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1. Introduction 

Chirality is a natural property that is well known to chemists and has been generally 
recognized in the life sciences since Pasteur discovered the optical isomers of tartrate and 
van’t Hoff and LeBel  proposed the theory of the stereostructure of carbon compounds 
(GassmannKuo & Zare, 1985; Koeller & Wong, 2001; KondruWipf & Beratan, 1998). Almost 
all of the biological macromolecules, such as DNA, RNA, protein, polynucleotides, and even 
the amino acids, the basic structural units of life, are chiral(Roelfes, 2007). Although the 
enantiomers of chiral substances have the same physicochemical properties, their 
biochemical activities, unlike abiotic transformations, can be quite different because 
biochemical processes usually show high stereo- or enantioselectivity (Muller & Kohler, 
2004). For instance, enantioselective reactions occur in biological enrichment(Hegeman & 
Laane, 2002), degradation and other physiological actions(Wong, 2006). For organisms, 
enantiomers often exhibit different effects or toxicities. The “active” enantiomer of a chiral 
chemical may have the desired effect on a target species, whereas the other enantiomer may 
not(Garrison, 2006). It is advisable to use only the biologically active enantiomers, thereby 
reducing the total amount of chemical pollutants released into the environment. 

Many commercial agrochemicals have chiral structures. For example, about 30% of currently 
registered pesticide active ingredients contain one or more chiral centers(Sekhon, 2009). 
Herbicides are used to control the growth of undesired vegetation, and they account for 
most of the agrochemicals in use today. Some chiral herbicides are sold as purified, optically 
active isomers, but for economic reasons, many others are still used as racemates. Different 
enantiomers of chiral herbicides can have different enantioselective activities on target 
weeds and different toxic effects on non-target organisms because of their enantioselective 
interactions with enzymes and biological receptors in organisms(Yoon & Jacobsen, 2003). 
Although the high efficiency and environmental safety of herbicides are of great concern, 
studies on their enantioselective activity and toxicity are still limited. It is very important to 
pay attention to the effects of chiral herbicides on biological systems in future research in 
order to achieve efficient, green, safe and pure herbicides with chirality, to make regulatory 
decisions and to predict the environmental risks of such herbicides. 

This review summarizes the activities of different kinds of chiral herbicides that are widely 
used, such as phenoxyalkanoic acids, aryloxyphenoxypropionates, acetanilides, ureas, 
diphenyl ethers and other herbicides. It also address different types of enantioselective 
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toxicity, including chronic toxicity, acute toxicity, and phytotoxicity. The enantioselective 
properties of the interactions between chiral herbicides and biological macromolecules via 
models in vivo or in vitro are also discussed. In further researches, finding low-cost methods 
for separating the enantiomers of herbicides to produce potent enantiopure herbicides, 
considering both the degradation and toxicity of the herbicides when assess chiral 
herbicides and exploring the mechanism of the interaction between chiral herbicides and 
receptors seem significant. 

2. Enantioselective activities of chiral herbicides on target plants 

The configurations of chiral herbicides are often strongly affect their biological activities. 
Often, only one enantiomer is target-active, or one is more target-active than the other, in 
which case the inactive or less active enantiomer simply contributes to the chemical load 
that pollutes the environment(Garrison, 2006). The activity of chiral herbicides on plants is 
always enantioselective because individual stereoisomers can interact differently with other 
chiral molecules, such as enzymes and other biological receptors(Wong, 2006), and the 
processes of absorption, interaction of target enzymes and metabolism are affected 
differently by different enantiomers. As a consequence, some enantiomers show higher 
activity against weeds, and others show lower activity. Because chiral herbicides have the 
advantages of high-efficiency and universal applicability, the technical separation of 
racemates or the synthesis of pure or enriched enantiomers is of growing importance for the 
agrochemical industry. Early in 1974, the chemical company BASF in Germany brought the 
enantiomerically pure chemical mecoprop-P (Fig. 1) to market, and after that, dozens of 
pure or enriched chiral herbicides were produced and applied successfully (Zipper, Nickel, 
Angst, & Kohler, 1996). 

 

Fig. 1. Chemical structure of mecoprop-P (R-2-(4-chloro-2-methylphenoxy)propionic acid ). 

2.1 Phenoxyalkanoic acids 

The phenoxyalkanoic acids (Fig. 2) comprise an important set of organic compounds, of 
which several halogenated analogues are commercially available as auxin or “hormone” 
herbicides(Kennardsmith & White, 1982). They are widely used to control broadleaf weeds 
in agriculture, lawn care, and industrial applications. Phenoxyalkanoic acid herbicides work 
by inhibiting acetyl-CoA carboxylase(ACCase), which leads to the termination of fatty acid 
synthesis, abnormal cell growth and division, and, ultimately, suppression of weed growth.  

The most significant chiral compounds that have been commercialized are mecoprop and 
dichlorprop. Mecoprop and dichlorprop are chiral molecules that each have one stereogenic 
center and, therefore, exist as two enantiomers(Muller, Fleischmann, van der Meer, & 
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Kohler, 2006). As early as 1953, it was reported that the R-enantiomers have herbicidal 
activity, and the S-enantiomers have little observable activity(Matell, 1953). Authorities in 
the Netherlands and Switzerland have revoked registrations for racemic mixtures of chiral 
phenoxy herbicides while approving registrations of single-isomer products (named 
mecoprop-P and dichlorprop-P)(W. P. Liu, J. Ye & M. Q. Jin, 2009). In plants, mecoprop and 
dichlorprop were found to be enantioselectively degraded in a study conducted by 
Schneiderheinze. The S-(-)-enantiomer of each herbicide was preferentially degraded in 
most species of broadleaf weeds, whereas the R-(-)-enantiomer of each herbicide was more 
resistant to degradation(Schneiderheinze, Armstrong & Berthod, 1999).  

 
R=phenoxy, aryloxy or aromatic heterocyclicoxyl; n=1, 2 or 3. 

Phenoxyalkanoic acids 

                      
Mecoprop                                                            Dichlorprop 

(2-(R,S)-2-methyl-4-chlo-rophenoxypropanoic acid            (2-(R,S)-2,4-dichlo-rophenoxypropanoic acid)                             

Fig. 2. Chemical structures of phenoxyalkanoic acids*; asymmetric carbon. 

2.2 Acetanilides 

The chirality of acetanilide herbicides (Fig. 3) is caused by the presence of two asymmetric 
carbons and two chiral axes that generate two pairs of enantiomers, and the herbicide 
activity is mainly attributed to the S-enantiomer of the carbon in the alkyl substituent. The 
S-enantiomers of the herbicides metolachlor (Schmalfuss, Matthes, Knuth, & Boger, 2000) 
and dimethenamide (Couderchet, Bocion, Chollet, Seckinger, & Boger, 1997; Gotz & Boger, 
2004) were reported to inhibit fatty acid synthase. Using acyl-CoA as a substrate to test the 
activity of the chiral chloroacetamide metolachlor, it was shown that only the herbicidally 
active S-enantiomer could inhibit elongation, whereas the R-enantiomer had no effect 
(Schmalfuss et al., 2000). When 5 μmol/L dimethenamid S-enantiomer was applied, the 
algal growth and fatty acid desaturation were strongly inhibited, but the R-enantiomer had 
almost no effect on algal growth (Couderchet et al., 1997). Also, the inhibition of protein 
synthesis and RNA polymerase I activity was found to occur as part of the active 
mechanism of acetanilides (Chesters et al., 1989; Liu et al., 2009). 

Metolachlor is a widely used herbicide that inhibits the synthesis of fatty acids in broadleaf 
weeds. In 1982, it was found that the two 1S stereoisomers of metolachlor provide most of 
its biological activity. The herbicidal activity of the S-enantiomers was almost 10 times 
higher than that of the R-enantiomers (Blaser et al., 1999; Fayez & Kristen, 1996). Their 
activity is mainly influenced by the configuration at the chiral centre, a carbon in one of the 
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alkylic substituents of the nitrogen in the imide group, and by the atropisomerism generated 
by the hindered rotation around the aryl carbon-nitrogen bond (Polcaro et al., 2004). A 
systematic experiment found that acyl-CoA elongation was only inhibited by the 
herbicidally active S-enantiomer, whereas the R-enantiomer had no influence. Furthermore, 
enzyme activity could not be recovered by dilution of the enzyme-inhibiting chiral 
herbicide(Schmalfuss et al., 2000).  

 
Acetanilides 

                     
Metolachlor                                           Dimethenamide 

     (2-chloro-N-(2-ethyl-6-methylphe-nyl)-          [2-chloro-N-(2,4-dimethyl-3-thienyl)- 
    N-(2-methoxy-1-methylethyl)acetamide)      N-(2-methoxy-1-methylethyl)acet-amide] 

Fig. 3. Chemical structures of acetanilides. 

2.3 Aryloxyphenoxypropionates  

Aryloxyphenoxypropionates (AOPP) are postemergence herbicides that cause almost 

immediate growth inhibition in the shoot, root and intercalary meristems. Diclofop-methyl, 

fluazifop-P, haloxyfop-methyl, fenoxaprop-P-ethyl, quizalofop-ethyl, Fenthiaprop, and 

fenoxaprop-P- ethyl (Fig. 4) are all examples of chiral AOPP herbicides. A wide variety of 

AOPPs and their esters have been developed as commercial herbicides. Recent studies 

indicate that the mechanism controlling the growth of grasses by this kind of 

herbicide is the same as that of phenoxyalkanoic acids: they interfere with lipid 

metabolism in susceptible plants and inhibit the plastid ACCase, a key enzyme in long-

chain fatty acid biosynthesis (Kunimitu et al., 1988; Liu et al., 2009). Chiral AOPPs have 

enantioselective activity on target plants. Their herbicidal activity comes almost entirely 

from the R-enantiomers rather than the S-enantiomers, which means that the R-enantiomers 

are more effective than the S-enantiomers for weeding (Sakata et al., 1985). Many reports 

have described the enantioselective activity of AOPPs on target weeds. 

Both enantiomers of diclofop-methyl show similar pre-emergence herbicidal activity for 
controlling weeds in the rice field, but in postemergence applications, the R-(+)-isomer has 
higher activity against millets and oats. The most likely mechanisms of action for diclofop-
methyl were discussed in the context of its role in oxidative membrane catabolism by free 
radical lipid peroxidation and its coupling to the effect of diclofop on the transmembrane 
proton gradient (Kurihara et al., 1997; Shimabukuro & Hoffer, 1995). Racemic mixtures and 
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(+)-AOPP are active in alfalfa embryo induction, whereas the (-)-forms are inactive and do 
not inhibit embryogenesis (Stuart & Mccall, 1992). 

  
Diclofop-methyl                                                 Fluazifop-P 

  
Haloxyfop-methyl                                Fenoxaprop-P-ethyl 

  
Quizalofop-ethyl                                              Fenthiaprop 

 
Fenoxaprop-P- ethyl 

Fig. 4. Chemical structures of aryloxyphenoxypropionates. 

2.4 Ureas 

The key structural feature of substituted urea herbicides (Fig. 5) is the urea moiety, and 
different substituents of the amino groups produce various kinds of urea herbicides. The 
action of this kind of herbicide depends on differences in absorption, conduction and 
degradation abilities between plants and weeds. Ureas act by inhibiting the Hill reaction in 
photosynthetic electron transport (Jurado et al., 2011). Cycluron, daimuron and clodinafop-
propargyl are the main brands of urea herbicides. Of these, daimuron and R-clodinafop-
propargyl are the ones that have been commercialized. Daimuron has a very plant-specific 
effect: it shows herbicidal activity against paddy weeds. The R-enantiomer inhibits the 
growth of Cyperaceae weeds more strongly than the S-enantiomer (Ryoo et al., 1998; 
Omokawa et al., 1999). The herbicide 1-α-methylbenzyl-3-p-tolyl urea (MBTU), a derivative 
of daimuron, was shown to have enantioselective differences in potency. For instance, it was 
reported that the enantiomers of MBTU have different depression effects on roots in a 
number of Oryzeae, Echinochloa and wheat species, and the root growth of all members of the 
genus Oryza was inhibited more strongly by R-MBTU than by S-MBTU. In contrast, the root 
growth of Echinochloa and wheat was more sensitive to S-MBTU than to the antipodal R-
MBTU ( Omokawa et al., 2004; Kazuhiro et al., 2009). Imai et al. thought that the decrease in 
free amino levels in the root tips was the reason that R-/S-MBTU inhibited the growth of the 
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plants (Imai, Kojima & Numata, 2009). The activity of α-methylbenzyl-p-tolylureas (4-Me) 
mainly depends on the substituents of benzene. The 4-Me R-enantiomers with a smaller 
alkyl group exhibited significant activity on both of the plant species on which they were 
tested (Omokawa & Ryoo, 2001). 

                     
                          Ureas                                 Cycluron(1,1-Dimethyl-3-cyclooctylurea) 

                
       Daimuron                                        clodinafop-propargyl 

    (N-(4-Methylphenyl)-                         (R-2-[4-[(5-chloro-3-fluoro-2- 
N'-(1-methyl-1-phenylethyl)urea)                 pyridinyl)oxy]phenoxy]propanoic acid) 

            
R-MBTU:R1=CH3,R2=H;                                          R-4-Me:R1=CH3,R2=H; 
S-MBTU:R1=H,R2=CH3                                                                S-4-Me:R1=H.R2=CH3 

Fig. 5. Chemical structures of ureas. 

2.5 Diphenyl ethers 

Diphenyl ethers (Fig. 6) can inhibit the photosynthesis and affect the composition of 
chloroplasts, thereby causing the death of weeds. Among diphenyl ether herbicides, 
nitrodiphenyl ethers have a chiral structure and are used to control broadleaf weeds. They 
are able to cause light-dependent membrane lipid peroxidation, and their S-(-)-enantiomers 
have been shown to be substantially more active than their R-(+)-enantiomers in a test 
designed to monitor plant membrane breakdown by Camilleri et al. This finding 
presumably reflected the fact that the binding of nitrodiphenyl ethers to a metabolic enzyme 
in plants is enantioselective. Nitrodiphenyl ethers and their analogues act by increasing the 
level of protoporphyrin IX in an enantiotopically specific active site by inhibiting an enzyme 
in the biosynthetic pathway between protoporphyrin IX and protochlorophyllide (Camilleri 
et al., 1989). A test using the green alga Chlamydomonas reinhardtii as an indicator species 
showed that 5-[2-chloro-4-(trifluoromethyl)phenoxy]- 3-nitroacetophenone oxime-O-(acetic 
acid, methyl easter) (DPEI), also a type of nitrodiphenyl ether herbicide, had 
enantioselective activity. The purified S-(-)-enantiomer had greater herbicidal activity than 
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the R-(+)-isomer, and the mechanistic reason was that the S-(-)-enantiomers of DPEs had 
greater potency in inhibiting protoporphyrinogen IX oxidase (Hallahan, Camilleri, Smith, & 
Bowyer, 1992). 

Lactofen, a diphenyl ether, has an asymmetrically substituted C atom and comprises a pair 
of enantiomers; the herbicidal activity mostly comes from the S-(+)-enantiomer. This 
herbicide is applied as a foliar spray on target weeds and is used to control broadleaf weeds 
in soybeans, cereal crops, potatoes, and peanuts (Diao et al., 2009).  

      
Diphenyl ethers                       Lactofen (2-ethoxy-1-methyl-2-oxoethyl-5-[2-chloro-4-

(trifluoromethyl)phenoxy]-2-nitrobenzoate) 

Fig. 6. Chemical structures of diphenyl ethers. 

2.6 Other chiral herbicides 

Some organophosphorus compounds (Fig. 7) are used as herbicides. In in vitro activity 
studies, the active site of acetylcholine esterase (AChE) may interact differently with the 
different enantiomers of these compounds, but enantioselective differences in metabolic 
detoxification or toxicity may also be a major factor in determining the activity of 
organophosphorus herbicides.  

            
     Phosphosulfonates                                                Bialaphos 

                      
              D-Glufosinate                                              L-Glufosinate 

Fig. 7. Chemical structures of organophosphorus herbicides. 

Phosphosulfonates are a class of soil-applied herbicides with activity against a variety of 
grassy weeds, and their chirality is attributed to an asymmetrically substituted phosphorus 
atom. Biological testing of the enantiomeric phosphosulfonate herbicides demonstrated that 
the purified (+)-enantiomer is more active than the racemate (Spangler et al., 1999). 
Bialaphos, another organophosphorus herbicide, has carbon chiral centres, and its S-(+)-
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isomer is more active as a herbicide than its R-(-)-isomer. Glufosinate, also an 
organophosphorus herbicide, was used as its ammonium salt, and the activity of its 
enantiomers was studied using cell culture in several plant species. The results illustrated 
that the glufosinate racemate and L-glufosinte are transformed into the same metabolites, 
but D-glufosinate is not metabolized (Muller, Zumdick, Schuphan, & Schmidt, 2001; 
RuhlandEngelhardt & Pawlizki, 2002).  

Certain triazines (Fig. 8) are often used as plant growth regulators. The ones having a chiral 
nitrogen center, such as amitrole, atrazine, cyanazine, and simazine, are effectively achiral 
because their enantiomers can easily be interconverted. The triazines with chiral C centres 
are used as selective weed killers and act by inhibiting photosynthesis (W. LiuJ. Ye & M. Jin, 
2009). 

 

Fig. 8. Chemical structures of triazines. 

All imidazolinone herbicides (Fig. 9) are chiral, and imazapyr, imazapic, imazethapyr, 

imazamox and imazaquin are widely used herbicides from the imidazolinone family (Lao & 

Gan, 2006). It has been reported that their R-enantiomers are 10 times more inhibitory 

toward the enzyme acetolactate synthase (ALS) than their S-enantiomers (Chin, Wong, Pont, 

& Karu, 2002). Imazethapyr (IM) is always absorbed through the roots of plants, and Zhou 

et al. found that R-(-)-IM affected the root growth of maize seedlings more severely than S-

(+)-IM (Zhou, Xu, Zhang, & Liu, 2009). 

                  
   IM                      Imazapyr: R=H; imazapic:R=CH3;               Imazaquin 

imazethapyr:R=CH2CH3; 
imazamox: R=CH2OCH3 

Fig. 9. Chemical structures of imidazolinone herbicides. 

Cyclonenes (Fig. 10), which are used to control broadleaf weeds and can be absorbed by the 

leaves of plants, can inhibit the synthesis of fatty acids by acting on acetyl-CoA carboxylase. 

Among cyclonenes, clethodim is a selective post-emergence herbicide for the control of 

annual and perennial grasses. The optically pure (-)-enantiomer of clethodim was, 

surprisingly, more effective in regulating the growth of grass plants than the corresponding 

racemic mixture or the optically pure (+)-enantiomer (Whittington et al., 2001). 
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       Cyclonenes                                                 clethodim 

Fig. 10. Chemical structures of cyclonenes. 

3. Enantioselective toxicity of chiral herbicides on non-target organisms 

Different enantiomers of chiral herbicides can have different potencies on their target plants, 

and they also may have enantioselective toxic effects on non-target organisms. In previous 

studies, researchers always focused on the efficacy of chiral herbicides while neglecting the 

negative biological effects associated with particular enantiomers that might persist in the 

environment long after application. The potential biological toxicities of these herbicides, 

which could include chronic toxicity, acute toxicity and phytotoxicity, are generally 

enantioselective. When the Environmental Protection Agency (EPA) developed its 

assessment method for acute toxicity testing using Daphnia and Ceriodaphnia dubia as aquatic 

indicators, many researches around the world undertook studies of the enantioselective 

toxicity and molecular mechanisms of chiral herbicides using both in vivo and in vitro 

models. Lewis et al. found that all pasture samples from Brazilian soils preferentially 

transformed the non-herbicidal enantiomer of dichlorprop via a microbial transformation 

processes, whereas most forest sample transformed the herbicidal enantiomer more rapidly 

or as rapidly as the non-herbicidal enantiomer (Lewis et al., 1999). In general, the faster the 

microbial degradation processes remove the herbicides from the environment, the safer the 

effect of the herbicides is. Hence, using a pure enantiomer that is more active and safe than 

its partner or racemate is likely to cause less environmental damage and to pose less 

ecological risk (Hegeman & Laane, 2002). 

3.1 Enantioselectivity in the chronic toxicity of chiral herbicides 

For chiral pesticides, there have been several reports describing enantioselective chronic 
toxicity, but there are few such reports about herbicides. They are limited to a small number 
of reports about metolachlor. Zhan and Xu used silkworm as a biological indicator to 
investigate the enantioselective toxicity of metolachlor as estimated by the metabolism and 
activities of silkworm. Their researches mainly focused on enzyme activities, and the results 
suggested that rac-metolachlor and S-metolachlor have different effects on enzyme activities 
of fifth-instar silkworms (Bombyx mori L.). Acid phosphatase (ACP) activity in silkworm 
hemolymph was 44-73% higher in control organisms than in those treated with rac-
metolachlor, but there was no great difference between S-metolachlor treatment and the 
control. Hemolymph lactate dehydrogenase and catalase activities were much lower in rac-
metolachlor-treated silkworms than in S-metolachlor-treated ones. For midgut alkaline 
phosphatase activity, the activity found in controls was greater than in those treated with 
rac-enantiomers, which in turn was greater than the activity found in S-metolachlor-treated 
silkworms(Zhan, 2006). Changes in avoidance behaviour, body weight and in vivo enzyme 
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activity were found in earthworms (Eisenia foetida, E.foetida) studied by Xu et al. When the 
same treatment concentrations were used, the effects of rac-metolachlor on the enzyme 
activities and body weight of E.foetida were more significant than those of S-metolachlor. In 
2 days and 7 days’ experiments, the effects of the S-enantiomer on cellulase and catalase 
activities occurred more quickly, but over the long term (14 days, 28 days), the rac-
enantiomer had greater toxic effects. The test of avoidance behaviour shows that 
earthworms are more sensitive to the stimulation of rac-metolachlor than that of S-
metolachlor(Xu et al., 2010) . Those two studies indicate that the rac-metolachlor is more 
toxic to economically important silkworms than S-metolachlor, and they show that the 
metabolic inhibition is mediated by an inhibitory effect on enzyme activity. 

In a chronic toxicity test of rac-metolachlor and S-metolachlor, the lowest-observed-effect 
concentration (LOEC), no-observed-effect concentration(NOEC), number of days to first 
brood, length, longevity, number of broods per female, number of young per female, and 
the intrinsic rate of natural increase were determined using Daphnia magna as an indicator. 
The LOEC and NOEC of the rac-enantiomers were much lower than those of the S-
enantiomers, and the longevity and number of broods per female were significantly affected 
when the rac-enantiomer concentration was higher than 1.0 mg L-1 or when the S-
enantiomer concentration was higher than 10 mg L-1. Also, the number of broods per female 
and the intrinsic rate of natural increase were significantly reduced when the rac-
enantiomers concentration was higher than 0.01 mg L-1 or the S-enantiomers concentration 
was higher than 0.5 mg L-1. Body length was affected by both of the herbicides, but the 
number of days to first brood was not affected (Liu, Ye, Zhan, & Liu, 2006). These results 
were in agreement with the earthworm experiments described above and showed that the 
chronic toxicity of metolachlor is significantly higher than that of S-metolachlor. 

3.2 Enantioselectivity in the acute toxicity of chiral herbicides 

Early studies on the enantioselective toxicity of chiral pesticides primarily tested their acute 

toxicity in living organisms. Dramatic differences between enantiomers were observed in 

tests of acute toxicity toward terrestrial and freshwater invertebrates, suggesting that the 

acute toxicity is primarily attributable to a specific enantiomer in the racemates. In a study 

using Chlorella pyrenoidosa to test the acute toxicity of rac-metolachlor and S-metolachlor, the 

growth inhibition rate, chlorophyll a and chlorophyll b concentrations, catalase activity and 

ultrastructural morphology of cells were used as toxicity endpoints. The values of the 24, 48, 

72, and 96 h EC50 and the chlorophyll a and chlorophyll b concentrations measured in the 

organisms exposed to rac-metolachlor were higher than those obtained when the S-

enantiomer was used. The catalase activity of C. pyrenoidosa after treatment with S-

metolachlor for 96 h was higher than after treatment with rac-metolachlor (Liu & Xiong, 

2009). The acute 24-h LC50 of rac- and S-metolachlor were also assayed in D. magna, and the 

results showed that the rac-metolachlor LC50 was higher than that of the S-isomer (Liu et al., 

2006). Both of these studies indicated that S-metolachlor was more toxic to aquatic 

organisms than rac-metolachlor. Another study of acute toxicity employed a standard 

OECD filter paper test, an artificial soil test and a natural soil test, and this study found that 

there were almost no enantioselective differences in the LC50 for earthworms, indicating that 

the acute toxicities of the two chiral herbicides displayed no enantioselectivity(Xu et al., 

2009). 
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The dissipation and degradation of the herbicide lactofen are enantioselective processes: 
under laboratory conditions using enantioselective HPLC, the S-(+)-enantiomer is degraded 
faster than the R-(-)-enantiomer, producing residues enriched with R-(-)-lactofen when the 
racemic compound is incubated under aerobic and anaerobic conditions in sediments (Diao 
et al., 2009). The enantioselective acute toxicity of individual enantiomers of lactofen and its 
metabolite, desethyl lactofen, were studied in D. magna. The observed LC50 values of S-(+), 
rac-, and R-(-)-lactofen were 17.689, 4.308, and 0.378 μg/mL, respectively, and the 
corresponding values for desethyl lactofen showed a similar pattern (Diao et al., 2010). 
Therefore, the preferential degradation of S-(+)-lactofen leads to a higher concentration of 
the R-(-)-enantiomer, which has been shown to have higher acute toxicity to the non-target 
organism D. magna. 

The acute toxicity of a series of organophosphorous compounds (OPs), 1-(substituted 
phenoxyacetoxy)alkylphosphonates (Fig. 11), which contain a chiral carbon atom, was also 
studied, and these compounds also display enantioselectivity. In an aquatic toxicity test 
using D. magna as an indicator, the in vivo assays showed that there is a significant difference 
in LC50 between the two enantiomers of O,O-dimethyl-1-(4-chlor- ophenoxyacetoxy) 
ethylphosphonate, with the (+)-enantiomer being 8.08 times more toxic than the (-)-form. 
Although the difference between the enantiomers of the other compounds in this study is 
not remarkable (1.2 to 4.2-fold), it can nevertheless be inferred that the toxicities of most 
chiral OPs are enantioselective (Li et al., 2008). 

 

Fig. 11. Chemical structure of 1-(substituted phenoxyacetoxy)alkylphosphonates. 

3.3 Enantioselectivity in the phytotoxicity of chiral herbicides 

Many herbicides have been shown to be toxic to non-target plants, but our understanding of 
the enantioselective phytotoxicity of chiral herbicides is still limited. The chiral herbicide 
dichlorprop-methyl (2,4-DCPPM, Fig. 12) was clearly shown to have enantioselective 
toxicity toward Chlorella pyrenoidosa, Chlorella vulgaris and Scenedesmus obliquus. The rank 
order of enantiomer phytotoxicity was given by R-2,4-DCPPM > S-2,4-DCPPM > rac-2,4-
DCPPM, and the toxicity of R-2,4-DCPPM was found to be about 8-fold higher than that of 
rac-2,4-DCPPM. All three algae species degraded 2,4-DCPPM quickly, but extraordinarily, 
rac-2,4-DCPPM was preferentially degraded by Scenedesmus obliquus at a much faster rate 
than the S- or R-enantiomers alone (racemate>R->S-), such that the racemate showed low 
toxicity compared to the other enantiomers. This phenomenon might occur because the R- 
and S-enantiomers are not hydrolyzed in the first 12 hours, and hydrolysis proceeds slowly 
after 12 hours (Li, Yuan, Shen, Wen, & Liu, 2008).  

 

Fig. 12. Chemical structure of 2,4-DCPPM. R1=H, R2=CH3 OR R1=CH3, R2=H. 
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Several studies focused on the enantioselective phytotoxicity of IM, an herbicide widely 
used because of its low application rate, low toxicity to animals and broad spectrum of weed 
control activity (TanEvans & Singh, 2006). Zhou et al. evaluated the phytotoxicity of IM on 
the roots of maize (Zea mays L.) seedlings. Plant growth measurements and morphological, 
microscopic, and ultrastructural observations were conducted after treatment with 
individual IM enantiomers and the racemate. Although the different enantiomers showed 
the same trend of effects on indicators, R-(-)-IM affected the root growth of maize seeding 
more severely than S-(+)-IM (Zhou et al., 2009). Another study used seedlings of Xiushui 63, 
a Japonica rice variety to evaluate the phytotoxicity of IM; in this study, rice seedling 
morphology, antioxidant enzyme activity, oxidation markers and gene transcription were 
used as endpoints. Different enantiomers of IM also showed the same trend of effects on the 
seedling morphology of rice, but the levels of inhibition observed in roots and shoots 
showed enantioselectivity. The maximal root relative inhibition and shoot relative inhibition 
were ranked as follows: R-(-)-IM > racemate > S-(+)-IM. The activities of SOD, POD, and 
CAT and the MDA content in plants treated with R-(-)-IM were higher than those in plants 
treated with S-(+)-IM. In seed tissue and shoot tissue, it was observed that R-(-)-IM inhibited 
gene transcription and mRNA expression more strongly than S-(+)-IM (Qian et al., 2009). 
Both of these studies concluded that R-(-)-IM was more toxic than S-(+)-IM.  

Diclofop acid (Fig. 13), produced by hydrolysis of diclofop methyl, is an herbicidal form of 
diclofop methyl. Significant differences were observed between its two enantiomers in an 
acute toxicity (72 h EC50) test using rice Xiushui 63 seedlings. The S-enantiomer showed 
stronger toxicity to leaves, and the R-enantiomer was found to be more toxic to roots. The 
Hill reaction activity test indicated that the two enantiomers had enantioselective effects on 
chloroplasts, but the effects were quite complex and needed further interpretation (Ye, 
Zhang, Zhang, Wen, & Liu, 2009). The herbicidally inactive S-(-)-enantiomers of both 
diclofop-methyl and diclofop have similar or higher toxicity than the R-(+) forms to algae, 
depending on the algal species used. Cai et al. showed that both rac-diclofop and R-diclofop 
decrease algal cell permeability and that the R-enantiomer shows stronger inhibition. In 
contrast, the S-enantiomer increases algal cell permeability when low treatment 
concentrations are used, and it reduces algal cell permeability to at lesser extent only at 
higher concentrations compared to the R-enantiomer and rac-diclofop. The enantioselective 
degradation of diclofop in algae cultures is controlled by the facilitated uptake by algae, 
whereas the enantioselective toxicity is primarily governed by passive uptake (CaiLiu & 
Sheng, 2008). 

 

Fig. 13. Chemical structure of diclofop acid (R,S-2-[4-(2,4-dichlorophenoxy) phenoxy] 
propanoic acid) 

4. Causative mechanisms of enantioselective herbicidal effects 

The enantiomers of a chiral herbicide possess different biological activities, and one of the 
enantiomers usually shows a higher level of activity or toxicity. The enantiomers can alter 
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the activities and conformations of enzymes, thereby influencing their functions and 
metabolic effects. Therefore, the exploration of the causative mechanisms of enantioselective 
effects is regarded as one of primary goals of biological chemistry. Different receptors are 
enantioselectively affected by herbicides for different mechanistic reasons. Wen et al. found 
that the enantioselective behaviours of chiral compounds might change during interactions 
with different chiral receptors that coexist in different biological environments. They used 
UV differential spectrophotometry and fluorescence spectrophotometry to study the 
enantioselective interactions between Penicillium expansum alkaline lipase and dichlorprop 
(DCPP) herbicide. The ranking of dichlorprop compound interaction strengths with lipase 
was as follows: R-enantiomer > rac-DCPP >S-enantiomer. The lipase-catalyzed kinetic 
experiments proved that a hydrophobic interaction seemed to play a dominant role in the 
interactions, and they showed that the R-enantiomer inhibits lipase more severely, possibly 
due to its stronger interaction with lipase (Wen, Yuan, Shen, Liu, & Liu, 2009). To further 
study this interaction, the authors conducted several tests to evaluate the toxicities toward 
green algae of DCPP compounds and their complexes with chitosan molecules (DCPP-CS) 
and chitosan nanoparticles (DCPP-NP). The results showed that, without other chiral 
molecules, S-DCPP was more toxic to Chlorella vulgaris than R-DCPP, whereas to 
Scenedesmus obliquus and Chlorella pyrenoidosa, R-DCPP was more toxic. While in the 
presence of CS or NP, the chiral selectivity of DCPP could be changed. For instance, the 
order of inhibition to Chlorella vulgaris was as follows: R-DCPP-CS > S-DCPP-CS and R-
DCPP-NP > S-DCPP-NP. This order was the complete opposite of that observed for 
Scenedesmus obliquus and Chlorella pyrenoidosa (Wen, Chen, Yuan, Xu, & Kang, 2011; Wen et 
al., 2010). Fluorescence spectroscopic analysis showed that the interaction between CS and 
DCPP enantiomers depends greatly on the steric structure of DCPP. A highly stereospecific 
interaction between herbicide and enzyme is thought to be the typical mechanism of 
enantioselectivity for chiral herbicides. The three-point model proposed by Easson and 
Stedman indicates that, when three ligands of an herbicide match three chiral locations in 
the active part of an enzyme, the herbicide will show maximum potency (Easson & 
Stedman, 1933). If the binding sites on the protein are in a cleft or on protruding residues, 
the four-location model developed by Mesecar should be considered (Zhou, Liu, Zhang, & 
Liu, 2007). For instance, IM is an ALS-inhibiting chiral herbicide. Qian et al. investigated the 
enantioselectivity of R- and S-IM in Arabidopsis thaliana. The result showed R-IM powerfully 
induced reactive oxygen species (ROS) formation while drastically reducing antioxidant 
gene transcription and enzyme activity, resulting in oxidative stress. This led to the 
accumulation of glucose, maltose and sucrose in the cytoplasm and chloroplast, and it 
disrupted the carbohydrate metabolism. This result proved that enantioselectivity also 
affects starch metabolism in Arabidopsis thaliana (Qian et al., 2011). 

5. Further research opportunities 

The activity and toxicity of chiral herbicides should be investigated at the chiral level 
because enantiomers of herbicides are known to selectively interact with biological 
molecules that are usually enantioselective and may behave as drastically different 
compounds. This enantioselectivitiy varies depending on the species of biological receptor; 
one enantiomer of an herbicide may inhibit the growth of a particular plant while 
stimulating the growth of other plants. A particular enantiomer of an herbicide may be more 
effective than the racemate, such that using enantiopure herbicides could increase their 
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potency for weeding and reduce the environmental burden applied chemicals. Techniques 
for separating the enantiomers of certain herbicides, such as chiral HPLC, GC columns 
(PirkleLee & Welch, 1997) and chiral electrophoresis(Desiderio, et al., 1997) , have been 
reported, but for economic reasons, many chiral herbicides with enantioselective activity are 
still used as racemic mixtures. It is important to find low-cost methods for separating the 
enantiomers of herbicides, which may require finding more effective chemical or biological 
catalysts for synthesising enantiopure herbicides. 

Many previous studies have shown that, for some chiral herbicides, the active enantiomer 
may be environmentally degraded faster than the inactive enantiomer or the racemate, and 
the inactive enantiomer may even have stronger toxicity to non-target organisms. Thus, the 
abundance and high toxicity of the inactive enantiomer may produce passive effects in the 
environment. Considering the herbicidal enantioselectivity of degradation or toxicity alone 
would have limited environmental significance. It is important to consider both the 
degradation and toxicity of an herbicide enantiomer when predicting the environmental 
effects of the herbicide.  

Herbicide activity at certain sites in non-target organisms has been reported. For instance, 
quizalofop and haloxyfop may inhibit ACCase, disrupt lipid metabolism and interfere with 
membrane transport. The potential enantioselective effects of chiral herbicides in these 
processes remain poorly understood and should be further explored. Though the activities 
and toxicities of many kinds of isolated enantiomers have been tested and reported,  our 
understanding of the conversions between different enantiomers in vivo are still limited. 
One enantiomer may exhibit certain effects on biological receptors, but it may have opposite 
effects on the same target receptor when it changes into another enantiomer or racemate in 
vivo. Elucidating the transformation mechanisms and processes is a significant goal for 
further research. It seems that there is still a severe lack of knowledge about the 
characteristics and metabolism of chiral herbicides. 
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