [15]: 
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 3-D: 
6

1

e e e
i i

i

E N E



 

 (45) 

e
iE denotes the tangential field values along the i-th edge and e

iN


is the vector interpolation 

or basis function given by: 

  
1 2 1 2 2 1

e e e e e e e
i i i i i i i i iN W l L L L L l    
  

 (46) 

The edge numbers and the associated nodes i1 and i2 are defined in Table 1 and in Fig.7. For 

a detailed definition of the quantities involved in (46) one may consult [15, 17] 

 

Edge i Node i1 Node i2 

1 1 2 

2 1 3 

3 1 4 

4 2 3 

5 4 2 

6 3 4 

Table 1. Edge definition for a tetrahedral element 

 

 
 

(a)     (b) 

Fig. 7. Finite elements employed for the discretization, (a) tetrahedral edge element for 3-D 
and (b) triangular node element for 2-D. 

Following an approach similar (but more complicated) to that for the 2-D case the resulting 
volume element matrix reads: 

 vector-tetrahedral:        21 T
e e e e e e

i j o c i je
rV

K N N k N N dV


 
            


    

 (47) 
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The absorbing boundary conditions stem from (29a) and take the form of the corresponding 

term in (34) through an asymptotic approximation. In order to evaluate this integral, the 

closed fictitious surface (S) is discretized into triangles coinciding with the outer surface of 

the peripheral tetrahedrals as shown if Fig.8. The resulting element matrix reads: 

 3-D ABCs:    ˆ ˆ
2

s o
i j

S

jk
K r N r N dS

          
 

  (48) 

where r̂ is the outward unit normal vector. Note that the above involved triangular edge 

elements shape functions are not trivial, since each triangle has a different orientation in a 3-

D space. The most convenient way to extract them is through the degeneration of the 

corresponding peripheral tetrahedral into a surface triangle. Regarding the source modeling 

an infinitesimal dipole approximation is again considered as for the 2-D case. 

 

 

 
 

Fig. 8. Triangles coinciding with the outer surface of the peripheral tetrahedrals 

The linear system solution in the 3-D case constitutes a major difficulty due to the large 

number of unknowns. Thus the performance of direct inversion methods like LU 

decomposition becomes questionable and iterative techniques are also tried herein. 

Specifically, in the 3-D case the inversion of the matrix K will consume all the system 

memory due to the size of the matrix, so an iterative solver is preferred with the appropriate 

preconditioner. The Generalized Minimum Residual method (GMRES) is used for the 

solution of the linear system with a symmetric successive over-relaxation-vector (SSOR-

vector) preconditioner.  

Solving this system the electric fields (or the potential) on the receiving antennas (or 

electrodes) and at all the internal edges or nodes is calculated and stored, to be used latter 

within the reconstruction algorithm. An example of the electric field distribution when one 

of the infinitesimal dipole or a line-source antenna is activated is shown in Fig. 9. 
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(a)     (b)  

Fig. 9. (a) Electric field distribution when a 2D structure is illuminated by an infinitesimal 
dipole operated at 800MHz and (b) electric field distribution at two planes when a 3D 
structure is illuminated by an infinitesimal dipole operated at 1 GHz. 

4. Inverse problem 

The reconstruction algorithm is based on the modified perturbation method that was 

initially developed for the conductivity imaging in Electrical Impedance Tomography [26] 
and later on extended to higher frequencies (up to 10MHz),[27]. This research was carried 
out within the doctoral thesis of D. Drogoudis [28], which was primarily focused to extend 
MPM and prove its validity in the microwave regime. Indeed this proof of concept was 

achieved and published in [29] and [30]. For the introduction of the reader to the inverse 
problem approach but also to provide him with the knowledge to proceed further and 
ultimately achieve its practical implementation, the reasoning behind its implementation 

and the logical steps for its extension will be given next. Thus, let us start by reviewing the 
static MPM and proceed to its extension to the MHz and finally the microwave range. 

4.1 Review of the static MPM algorithm 

First a review of the static algorithm will be given and based on that the steps towards its 

present time harmonic formulation will be described. According to [26] the σ-imaging 

algorithm reads: 

 
11 1

1

1

| |

M
mi c i i

mi jin n n
j j jM

k

jk

V V V

V
k

V




  



 





 



 (49) 

where M is the total number of linearly independent measurements, Vmi and Vci are the 
measured and calculated voltage differences at the ith port (electrodes pair) and k1 is the 
relaxation factor to be chosen in the range 0<k1<2 in order to provide faster convergence. 
The partial derivatives /i jV  or /k jV   constitute the elements of the Jacobian matrix. 
These are calculated from the voltage distributions all over the object cross section through a 
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closed form expression given by Yorkey et al. [31]. The latter is based on the electrical circuit 
compensation theorem as applied on a resistor network equivalent for each σ-element, as 
shown in Fig.10. In turn these expressions are given in [31] as: 

 ( ) ( )
1

1 L
i

ij ij kj
j i

V
J S V V

I


 

      


 (50) 

where ( )ijV  and ( )kjV   are the voltages developed across the lth branch of the jth element 

Fig.10 when a sinusoidal current with amplitude i kI I  is successively injected through the 

ports -i and -k respectively. The constants S  are the normalized geometrical weights 

arising from the finite element formulation. S are actually given by the non-diagonal 

entries of the  eY -element matrix as:    j ee
Y K and  eS  non-diagonal entries of  eK . 

An indicative example of these branch admittance values is through the definition of the 
resistance network for the rectangular element (Fig.10) and its related element matrix: 

static triangular element 

    
11 12 13

22 233 3

33

·j

G G G

Y G G K

symmetric G


  

    
  

 (50a) 

  

2 2
1 1 1 2 1 2 1 3 1 3

2 2
2 2 2 3 2 33

2 3
3 1

1

4

b c b b c c b b c c

K b c b b c c

symmetric b c

   
 

   
  

  

 (50b) 

static rectangular element 

  
11 12 13 14

22 23 24

4
33 34

44

G G G G

G G G
Y

G G

symetric G

   
   
 
 
 

 (50c) 

  

2 2 2 2 2 2 2 2

2 2 2 2 2 2

4 2 2 2 2

2 2

2 2 2

2 2

2 2 2

2 2

a b a b a b a b

a b a b a b
K

a b a b

symetric a b

      
 

     
  

  
  

 (50d) 

and  
1 1

2 2 1 2 2 1

3 3

1
1 1

1
2 2

1

x y

x y b c b c

x y

   
1 2 3 2 3 1 2 3 1 3 2

2 3 1 3 1 2 3 1 2 1 3

3 1 2 1 2 3 1 2 3 2 1

, ,

, ,

, ,

a x y y x b y y c x x
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     
     
     

 

A detailed derivation of the Compensation theorem can be found in Yorkey et al. [31] as 
well as in Sahalos et al. [32](p.229). Guidelines for its implementation are also given therein. 
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(a)      (b) 
 

 

(c)      (d) 

Fig. 10. Equivalent resistor network for each jth element with locally homogenous 
conductivity ǔ.: (a) Triangular element defined by its coordinates (xi,yi), (b) equivalent 
network of (a) (c) Rectangular element of dimensions a×b, (d) equivalent network of (c). 

4.2 MPM extension to high frequencies 

Working on the extension of the algorithm toward complex permittivity imaging, equations 
(49) and (50) should be modified for complex voltages and complex admittances. 

Analyzing the constituents of MPM algorithm: Let us clarify equation (49) starting from each 

term in the numerator sum which runs over all i=1, to M voltage measurement ports. The i-

th term corresponds to the i-th port where the difference between measured ,( )m iV and 

calculated ,( )c iV voltages , ,( )m i c iV V is normalized by the measured value and this term is 

multiplied by the sensitivity of the i-th port with respect to the j-th pixel conductivity 

j (being currently updated), namely / /i j i jV V    . As for the denominator sum in 

(49) it is just a term normalizing the sensitivities to unity. It is exactly the same as saying that 

that the infinite integral of a probability density function is equal to unity. From a different 

point of view, each measurement port contribute to the total updating summation by its 

normalized voltage deviation from the measured value weighted by the port's normalized 

sensitivity. The same principle can be readily applied to the complex or two variables 

( , )e e
j rj  update (this could be even generalized to multiple variables) scheme, provided that 

the corresponding sensitivities are available. 
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Extending MPM to complex quantities: Recall that when Laplace equation is solved only for a 

conductivity distribution the calculated voltage will be real or in-phase with the injected 

sinusoidal current (source), just as injecting a current in its equivalent network in Fig.10. In 

contrary, when permittivity is included in the model a 90 phase shifted (quadrature) 

component appears in the developed voltage as well. This is in turn equivalent to injecting a 

sinusoidal current on a complex admittance network (Fig.11) and measuring the complex 

voltage across any ith admittance, which reads: 

 ( , ) ( , )re im re im
i i i i r i rV V jV V jV        (51) 

In view of the above a complex sensitivity ij i cjJ V    is required in order to establish an 

algorithm similar to (49). For this purpose a complex derivative can be defined as [33-36]: 

 
( ) ( )

i i i
ij

cj j j

V V V
J j

  
  

  
  

 (52) 

with: 

 cj j jj j    or 0 0crj rjj j       or cj j jj     (53) 

This complex derivative definition has already been employed by many researchers, e.g 

Franchois et al. [33] and Rekanos et al. [34-36], for the definition of a complex gradient 

(complex Jacobian matrix) working toward the establishment of a complex permittivity 

microwave imaging. The definition of (52) is exploited herein in order to identify the 

complex Jacobian matrix ijJ into four real submatrices as presented by Polydorides [37] 

 
( )

( )

re re

RR RI
ij ij j j

ij IR II im im
ij ij

j j

V V

J J
J

J J V V

 
  

 
  

 
            
 
 

 (54) 

An alternative approach, instead of using a complex derivative is to expand the problem 

into two real functions ( , )re
rV   and ( , )im

rV    each one depended on two real unknown 

variables ( , )r  . In turn the basic MPM algorithm (49) can be employed four times for each 

one of the sensitivities just as those occurring in (54). As explained above this is possible not 

only for two but even for any arbitrary number of variables. Attention must be paid to the 

normalized contributing terms (summations) similar to that of (49), since all terms referring 

to the same variable ( , )r  must be added together after being weighted by an appropriate 

relaxation factor k. Hence, measurements at each ith port along with the solutions of the 

complex generalized Laplace equation yields complex voltages which are separated into real 

( )re
iV and imaginary parts ( )im

iV . These numerical solutions yield complex voltage 

distributions at the FEM nodes all over the model of the body to be imaged. Before 

proceeding to the complex MPM algorithm, the analytical expressions for the evaluation of 

the above four sensitivities must be extracted. 
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(a)      (b) 

 

Fig. 11. Equivalent admittance network for complex permittivity elements, (a) Rectangular 
and (b) its equivalent networks. 

4.3 Complex MPM formulation for the MHz range 

The complex derivative of equation (52) presents the important decoupling of its real and 

imaginary parts, thus actually providing separate real and imaginary sensitivities. 

Specifically its real part constitutes the sensitivity of the measured complex voltage with 

respect to the conductivity ǔj. Respectively, the imaginary part comprises the sensitivity 

with respect to the jth element permittivity ǆrj. Additionally each one of them can be 

discriminated into two terms by substituting the complex iV from (51). Consequently, the 

complex permittivity imaging is readily provided by applying the basic MPM algorithm (49) 

for each one of the four sensitivity terms. Specifically, considering the conductivity 

j update we may set-up a summation like that of (49) comprised of the contributions of the 

real voltage part re
iV weighted by the sensitivities /re

i jV  . But, now the imaginary part of 

the voltage im
iV weighted by its sensitivity /im

i jV   comprises another sum similar to 

(49). The real and imaginary voltage contributions are summed together and multiplied by 

the proper relaxation factor to form the formula for σ-imaging. Likewise, the real and 

imaginary voltages are weighted with the corresponding sensitivities with respect to 

permittivity / ( )re
i jV   and / ( )im

i jV    to formulate the ε-imaging algorithm. These 

two could be given either separately or combined together in a complex c imaging 

algorithm as:  

 1 1 1 1
0 0 1 1 0 2 2 ( (  ) )n n n n n n n n

cj j r j rcj j j r j r jj j j k W j k W                            (55) 

 
1 1

1

1 1

re re im imre imM M
mi c i mi c ii i

re im
j ji imi mi

re imM M
k k

j jk k

V V V VV V

V V
W

V V

 
 

 
 

 

 

 

 
 

 
 (56) 
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0 01 1

2

0 01 1

( ) ( )

( ) ( )

re re im imre imM M
mi c i mi c ii i

re im
rj rji imi mi

re imM M
k k

rj rjk k

V V V VV V

V V
W

V V

 
     

 
     

 

 

 

 
 

 
 (57) 

M is the total number of linearly independent measurements, miV and ciV are the measured 

and calculated voltage differences at the ith port (electrodes pair) and 1 2,k k  are the 

relaxations factors that may provide faster convergence. 

The optimum values of 1 2,k k  can be obtained through a numerical investigation. If these 

are not known then is preferable to set 1 2 1k k   (no relaxation). Even though a relaxation 

factor could in general speed up convergence, however in all performed numerical 

experimentation the best performance was obtained without relaxation. 

4.4 MPM for microwave imaging 

Working toward the extension of MPM algorithm to microwave imaging we simply need to 

substitute the complex voltage by the complex electric field. Indeed, the expressions of 

equations (55)-(57) are readily applicable for the 2-D microwave imaging when the electric 

field is comprised of only one component ˆ
zE E z


or it is a complex scalar function. 

However, the proposed procedure is general and applies for the arbitrary 3-D imaging 

where the electric field is a complex vector quantity. Restricting ourselves to the 2-D case we 

may repeat the definition of the complex derivative just for clarity as: 

 
i i i

ij real imag
cj cj cj

E E E
J j

  
  

  
  

 (58) 

In turn, by following exactly the same rationale as for the MHz imaging the microwave 

reconstruction algorithm reads: 

 
( 1) ( 1)( 1) ( 1)

1 1 2 2
imag n imag nreal n real nn

ck ck ck ck ckk W j k W                 (59) 

 
11

1

1 1

imag imag imagMreal real realM
mi ci imi ci i

imag realreal real
i cki mi ck mi

real imagM M
k k
real real

i ck i ck

E E EE E E

EE
W

E E



 



 

  


 
 
 



 
 (60a) 

 
1 1

2

1 1

imag imag imagreal real realM M
mi ci i mi ci i

real imag imag imag
i imi mick ck

imagrealM M
k k
imag imag

i ick ck

E E EE E E

E E
W

EE

 

 

 

 

  
 

 


 

 

 
 (60b) 
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where M is the total number of linear independent measurements, Emi and Eci are the 
measured and calculated fields at the ith antenna and k1,2 are the relaxations factors that may 
provide faster convergence. The optimum values of k1, k2 can be obtained through a 
numerical investigation. Observing the MPM reconstruction equations e.g. (59) to (60) or 
even the original static MPM in (49) one may discuss on the expected robustness or the 
immunity of the method to the problem of ill-posedness. As it is well understood the ill 
posedness is due to very large variations (of the order of 106) of the sensitivity. For example 
very large sensitivity values  i ckE   may be observed for the voxels-k around the 
transmitting antenna and along the axis of transmit-receive antenna pairs. But the sensitivity 
away from these object regions become very small and may be even lower than the 
measurement or calculations inaccuracies. When exact inverse problem formulations are 
employed these large variations in sensitivity yields an ill posed Hessian matrix 
accompanied by a lot of difficulties during its required inversion. Actually, the very large 
variation in sensitivity corresponds to very large variation in the Hessian matrix eigenvalues 
which reflects to a high singularity degree. In contrary, these very low sensitivities occur as 
very small weighting factors in the summations involved in MPM, e.g. (60). Thus, the very 
small sensitivity has negligible contribution in the complex permittivity update, which from 
a different point of view is shadowed by the higher sensitivities. This is equivalent to 
discarding very small singular values of the Jacobian (or Hessian), or using relatively large 
regularization parameter. Hence, the resulting reconstruction algorithm is expected to be 
robust during the first few iterations and it was indeed proved to converge always in our 
previous works, e.g. [26-30, 38]. The observed monotonous convergence was independent of 
the electrodes or antenna locations which greatly affects the sensitivity distribution. This is 
in turn a clear evidence of the MPM immunity against the problem of ill-posedness. Based 
on these observations MPM ensures convergence without the sophistication of 
regularization techniques. However, the penalty paid by MPM for its robustness is the 
absence of any control of the implicitly involved regularization. Instead, an exact method 
may involve a controllable regularization parameter which is gradually reduced from one 
iteration to the next. The reduction of the regularization parameter allows for the small 
eigenvalues or low sensitivities to be exploited.  

According to Meaney et al. [39], most regularization methods require the use of a varying 
degree of a priori information in order to ensure convergence. In contrary MPM ensures 
convergence without any a priory information, but its accuracy is compromised by its 
inability to exploit the hidden low sensitivities. Thus, a logical hypothesis toward accuracy 
improvement is to formulate an exact inverse problem (e.g., a Gauss-Newton scheme) and 
exploit the final image provided by MPM as an initial guess (a priori information). The 
regularization parameter within this scheme can be gradually set to zero or to a very small 
value, uncovering the very low sensitivities (exploiting the very small eigenvalues) which 
are expected to fine tune the image within a few iterations. The proof of this hypothesis 
constitutes one of our next tasks. 

Observing the above MPM reconstruction expression it is obvious that the Jacobian-
sensitivity matrix constitutes the fundamental basis of the proposed method. Its accurate 
and computationally efficient calculation is of primary importance in ensuring successful 
imaging. For this purpose the next section elaborates on an Adjoint network for the 
microwave imaging and its counterpart network compensation theorem for the MHz range, 
both resulting in closed form expressions for the Jacobian matrix entries.  
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5. Jacobian or sensitivity matrix 

As explained in the introductory section the current paths following through the object 
depend on the unknown σ and εr profiles. Also the current density (or field intensity) is very 
high around the active electrodes (or antennas). These two phenomena make the σ- and εr- 
imaging a strongly non-linear inverse problem by creating zones with very high and others 
with very low sensitivity. This severe singularity presents ratios of maximum to minimum 
singular values σmax/σmin as high as 106. Mathematically this reflects to a strongly non-linear 
Jacobian function Jij(ǔ,ǆr). The present method handles the non-linearity, since it calculates 
the Jacobian matrix at each n-th iteration, namely for each (ǔ,ǆr) distribution. The additional 
computation cost of this task is negligible, since the Jacobian is calculated from closed form 
expressions from already available voltage or electric field distribution data.  

Let us proceed to the presentation of the methodologies resulting the closed form 

expressions for the Jacobian matrix. 

5.1 Compensation theorem on an admittance network 

The sensitivities of the MHz range imaging can be obtained by extending the resistive 

network compensation theorem (50) originally given by Yorkey et al. [31] and later on 

reviewed in detail by Sahalos et al. [32](p 229). This is equivalent to the application of the 

circuits compensation theorem on an admittance network. For this purpose an equivalent 

admittance network is considered for each triangular or rectangular element rj( , )j  as 

shown in Fig.11. The admittance values are obtained from the non-diagonal entries of the 

corresponding element matrix as:    ( )j je e
Y j K   where as defined  eS  non-

diagonal entries of  eK . 

For a triangular element (Fig.11a-b) 

    
11 12 13

22 233 3

33

( )·j j

Y Y Y

Y Y Y j K

symmetric Y

 
  

     
  

 (61) 

For a rectangular element (Fig.11c-d): 

    
11 12 13 14

22 23 24

4 4
33 34

44

( )·j j

Y Y Y Y

Y Y Y
Y j K

Y Y

symmetric Y

 

   
     
 
 
 

 (62) 

Where  3K and  4K are defined in (50) and ij ij ijY G j C   

According to the network compensation theorem, a differential change of the l-th branch 
admittance Yl by ƦYl causes a differential variation ƦVi at the i-th port voltage as: 

 
1
· · ·i ij kj
i

V Y V V
I

        (63) 
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Assuming that the l-th branch belongs to the equivalent network of the j-th element, then: 

 ·( )j j jY Y S j            (64) 

Since the voltage is linearly dependent on the network admittances then the superposition 

principle can be applied in two-fold. Summing over all element branches (Fig.11) one may 

obtain the total variation of the i-th port voltage ƦVi. Additionally, in order to evaluate the 

four Jacobian submatrices, the above approach can be applied once when only the 

conductivity of the jth element is varied ( · )j jY S     and again when only the 

permittivity is varied ( ·j jY S j     ). Applying (62) for each case and separating into real 

and imaginary parts one may end up to the desired Jacobian submatrices as: 

 
1

1
·

re L
RR i
ij Rl

j i

V
J S V

I


 

    


 (65a) 

 
1

1
·

im L
IR i
ij Il

j i

V
J S V

I


 

    


 (65b) 

 
1

1
·

( )

re L
RI i
ij Il

j i

V
J S V

I


  

    


 (65c) 

 
1

1
·

( )

im L
II i
ij Rl

j i

V
J S V

I


  

    


 (65d) 

where  

 
re re im im

Rl ijl kjl ijl kjlV V V V V   (66a) 

 
re im im re

Il ijl kjl ijl kjlV V V V V   (66b) 

As a point of interest showing the potential of extending this method to microwave imaging, 

it is proved that the employed Network Compensation Theorem constitutes a particular 

case of the more general ``Adjoint Network Theorem'', which is in turn a direct consequence 

of the electromagnetism ``Reciprocity Theorem''. 

5.2 Sensitivity equation based on Adjoint Network Theorem 

Regarding the microwave sensitivity a more general approach is employed based on the 
electromagnetic field of a particular illuminating antenna combined with an adjoint 
configuration field (herein that for a different transmitting antenna location) through the 
Reciprocity Theorem. Explicitly the components of the Jacobian are the partial derivatives 
(or the sensitivities) of the electric field rE


measured at the r-th antenna to the complex 

permittivity e
c  of the e-th element-pixel, when the s-th antenna is activated. As explained 

below this is in turn evaluated through closed form expressions resulting from the 
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reciprocity theorem and the employment of an adjoint problem. For this purpose an 
approach similar to that given by Oldenburg [40] and the original research cited therein is 
adopted. Namely, the two Maxwell Curl equations are written for the source  sJ


at s-th 

antenna and the involved fields  ,E H
 

 are differentiated with respect to the e-th complex 
permittivity. For the adjoint fields  ,a aE H

 
these two curl equations are written considering 

a source  rJ


 at the r-th antenna (Fig.12). The four curl equations are in turn combined 
following the reciprocity theorem procedure. Specifically, for a dipole antenna at the s-th 
location the curl equations reads: 

 E j H  
 

 (67a) 

 c sH j E J  
  

 (67b) 

Taking the derivatives of (67a) and (67b) with respect to ck  defined in Eq. (36): 

 
ck ck

E H
j

 
 

  
 

 
 (68a) 

  c k
ck ck

H E
j j r E 

 
 

  
 

   
 (68b) 

Consider an auxiliary (adjoint) Maxwell problem with a dipole source  rJ


located at the 

observation point rr r
 

as shown in Fig.12. 

 
a aE j H  
 

 (69a) 

 a a
c rH j E J  

  
 (69b) 

For the application of the Reciprocity theorem procedure to (68a), (68b) and (69a), (69b) 

according to Balanis [24](p. 324), lets take the inner product of aH 


 (68a) and 
ck

E








(69b) 

and subtract: 

 a a a a
c r

ck ck ck ck ck

E E H E E
H H j H j E J 

    
    

         
    

         
 (70) 

Making use of the identity: 

      A B B A A B        
      

 (71) 

For aB H
 

and 
ck

E
A








the left hand side of (70) can be written as a

ck

E
H


 

   
 

 
. 

In turn, one may take a volume integral of (70) over a domain enclosed by a sphere with a 
radius tending to infinity and apply the divergence theorem on the left side. 
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  
V S

F du F dS    
 

  (72) 

to get: 

 
a a a

c r
ck ck ck ckS V

E H E E
H dS j H j E J dV 

   
      

           
      

 
      

  (73) 

Likewise, dot-multiplying aE 


(68b) and subtracting  ckH    


(69a) yields: 

  a a a a a a
c k

ck ck ck ck ck

H H H E H
E E E j E j r E E j H  

    
     

             
     

             
(74) 

Adding (74) and (70) the similar terms are canceled, then the use of vector identities 

A B B A  
  

 and A B B A   
  

 results to: 

  a a a a a
r k

ck ck ck ck ck

H E E H E
E H H E J j r E E

    
         

                     
         

              
 (75) 

Taking the volume integral over a domain enclosed within a sphere of an infinite radius and 

applying the divergence theorem ends up to: 

  a a a
r k

ck ck ckS V

E H E
H E dS J j r E E dV

  
     

          
     

 
         (76) 

The left hand side is identically zero, since both fields intensities tend to zero at infinity by 

simply considering artificially small unbounded medium losses. Hence, (76) finally gives the 

so called sensitivity equation as: 

   a
r k

ckV V

E
J dV j r E EdV




  
 
    

 (77) 

The sensitivity equation (77) can be further simplified to yield a closed form for the Jacobian 

matrix entries  ckE  


by first introducing the FEM basis functions and by considering the 

specific receiving- sensing antennas. Starting from the integrals of (77), these are in general 

over the whole solution domain. But, actually the left hand side is restricted over the current 

carrying volume (Vr) of the r-th antenna. In turn, considering the definition (36) for the 

complex dielectric expansion the right hand side integral of (77) is obviously restricted over 

the volume (Vk) of the k-th element. Further a closer look at the dot product of (77) left hand 

side reveals that the involved electric field is that produced by a radiating antenna at the 

sr r
 

position (Fig. 12) illuminating the receiving antenna at rr r
 

position (sensing port) 

with only the field component parallel to its current rJ


producing a net effect. Hence, the 

derivative  ckE  


can be identified as the sensitivity of the r-th receiving antenna (r-th 

sensing port) with respect to the k-th element complex permittivity  ck  when the s-th 
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antenna illuminates the structure, or specifically the (s, r, k) entry of the Jacobian matrix, 

 , ,s r k ckJ E   


.  

 

 
 

Fig. 12. Geometry for the application of the reciprocity theorem 

Since the integration is restricted over the k-th element volume (Vk), then the fields E


and 
aE


can be expanded into the FEM basis (shape) functions according to (45). In view of the 

above description (77) can be rewritten in the form: 

 

k k k

a k k ak k
r r k i i j j k

ck i jV V V

E
J dV j E EdV j E N E N dV 




     
    
   

 (78) 

Working toward a closed form expression for the Jacobian matrix, the next step is to 
consider specific antenna types. For the two-dimensional (2-D) case when the complex 
permittivity is assumed homogeneous in the z-direction, along which the structure is 
assumed infinite, it is convenient to employ infinitely extending thin line sources as 
illuminating antennas with current density defined by:  

Line source:    ˆ
r rJ I r r z 
  

 where I is a constant current (79) 

In this case the sensitivity entries are readily simplified as: 

 2-D:   
 

, ,

k

k k ak k
i i j j ks r k

ck i jS

E r j
J E N E N dS

I





   

  
 

  (80) 

For a three dimensional structure (3-D) illuminated by thin elementary dipoles of length (Ʀl) 
the current density reads: 

 z-oriented elementary dipole:  ' ˆ
rJ I z   


 (81) 
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where 2 2x y   . Similarly, the sensitivity equation becomes: 

 3-D:   
 

, ,

k

k k ak k
i i j j ks r k

ck i jV

E r j
J E N E N dV

I l




  
             

 
 

 (82) 

The above z-oriented current excitations yields a primarily z-polarized electric field which is 
expected to interact mainly with the ǆzz component of a possibly anisotropic complex 
permittivity. In general, the orientation of the radiating dipoles could be exploited as an 
additional degree of freedom to extract information from dielectrically anisotropic 
structures, e.g. [41, 42].  

The above sensitivity expressions can be written in matrix form as: 

   , ,
k k ak

s r k
J E F E               (83) 

where Ǆ=jǚ/I or jǚ/IƦl is the constant term for the line source and elementary dipole 

excitations and 

    
k

k k k
ij i j k

V

F N N dV       (84) 

Matrices (vectors) [Ek], [Eak] represent the tangential electric fields along the edges of the k-th 

tetrahedral element in three dimensional case or the Ez electric field on the nodes of the k-th 

triangular element for the two dimensional case. These fields are already computed during 

the multiple forward problem solutions performed during the setup of the calculated data-

set (once for each illuminating antenna). The matrix k
ijF 

  is a 6 ×6 matrix in 3D or a 3 ×3 

matrix in 2D and its entries can be constructed from the FEM element matrices, [15].Recall at 

this point that FEM is applied on a fine mesh of tetrahedral or triangular elements while the 

image reconstruction is carried out on a coarse rectangular (pixels) or cubical (voxels) mesh. 

Each reconstruction element consists of a number of forward elements and similarly a 

number of nodes or edges that belong to these forward elements. Equation (83) results to a 

partial Jacobian matrix for each triangular or tetrahedral forward element. However, the 

desired Jacobian is that of the rectangular-pixel or cubical-voxel reconstruction element. For 

each evaluation the Fk matrices are assembled together according to a classical FEM 

procedure to yield a m×m matrix Me, where e the global number of the reconstruction 

element and m the number of edges or nodes that are inside the e-th element. Note that this 

matrix depends only on the geometry (independent of ǆrc distribution) and its calculated 

only once and stored for multiple usage. Consequently, the Jacobian matrix of the e-th 

element reads: 

   , ,
e e ae

s r e
J E M E               (85) 

where 1 2, ,...,e e e e
mE E E E       and 1 2, ,...,ae ae ae ae

mE E E E       . 
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5.3 Sensitivities and features of the Jacobian matrix 

The Jacobian matrix is a rectangular one with dimensions M>N where M the number of 

linearly independent measuring points and N the number of unknown (ǔi,ǆri) pairs. The 

study of tis characteristics is quite important especially in the course toward inventing the 

best data collection strategy, i.e. active and sensing antenna or electrode pairs locations and 

their subsequent activation. Additionally, the sensitivity matrix study with the aid of the 

recently revisited Proper Orthogonal Decomposition [43] techniques constitutes an 

interesting research challenge. Even though our group is already working on this subject it 

will not be considered herein as it requires a separate chapter of its own. For some 

preliminary results regarding the SVD analysis of the Jacobian matrix please contact our 

previous work [30] and wait for al follow up publication. 

6. Numerical results & discussions 

The proposed algorithm was applied for the imaging of numerous conductivity and 

permittivity distributions for both circular and rectangular models and satisfactory 

reconstructions are obtained. The background and anomaly conductivity and permittivity 

values resemble these of typical human tissues.  

Before proceeding to the presentation of reconstructed images the convergence criteria 

should be first defined. 

6.1 Inverse problem convergence criteria 

Computer Test Approach: The so called “computer test” was employed in all cases 

throughout this chapter. First a “target model” is considered and the forward problem is 
solved for each illumination position. Namely, the first antenna is activated and the 
forward problem is solved to calculate and store the electric field at all the remaining-

receiving antennas. Each one antenna is activated in turn and the received electric fields 
are stored to form a complete dataset labeled as “measurements”. The reconstruction 
algorithm starts from a homogeneous model and the desired complex permittivity profile 
is sought. 

Convergence Criteria: Two convergence criteria are adopted. The more general concerns the 

“available information”, which is determined by the difference between fields “measured” 

on the target model (Em or Vm) and fields calculated at the n-th iterative solution of the 

forward problem. As in every minimization approach, the sum of squares (SSQ) is the 

appropriate figure taking signs in to account. Hence the summation over all measurements 

ports (M) gives: 

  2
1

i i

M

meas calc
i

SSQ V V


   (86) 

or  2
1

i i

M

meas calc
i

SSQ E E


   (87) 
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For comparison purposes it is more convenient to present its normalized value (SSQN) with 
respect to its maximum (SSQmax) occurring at the first iteration of the inverse problem as: 

 
max

N

SSQ
SSQ

SSQ
   (88) 

While SSQ is general and can be calculated in all cases, it is only an indirect indication of 
convergence. Namely, its minimization ensure c convergence when a unique solution is 

safeguarded. But, this condition may be disturbed by the problem singularity degree, which 
in turn depends on the data collection strategy. For this purpose the well- posedeness or the 
singularity degree, of the sensitivity-Jacobian matrix should be preliminary examined. 
However a further elaboration is required. Besides this for the particular case of the 
“computer test” the target or true (ǔ,ǆr) distributions are available. Hence, the estimated 

normalized deviations of  ,n n
calc calc  from their true values at the n-th iteration can be 

defined as a norm of relative error: 

    2 2

1 1

P P
i i i
true calc true true

i i

error    
 

 
    

 
    (89) 

    2 2

1 1

P P
i i i

r r true r calc r true r true
i i

error       
 

 
    

 
   (90) 

where true and r true  are the average values of the target profiles and P is the number of 

elements of the reconstruction mesh. We should keep in mind that the σ-error, εr-error 
criteria are not applicable for practical in-vivo or even for the “laboratory test” cases where 

the objects  , r  distributions are unknown. 

6.2 Quasi-static MHz reconstruction 

The algorithm was applied for the circular cross-section of Fig.13a and for the rectangular 

cross-section of Fig.13b. A total number of 32 electrodes were used, where only two of them 

are active in each projection angle. An indicative example with a double anomaly is presented 

herein. The target σ- and εr-profiles are shown in Fig.14a. The values for conductivity are 

1 21 /mS cm   and 2 14 /mS cm   and for permittivity r1 300  and r2 150  , in a 

homogeneous background of 7 /o mS cm   and ro 100  . The frequency of the injected 

current was 8f MHz . The relaxation factors 1 2,k k are set equal to unity. The reconstructed 

image after 15 iterations are shown in Fig.14b 

The algorithm was also tested for the rectangular model of Fig.6. An anomaly with 

conductivity 1 20 /mS cm   and permittivity r1 300  was introduced in a homogeneous 

background of 7 /o mS cm  and ro 150  . The frequency of the injected current is 

now 9f MHz . The relaxation factors are set equal to unity. The target model and the 

reconstructed image after 15 iterations are shown in Fig. 15. 

For details on the algorithm convergence rate and its performance, please wait for a follow 
up publication which is now in preparation. 
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(a)     (b) 

 

Fig. 13. The FEM meshes: (a) fine forward mesh and (b) coarse reconstruction mesh. 

 
 

   
 

(a)     (b) 

 

Fig. 14. Computer phantom with two anomalies in both εr and σ. (a) The target model and 
(b) the reconstructed σ- and εr-profiles after 15 iterations. 
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(a)     (b) 

Fig. 15. (a) The target model and (b) the reconstructed σ and εr -profiles after 15 iterations for 
the rectangular model. 

6.3 2-D microwave reconstruction 

The target model simulated as a computer phantom is presented in Fig.16. A total number 

of 32 antennas (line sources) were used, where only 28 are exploited as receivers for each 

projection angle. A single offset anomaly with conductivity 1 0.15 S m  and permittivity 

1 15r  was introduced in a homogeneous background of 0.3o S m  and 30ro  . The 

frequency of operation was assumed at 1.1f GHz . The image reconstructed after 9 

iterations is presented in Fig.17 for the conductivity and the permittivity profile 

respectively. The correct location of the anomaly as well as its ǔ and ǆr peak values are 

obtained, but some artifacts are caused. 

 

 
(a)     (b) 

 

Fig. 16. Target model (a) conductivity profile, (b) permittivity profile. 

www.intechopen.com



 
Medical Imaging 

 

190 

 
(a)     (b) 

Fig. 17. Reconstructed profiles for the example of Fig.16, (a) conductivity and (b) 
permittivity distributions after 9 iterations. The object is discretized into 100 pixels and is 
illuminated by 32 line sources at a frequency of 1.1 GHz. 

6.4 3-D microwave reconstruction 

The target model comprised of 4 layers as showin in Fig.18. A total number of 48 antennas 

arranged in three rings of 16 antennas (elementary dipoles) were used, where only 39 are 

exploited as receivers for each projection angle. A single offset anomaly with conductivity 

ǔ1= 0,15 S/m and permittivity ǆr1 = 15 was introduced at z = -0.5 cm (only at the second layer) 

in a homogeneous background of ǔ = 0.6 S/m and ǆr = 60. The frequency of operation was 

assumed at f = 1.4GHz. The image reconstructed after 9 iterations is presented in Fig.19 for 

the conductivity and the permittivity profiles respectively. 

 

 

 
 

(a)     (b) 
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(c)     (d) 

Fig. 18. Target model comprised of 4 layers to test the 3-D microwave imaging. 

 

 
(a)     (b) 

 

 
(c)     (d) 

Fig. 19. Reconstructed profiles for the 3-D model of Fig.18 (a) 2nd layer, (b) 3rd layer 
conductivity, (c) 2nd layer, (d) 3rd layer permittivity distributions, after 9 iterations. The object 
is discretized into 400 voxels and is illuminated by 48 dipole sources at a frequency of 1.4 GHz. 
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For details on the 3-D algorithm performance and its convergence characteristics please 
contact our work [30]. 

7. Conclusions 

A modified perturbation method reconstruction algorithm for MHz and microwave 
tomography is successfully established at a computer test level. The key constituent of this 
algorithm is a close form evaluation of the sensitivity or Jacobian matrix based on an adjoint 
network and reciprocity theorem approach. For the MHz frequency range th Jacobian is based 
on an extension of the electrical networks compensation theorem but it can be obtained as a 
particular case fo the general Adjoint network approach. The established algorithm is proved 
robust and able to withstand a large amount of inverse problem ill-posedeness. Despite its 
simplicity this algorithm is able to successfully localize the target anomalies reaching 
conductivity and permittivity patterns very close to the expected global minimum at about the 
6th iteration. The penalty paid for this simplicity and robustness is a compromise in the finally 
achieved solution mostly appearing as artefacts around the target anomalies. A further 
improvement, which also constitutes our next task, refers to the formulation of an exact 
inverse problem, which may start from the finally obtained image herein and iteratively fine 
tune it. This can be readily formulated exploiting the exact Jacobian matrix established herein. 
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