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1. Introduction

The macrocycles known as calix[n]arenes, where n represents the number of phenolic units
bridged by methylene groups, represent ideal building blocks in supramolecular chemistry
for the development of scaffolds with a preorganized structure, a well-defined cavity size,
and modifiable positions for the introduction of a variety of functional groups, as shown in
Fig. 1 (Bohmer, 1995; Asfari et al., 2001). The development of novel calixarene derivatives
with the capability to act as receptors, sensors, catalysts, or ion transporters designed for
specific purposes has been exploited to a great extent with the smaller member of the family
calix[4]arene, and to a lesser degree with calix[6]arene. In the particular case of
calix[4]arenes, the ease of modification by introduction of several types of functional groups
at the phenolic rim has led to the development of numerous examples of versatile
compounds (Baklouti et al., 2006; Baldini et al., 2007). The variety of derivatives reported to
date is related to the well established synthetic protocols, which allow the preparation of
calix[4]arenes with regio- and atropisomeric control by deprotonation of the phenolic OH
groups with specific alkali-metal bases. These synthetic methods have been extended to the
more recently developed thiacalix[4]arenes, which feature sulfur atoms as bridging groups
between the phenolic components.

The development of systems based on the larger members of the calixarene and
thiacalixarene families, namely calix[8]arene and thiacalix[8]arene (from now on referred to
indiscriminately as calix[8]arenes), has been slow relative to its smaller analogues. This is
likely due to the number of phenolic OH and aromatic positions available for
functionalization, for which the regioselective introduction of substituents remains a
challenging synthetic task. As a consequence, reports on crystallographically characterized
calix[8]arene derivatives are relatively sparse. While the solution structures can be
determined by a variety of methods, notably NMR spectroscopy, crystallographic
characterization still represents the most reliable proof of the spatial arrangement of the
macrocycles, particularly when the mobility of the large calix[8]arene is concerned. The
limited availability of structural data is likely related to the large number of degrees of
freedom present in the larger macrocycles, which does not allow the long-range ordering
required for single-crystal formation. A search of the Cambridge Structural Database affords
89 structures of methylene-bridged calix[8]arenes, compared to the numbers of the four- and
six-member macrocycles (Table 1).
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Fig. 1. Schematic representation of calix[n]arenes

The current chapter covers the synthetic strategies that have proven successful for the
preparation of calix[8]arene derivatives amenable for structural characterization. One of
them involves the formation of anionic derivatives, which are obtained by deprotonation of
the phenolic OH groups, and render the calix[8]arenes as ligands towards main group and
transition metals. Formally anionic phenolate derivatives have also been obtained by
elimination of HCl from the reaction of calix[8]arenes with oxophilic transition-metal
chlorides. These strategies have resulted in the prevalence of structural information on the
8-member macrocycles in which the calix[8]arene framework becomes rigid due to the
formation of multiple oxygen-metal-oxygen bridges (Redshaw, 2003).

Compound Number of structures
Calix[4]arene 2227
Calix[6]arene 283
Calix[8]arene 89

Table 1. Crystallographic structures reported in the CSD.

The other general strategy described in this chapter is the one involving the introduction of
intramolecular covalent bridges to limit the conformational flexibility of calix[8]arenes
(Geraci et al., 1995). In this respect, the use of cesium salts has allowed the regioselective
introduction of covalent bridges to the 1 and 5 phenolic positions of p-tert-butylcalix[8]arene
(Cunsolo et al., 1994). The importance of 1,5-substitution (or 1,5-3,7 substitution) resides in
the high symmetry of such derivatives, relative to 1,2- or 1,4- derivatives, which appears to
result in better packing interactions. In this context, we will discuss the introduction of
nitrogen-containing spanning elements, which could lead to the development of new types
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of receptors, as well as for the binding of non-oxophilic metals within the calixarene cavity.
These include our recently reported 1,5-disubstituted p-tert-butylcalix[8]arene by
introduction of a 2,6-dimethylpyridyl group (Hernandez & Castillo, 2009). A general
overview on the crystallization techniques for each type of calix[8]arenes derivative
accompanies the discussion.

2. Discussion

Original reports on the synthesis of the parent p-tert-butylcalix[8]arene date back to 1955
(Cornforth et al., 1955), where it was described as a high-melting solid with a proposed
octameric structure, based on osmometry and mass spectrometry (Gutsche &
Muthukrishnan, 1978; Muthukrishnan & Gutsche, 1979). Unambiguous structural
assignment as an octaphenol-containing macrocycle by X-ray crystallography was initially
precluded by solvent loss from the plates obtained by recrystallization from chloroform. It
therefore seemed necessary to obtain calix[8]arene derivatives that did not lose solvent
readily under ambient conditions, in order to afford single crystals amenable for structural
characterization.

One property of calix[8]arene that was inferred from the structure of its smaller congener
calix[4]arene is its large macrocyclic cavity, although crystallographic characterization was
needed in order to corroborate it. Confirmation of its large cavity size in the solid state made
it an attractive alternative to crown ethers for the potential binding of large cationic species.
Among other possibilities, this property placed it as an ideal candidate for the selective
binding of oxophilic heavy metals, including alkali, alkaline earth, lanthanide and actinide
metals through the phenolic oxygen atoms. It is therefore natural that some of the first
crystallographically characterized calix[8]arene derivatives consisted of metal complexes
where the usually flexible structure of the macrocycle becomes relatively rigid due to the
presence of multiple oxygen-metal ion-oxygen bridges. These types of derivatives were
extended to p-block elements, including metals and non-metals such as phosphorus,
germanium and bismuth.

2.1 Description of solid-state structures

2.1.1 Unfunctionalized calix[8]arenes

Although chronologically the parent p-tert-butylcalix[8]arene was not the first calix[8]arene
to be structurally characterized due to loss of solvent molecules when crystallized from
chloroform, it was obtained shortly after the first report of a calix[8]arene derivative; crystals
stable enough towards solvent loss were successfully obtained from the high-boiling (115
°C) solvent pyridine (Gutsche et al., 1985). Subsequent reports include the chloroform and
acetonitrile clathrates (Schatz et al., 2001; Dale et al., 2003), as well as a new determination of
the pyridine-derived crystals (Huang et al., 2001); the structure of calix[8]arene with H
atoms in the para positions also includes a molecule of the solvent pyridine (Zhang &
Coppens, 2001). The aforementioned cases are described as clathrates despite the pleated
loop conformation adopted by the macrocycle (Fig. 2), which is favored by the maximization
of intramolecular hydrogen bonding. This configuration lacks a well-defined, deep cavity
for inclusion to take place, although the incipient guest molecules may interact via hydrogen
bonds, particularly in the case of pyridine.
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Fig. 2. Depiction of the pleated loop conformation of p-tert-butylcalix[8]arene with
intramolecular hydrogen bonds shown in magenta (generated from Schatz et al., 2001)

Among calix[8]arenes without substituents at the phenolic positions that have been
structurally characterized, the compound obtained by condensation of silyl-protected
bisphenol A with formaldehyde resulted in the p-2-(4-hydroxyphenyl)propylcalix[8]arene
(Ahn et al., 2000). Crystallization involved isopropyl ether diffusion into an acetone solution
of the macrocycle, and the presence of n-BusNBF, appeared to be necessary although its role
is not understood. A related compound is the p-cumylcalix[8]arene analogue (Ettahiri et al.,
2003), which was obtained by slow evaporation from dimethylsulfoxide (DMSO) solution in
an alternate conformation, with two phenolic units up and two down around the
macrocycle. In addition to the high boiling point of the solvent (189 °C), four molecules of
DMSO form hydrogen bonds with the OH moieties, thus stabilizing the crystalline
arrangement. A more recent example of an unsubstituted calix[8]arene features two
deprotonated phenolic units in 1 and 3 positions of the macrocycle, and was obtained from
an octasilylated precursor by fluoride attack with 2 equivalents of n-BusNF-(H;O). This
reaction results in the formation of (p-tert-butylcalix[8]arene-2H)(n-BusN),, which was
crystallized from a mixture of the polar aprotic solvent dimethylformamide (DMF, b.p. 153
°C), and acetone in a 10:1 ratio (Martinez-Alanis and Castillo, 2005). The macrocycle adopts
a conformation that is very similar to the pleated loop described for the parent p-tert-
butylcalix[8]arene, with one tetrabutylammonium cation hosted within the cavity probably
due to electrostatic interactions with the phenolate units.

2.1.2 Octasubstituted calix[8]arene derivatives

Initial motivation for the preparation of calix[8]arene derivatives arose from the need to
substantiate its octameric structure by X-ray crystallography. Naturally, the most easily
accessible derivatives are the phenolic O-octasubstituted compounds, which circumvent the
problem of selectively introducing a limited number of functional groups at the phenolic
positions. As mentioned in section 2.1.1, chronologically the first successful attempt to
obtain a stable, crystalline derivative was the report of p-tert-butylcalix[8]arene acetylated at
all the phenolic oxygen atoms (Andreetti et al., 1981). The octasubstituted derivative was
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crystallized from the high-boiling acetic acid (118 °C), which likely prevented the problems
associated with the loss of crystallization solvent observed for the parent p-tert-
butylcalix[8]arene. In what would later become a recurring observation, the p-tert-butyl
groups were disordered over at least two positions with occupancy factors close to 0.5 each.
Analogous octasubstituted compounds represent some of the first examples of structurally
characterized calix[8]arene derivatives, with a growing number reported in recent years.
The initial report of the completely acetylated calix[8]arene was followed by the structure of
the octa-O-substituted macrocycle with 1,1,3,3-tetramethylbutyl substituents in the para
phenolic positions (Ungaro et al., 1985). This compound was crystallized from the polar
solvent mixture acetone/methanol in a 1:1 ratio, although no guest molecules are present in
the structure; this is probably due to the self-inclusion of four of the O-(2-methoxy)ethyl
substituents filling the macrocyclic cavity. Shortly afterwards the para-H methyl ether
analogue (Coleman et al., 1986), in which a clathrate was obtained by ethyl ether diffusion
into a deuterated chloroform solution, was also reported. The molecules of CDCl3 were
described as being partially hosted within the calixarene cavity, and it is important to note
that data were collected with the crystals kept in a sealed capillary with the mother liquor.
This likely prevented loss of the relatively volatile chloroform, which does not appear to be
tightly bound to the calixarene.

O-methylated derivatives abound among structural reports, with different substituents such
as t-Bu, Br, and NO; at the para positions of the phenol. The former was crystallized from
chloroform solution as the clathrate (Bolte et al., 2002). Crystals of the p-bromo derivative
have been obtained from CCly (Baudry et al., 2003) and tetrahydrofuran (Bolte et al., 2003),
in both cases by slow evaporation of solvents resulting in two molecules of each being
hosted within the macrocyclic cavities. The p-nitro analogue crystallized from
tetrahydrofuran (THF), but the solvent molecules in the structure are not included within
the cavities (Podoprygorina et al., 2003); instead, two nitro groups on nitroanisole units
opposite to each other in the macrocycle fill the cavity. The molecules of THF present in the
structure fill the voids between stacks of the calix[8]arenes, which are stabilized by n-n
interactions. In a related p-Br octa-O-butyl calix[8]arene, crystal packing appears to be
promoted by Br-m interactions (Perret et al., 2007). The absence of solvent molecules in the
latter structure is explained by the orientation of six butoxy groups towards the macrocyclic
cavity.

The p-OH octapropylated calix[8]arene derivative has been crystallized from
pyridine/water (Leverd et al., 2000), as well as from acetone (Leverd et al., 2000a). In both
cases, the structures are stabilized by the presence of H-bonds between the solvent
molecules and the para-hydroxy groups. The cavities are partially filled by the self-
inclusion of O-propyl groups in both reports, with no solvent molecules hosted inside.
Two final examples of octasubstituted calix[8]arene feature the ester groups -CH,COEt
(Volkmer et al., 2004; Yan et al., 2009), and although it is not explicitly reported in the
latter, in the former case the compound was crystallized from ethanol. These derivatives
differ in the p-(1,1,3,3-tetramethylbutyl) and p-t-Bu substituents, with both adopting the
familiar cone conformation commonly observed for calix[4]arenes, and two phenolic units
on opposites ends of the macrocycle tilted towards the cavity. The ester groups attached
to these phenol moieties are self-included, thus rendering the presence of ethanol within
the cavity unnecessary. Nonetheless, the former structure does contain 2 hydrogen-
bonded solvent molecules.
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2.1.3 Calix[8]arene complexes with alkali and alkaline-earth metals

The ion-binding and transporting properties of calixarenes have been of particular interest
for the development of novel derivatives analogous to the crown ethers. In this context, the
oxygen-rich environment of calixarenes is ideal for the preparation of the oxophilic alkali
and alkaline-earth metal complexes; in the case of calix[8]arenes, speculation on their
potential to support polynuclear assemblies received confirmation from the initial solid-
state characterization of a dipotassium complex (Clague et al., 1999). The macrocycle adopts
a pinched conformation, with phenolic OH groups bridging the potassium ions at the pinch
(Fig. 3). Surprisingly, the formally anionic oxygen atoms are located furthest from the K+
ions; although this disposition of oxygen donors may seem counter-intuitive, it has been
observed in related Cs* systems (Herndndez & Castillo, 2009). This arrangement appears to
be favored by intra-calixarene hydrogen bonds, with further stabilization by molecules of
ethanol that was employed as solvent in combination with diethyl carbonate. In addition,
molecules from the solvent mixture also play a role in coordinating to the cations. A related
potassium complex featuring two K* ions sandwiched between two monoanionic
calix[8]arenes (Bergougnant et al., 2005) was crystallized from the water/ THF interface. In
contrast to the dipotassium complex described by Clague and coworkers, in the complex
reported by Bergougnant et al. the phenolate is bound directly to the K* ion, while the
molecules of water present in the structure form H-bonded clusters.

The water/THF interfacial strategy for the crystallization of mono- and dianionic p-tert-
butylcalix[8]arenes with alkali metal cations has been exploited by the group of Fromm
(Bergougnant et al., 2007). The method consists of the dissolution of the metal carbonates in
water, while the calix[8]arene is suspended in THF and then layered on top of the aqueous
solutions. For the lighter alkali metals Li and Na, dianionic calix[8]arene complexes of
general formula Mpy(calix[8]arene-2H)(THF),(H>O), were obtained, whereas the heavier
congeners K-Cs afforded monoanionic complexes of the type M(calix[8]arene-
H)(THF)x(H20)y. In the latter, the relatively flat conformation of the macrocycles resulted in
stacks that incorporate the alkali cations and water molecules aligned with the phenolic OH
groups, thus generating inorganic channel-like structures.

Mixed alkali/alkaline-earth complexes have been obtained with p-i-Pr and p-i-Bu-
calix[8]arenes from DMF. The crystallization method was not clearly stated, although it
appears that the crystals formed on standing after 72 hours (Clague et al., 1999a). It is quite
evident that the macrocycle becomes rigid upon metal complexation, since all the calixarene
O atoms are involved in coordination to the four Li* and two Sr2+ cations in both structures;
moreover, six of the macrocyclic oxygen donors act as Li-O-Sr bridging ligands. Bimetallic
strontium complexes have also been prepared from octasubstituted calix[8]arenes (Casnati
et al., 2000), with all carbonyl O-atoms of the eight amides present coordinating to the Sr2+
cations, which are additionally chelated by six of the eight phenolic oxygen atoms. Although
the complexes differ in the p-substituents of the calix[8]arenes (p-OMe and p-t-Bu), as well as
in the identity of the counter anions (picrate and chloride), the % cone (or flattened partial-
cone) conformations adopted by the macrocycles are very similar, likely with a similar
degree of rigidity. A synergistic effect appears to be responsible for the coordination of the
second strontium cation, since both reactions were initially attempted with a 1:1 molar ratio
of calix[8]arene to Sr salt. In the case of the picrate, crystals were obtained from a solvent
mixture that included acetic acid, which ultimately chelates the cations, fills the voids
defined by the calixarene and the diethyl amide arms, and stabilizes the free picrates via H-
bonds. In the latter case one chloride ligand remains coordinated to each strontium cation,
while the extended structure is stabilized by H-bonded water and methanol molecules.
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(b)

Fig. 3. a) Solid-state structure of the K* complex of dianionic p-tert-butylcalix[8]arene
(Clague et al., 1999); b) Side view of the pinched conformation, p-t-Bu groups and solvent
molecules removed for clarity

In addition to the aforementioned complexes, a monometallic structure with Ca?* and
doubly deprotonated p-tert-butylcalix[8]arene has been reported (Harrowfield et al., 1991).
In this example, only two adjacent phenoxide oxygen atoms coordinate to the metal, as well
as solvent molecules of DMF (crystals were obtained by cooling a hot DMF solution of the
complex). This results in high mobility for the calcium cation and apparent eight-fold
symmetry, as evidenced by 1H NMR spectroscopy in solution.

2.1.4 Calix[8]arene complexes with lanthanide and actinide metals

Lanthanide derivatives are among the first structurally characterized calix[8]arene-metal
complexes. As in the case of alkali and alkaline-earth metals, speculation on their potential
to act as scaffolds for polymetallic assemblies received early confirmation from the solid-
state characterization of a dieuropium complex (Furphy et al., 1987). The macrocycle adopts
a pinched conformation similar to that observed in a dipotassium complex (Clague et al.,
1999), except for the fact that in the potassium complex there are two phenolic OH groups
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bridging the metals, while in the europium case two phenoxide groups bridge the Eu3* ions
as depicted in Fig. 4a. Europium is the lanthanide with the highest representation among
crystallographically characterized calix[8]arene complexes, with 4 other bimetallic examples
reported. The sole exception to this general trend is the monometallic Eu3* complex with a
coordinated nitrate, analogous to the Ca2?* analogue described in the previous section
(Harrowfield et al., 1991). All of the dinuclear complexes are essentially isostructural,
whether they are crystallized from DMSO or DMF (Harrowfield et al., 1991a; Harrowfield et
al., 1991b). Two of the europium complexes were obtained from p-NO, and p-H-
calix[8]arenes; the former was crystallized from DMF (Biinzli et al., 1998), while the latter
was obtained from DMSO solution (Fleming et al.,, 2003). The differences in the para-
substituents do not affect the overall structural arrangement. In all cases the high boiling
points and strongly coordinating properties of the solvents appear to be necessary to
stabilize the crystal lattice, as well as to complete the coordination environment of the metal
centers. Lanthanum and lutetium complexes were obtained from both DMSO and DMF,
while the thulium analogue was exclusively crystallized from the former solvent. Finally,
the analogous bimetallic praseodymium complex was obtained from DMF solution.
Regarding actinide metals, complexation of uranium and thorium is of particular interest
due to the possibility to selectively bind the radioactive metals within the large macrocyclic
cavities of calix[8]arene derivatives. Although the reports on uranium complexes far
outnumber those of thorium, the latter was the first calix[8]arene-actinide complex to be
structurally characterized (Harrowfield et al., 1991c). The structure of the thorium (IV)
complex is unique due to the presence of two independent calix[8]arenes in the asymmetric
unit with completely different conformations: one calix[8]arene ligand is in a pinched
conformation, akin to that observed for the bimetallic lanthanides described above, while a
second macrocycle adopts a conformation that approaches that of the free macrocyclic
pleated loop; the two calixarenes assemble around Th#* cations to afford a tetrameric core.
Recrystallization of the complex from acetone afforded the DMSO/water solvate, with the
DMSO molecules hosted within the cavities acting as terminal O-ligands towards the metal
cations.

Polymetallic complexes have also been obtained from the reactions of uranium (IV) and p-
H-calix[8]arene; the seemingly random reaction conditions reported (3 equivalents of UCls,
pyridine or THF as solvents, absence or presence of NaH as base) resulted in bi-, tri- and
pentauranium complexes, in one of the cases with 4 sodium ions associated. The trinuclear
complex was the first to be reported, and pyridine was employed as solvent due to the poor
solubility of the calix[8]arene in other solvents such as THF (Salmon et al., 2006). Pyridine
likely solubilizes the macrocycle and facilitates its deprotonation upon metal complexation,
resulting in an anionic complex [U3Clyi(calix[8]arene-7H)]¢- that is charge balanced by six
pyridinium cations. The latter stabilize the extended structure by H-bonding to phenoxide
O-atoms, one chloride, and lattice pyridine molecules. In the case of the bi- and
pentauranium (IV) complexes, deprotonation of calix[8]arene with NaH promotes the
reactions with U(acac)s and UCly, respectively (acac = acetylacetonate). The bimetallic
complex consists of polymeric chains connected by multiple Na-O bridges through the acac
ligands. The conformation of the macrocycle is described as two partial-cones, fused
together in a propeller-like fashion; each partial-cone binds one U** ion through the oxygen
atoms, while a Na* ion with a pyridine ligand is hosted within each of the cavities defined
by the four phenolic units. Likewise, the conformation of the two anionic calix[8]arenes in
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the pentanuclear complex is described as distorted partial-cones. Each calixarene binds two
uranium (IV) cations featuring additional chloride and pyridine ligands, while the fifth U4+
ion bridges the two calixarene ligands.

(b)

Fig. 4. a) Eu®* complex of the hexaanionic p-tert-butylcalix[8]arene in pinched conformation
(from Furphy et al., 1987); b) Pleated loop conformation of the p-OH-bis(uranyl) complex
(from Thuéry et al., 1995), p-t-Bu groups and exogenous ligands removed for clarity

Uranyl salts are more predictable in terms of the nuclearity of the complexes formed with
calix[8]arene ligands than their uranium (IV) counterparts. A bimetallic complex was
obtained by initial deprotonation of p-tert-butylcalix[8]arene with excess triethylamine in
acetonitrile; two of the four uranyl oxo moieties interact with protonated triethylammonium
cations, and the overall structure is characterized by hydrogen-bonded water and
acetonitrile molecules (Thuéry et al., 1995). This diuranium (VI) species shares geometric
features with one of the macrocycles observed in the structure of the thorium complex
reported (Harrowfield et al., 1991c), in which the metal cations are coordinated by four
phenolic oxygen atoms each, and bridged only by a hydroxyl ion. The phenolic units adopt
a conformation close to that observed for the free p-tert-butylcalix[8]arene, which is
commonly described as pleated loop, although with a distortion towards a saddle shape
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(Fig. 4b). Thus, these complexes differ from the bimetallic lanthanide derivatives, in which
phenolic bridges are always present. Nonetheless, the structure appears to be rigid due to
the presence of the OH- bridge between the U¢* ions. A related uranyl complex with a very
similar structure was reported, with the main difference being the presence of two
equivalents of crown ether-encapsulated KOH (Thuéry et al., 2007).

2.1.5 Calix[8]arene complexes with transition metals

As in the case of lanthanides, reactions of transition metals with calix[8]arenes give rise
predominantly to bimetallic complexes. This is likely due to the extended bridging that
occurs, resulting in macrocycles with reduced flexibility relative to the free calix[8]arenes,
making them amenable for crystallization. For example, the first report of a transition metal
complex characterized in the solid state consists of a Ti** dimer (Hofmeister et al., 1989),
with a chiral propeller-like macrocyclic conformation that is very similar to that of the Eu3*
complexes. Molybdenum and tungsten also give rise to bimetallic complexes in most cases,
irrespective of the oxidation state of the metal. The highest oxidation state attainable for
molybdenum in the Mo¢*-imido complex gives rise to an oxophilic metal center, which
coordinates to four phenolates in the complex [(CHsCN)Mo=NAr|y(calix[8]arene-8H), Ar =
2,6-diisopropylphenyl; the macrocycle adopts a twisted conformation with no pinch, thus no
bridging phenolates are present (Gibson et al., 1995). Two molecules of acetonitrile, which
was employed as solvent for recrystallization of the complex, are bound to the molybdenum
ions while hosted within the two cavities defined by each half of the macrocycle. A related
tungsten(VI) hydrazido complex (hydrazido = NNPh,%) was structurally characterized by
diffraction experiments with synchrotron radiation (Redshaw & Elsegood, 2000). The
complex is characterized by a twisted macrocyclic conformation, as well as bridging
phenolates in trans-positions relative to the hydrazido ligands; the crystals were obtained
from an acetonitrile/dichloromethane mixture, both of which are present in the structure as
solvate molecules. Replacement of an imido or hydrazido ligand for an oxo moiety results in
a very similar macrocyclic conformation in [(CH3CN)W=0O],(p-tert-butylcalix[8]arene-8H)
(Redshaw & Elsegood, 2003).

The flexibility of the p-tert-butylcalix[8]arene backbone was demonstrated in the report of
di-, tri- and tetratungsten complexes reported from the reaction with WCls (Gibson et al.,
2002). The bimetallic complex is of particular interest due to the presence of a W-W triple
bond, formed upon reduction of the dinuclear Wé* precursor to W3* with sodium amalgam;
moreover, the conformation adopted by the macrocycle is unique for transition metal
complexes, and was described as two % cones (cups) facing each other. As in the case of
many other complexes, crystallization was achieved from acetonitrile solution, which
stabilizes the structure by coordination to the sodium cations necessary to charge-balance
the anionic ditungsten-calixarene complex.

Although chronologically developed at a later stage, the group 5 metals vanadium and
niobium have also been employed in the preparation of bimetallic calix[8]arene-derived
complexes. The bimetallic V>*-imido (imido = N-p-tolyl%) complex has a structure similar to
that reported for the Ti** complex described above, with bridging phenoxides in trans-
positions relative to the imido groups, thus precluding coordination of acetonitrile solvent
molecules (Gibson et al., 2001). Likewise, the analogous vanadyl derivative is characterized
by bridging phenoxides trans to the oxo ligands (Hoppe et al., 2006); this configuration
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appears to preclude the presence of voids, thus favoring crystallization from acetonitrile
solution upon cooling. The niobium complex reported was prepared from NbCls as metal
source, and crystallized from hot acetonitrile solution as two polymorphs, only one of which
was refined as (NbCly)a(p-tert-butylcalix[8]arene-6H). The macrocycle adopts a twisted
conformation, and no oxygen bridges between the metal centers are observed; the two OH
protons on the phenolic units are H-bonded to acetonitrile molecules in the lattice (Redshaw
et al., 2007).

Not surprisingly, late transition metals are hardly represented among structurally
characterized calix[8]arene complexes. This is related to the high oxophilicity of the early
transition metals in high oxidation states (Ti**, V5*, Mo¢*), compared to the reluctance of the
low-valent metals in the late groups of the d-block to bind n-electron rich phenolate donors.
Electronic repulsion of the electrons on the oxygen-centered lone pairs with the metal-
centered electrons associated to a high d-electron count accounts for their low stability. The
first complex of this type required solvothermal conditions in order to afford an anionic
dicobalt complex sandwiched between two trideprotonated p-tert-butylcalix[8]arenes,
charge balanced by two triethylammonium cations (Petit et al., 2007). In addition to the
Co?*, d’ complex, the second example involves a bimetallic Cu2*, d° species coordinated to
an octasubstituted calix[8]arene derived from the octaester described in section 2.1.2 (Yan et
al., 2009). Four of the eight Schiff base moieties coordinate to the cupric ions through two
oxygen and one nitrogen atom each, emphasizing the importance of the nitrogen-containing
substituents for the formation of metal complexes involving late transition metals; no
solvent molecules (chloroform or petroleum ether) are present in the crystal structure.

2.1.6 Calix[8]arene complexes with p-block elements

The oxophilic nature of aluminum was exploited to obtain a trimethylaluminum complex
with methylated calix[8]arene, which represents one of the first structurally characterized
derivatives (Coleman et al., 1987). Both p-t-Bu and p-H-calix[8]arene methyl ethers react
exothermically with 8 equivalents of AlMej to afford the hexaaluminum complexes, which
were crystallized from benzene and toluene, respectively. The conformations adopted by the
macrocycles do not resemble any of the other metal complexes, probably due to the ethereal
nature of the phenolic units, which precludes the formation of H-bonds and metal-oxygen-
metal bridges. Steric considerations appear to be responsible for the presence of only six
trimethylaluminum units. The second report on these types of derivatives with p-block
elements involves three bridging phosphates, the central one linking the 1 and 5 phenolic
positions, with the other two phosphorus atoms bound to three adjacent phenolates (Gloede
et al., 2001). Although considerably flattened, the shape of the macrocycle can be described
as having two % cups or bowls oriented in opposite directions. Another phosphorus-
containing octa-O-acetyl derivative features substantially disordered diethoxyphosphonate
groups in the para-positions of the calixarene (Clark et al., 2008).

Heavy group 14 and 15 elements are represented by germanium and bismuth in terms of
crystallographically characterized calix[8]arenes. One of the Ge2* derivatives assembles from
benzene as two rhombic Ge;O, dimers with bridging oxygen donors, as well as one terminal
phenolate ligand for each germanium (II) resulting in a tetragermanium-p-H-calix[8]arene
complex that acquires a deep bowl shape (Wetherby et al., 2007). The lone pair on each Ge2*
allows them to act as donors towards Fe;(CO)s fragments in a formal oxidation to Ge#*; as a
consequence of the oxidation process each resulting germanium (IV) is bound to only two
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oxygen atoms from the calixarene. The analogous tetragermanium (II) complex with p-tert-
butylcalix[8]arene adopts a different conformation, since the bowl shape attained in the p-H
analogue would result in considerable steric repulsion between p-t-Bu substituents on the
phenolic units in 1 and 5 positions (Green et al., 2009). The reaction with Fe;(CO)o in
benzene has a different outcome as well, since only two germanium (II) ions interact with
Fe(CO)4 fragments in the product, without any oxidation at Ge taking place.

The first bismuth derivative of p-tert-butylcalix[8]arene was obtained from the silylamide
Bi[N(SiMe3)2]s by recrystallization from a toluene/THF/acetonitrile mixture (Liu et al.,
2004). The solid-state structure is defined by two calix[8]arene-Bis complexes bridged by -
oxo ligands; the macrocycle adopts a pinched cone conformation, with the cavity filled by
two molecules of toluene. When the same calix[8]arene was treated with n-butyllithium and
subsequently with 4 equivalents of BiCls, an anionic tetrabismuth-tetralithium complex with
both phenolate and chloride ligands was formed (Liu et al., 2008). Despite these differences,
the macrocyclic conformation can also be described as pinched cone, with one
dimethoxyethane (DME) and one THF molecules inside the cavity acting as ligands towards
the lithium cations.

2.1.7 Covalently-bridged calix[8]arenes

An alternative strategy for the functionalization of calix[8]arenes that has led to crystalline
derivatives is the introduction of bridging organic substituents at the phenolic rim, thus
linking two (or four) oxygen atoms. The usefulness of this approach relies on the
regioselectivity of the transformation, since the reactions could in principle lead to a
complex mixture of isomers. Instead, the methods developed have allowed the introduction
of substituents at 1,2-, 1,4- and 1,5-phenolic positions selectively, thus restricting the degrees
of freedom of the macrocycle. While the reduced mobility caused by functionalization
appears to be beneficial in itself for the crystallization of the organic derivatives, the
preorganization seems to also result in an ideal binding pocket for large metal ions. The first
type of organic-linked derivative to be structurally characterized is the doubly
tetramethylene-bridged p-tert-butylcalix[8]arene in 1,5 and 3,7 phenolic positions (Geraci et
al., 2000). The idealized symmetry of the macrocycle is D;;, made up of four % cone clefts
and filled with one molecule of dichloromethane and two of water.

The template effect observed for cesium in the 1,5-regioselective introduction of substituents
was confirmed in the singly 1,5-tetramethylene-bridged derivative of p-fert-
butylcalix[8]arene, which crystallizes as the CsCl complex (Consoli et al, 2002).
Conformationally, the macrocycle has a very similar structure to that of the 1,5:3,7-doubly
bridged derivative, with the Cs* coordinated to all oxygen atoms, as well as two molecules
of methanol (employed as solvent together with dichloromethane), one molecule of water,
and the chloride counterion. Two additional molecules of water are present in the cavities of
the % cone clefts defined by three phenolic units. A related 1,5-tetramethylene-bridged hexa-
O-(4-t-Bu-benzyl) derivative has also been characterized (Consoli et al., 2002a). One of the ¢-
Bu-benzyl-substituted phenolic units is tilted towards the cavity, participating in self-
inclusion in one of the %4 cone clefts, while another cleft contains a molecule of CH,Cl, from
the methanol/dichloromethane solvent mixture used for crystallization.

The introduction of heteroatoms in the covalent bridges has generated interest due to the
potential to bind metal ions different from the frequently observed oxophilic alkali,
lanthanide, and actinide metals. A 1,4-regioisomer with a phenanthroyl group has been
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(b)

Fig. 5. Comparison of nitrogen-containing bridged p-tert-butylcalix[8]arenes in: a) flattened
conformation of the 1,4-phenanthroyl (Konrad et al., 2005), and b) “tub-shaped’
conformation of the 1,5-pyridyl-substituted derivative (Herndndez & Castillo, 2009)
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crystallized from acetonitrile/dichloromethane solvent mixture, and the solid-state structure
shows that the macrocycle is in an almost planar conformation stabilized by intracalixarene
H-bonds (Konrad et al., 2005). The 1,4-regioselective outcome may be attributed to the use of
K+ as templating agent. In contrast, the use of cesium leads to the selective introduction of a
2,6-dimethylenepyridyl spanning element to the 1,5-phenolic positions (Hernidndez &
Castillo, 2009). The conformational template effect of Cs* was also evidenced in the crystal
structure, which contains two cesium cations per macrocycle, with one of them hosted deep
inside the macrocyclic cavity, within bonding distance to the pyridyl N-atom. The dicesium
complex was crystallized from acetonitrile/dichloromethane by slow evaporation, resulting
in both molecules being present in the structure; one molecule of CH3CN coordinates to
each Cs* cation, while neither of the phenolate O-atoms in the 3 and 7 positions interact with
the metal centers. Conformationally, the macrocycle can be described as “tub-shaped” in an
analogous fashion to the 1,5-bridged cesium complex described above (Consoli et al., 2002).
Thus, the conformation of covalently-bridged calix[8]arenes is highly influenced by the
regioselectivity of the substitution reaction, which is dictated by the templating cation used
during the derivatization process, as evidenced in the comparison presented in Fig. 5.

2.1.8 Thia- and para-sulfonatocalix[8]arenes

Two novel classes of calix[8]arenes have been developed in recent years, which involve the
use of sulfur in either a reduced form as thioether bridging elements between phenolic
units, or in an oxidized form as para-sulfonate substituents. The former are commonly
referred to as thiacalix[n]arenes, for which the octamethylated p-tert-butylthiacalix[8]arene
was crystallized by slow diffusion of CH3CN into a chloroform solution of the compound
(Kon et al., 2002); the octaether adopts a 1,2,3,4-alternate conformation, with two molecules
of acetonitrile hosted within the cavity. The parent thiacalix[8]arene was later characterized
by X-ray crystallography, the structure being nearly identical to that of p-fert-
butylcalix[8]arene in the pleated loop conformation (Kondo et al., 2005). A tetrapotassium
complex of tetraanionic thiacalix[8]arene has been reported to have a zeolite-like structure,
and was crystallized from methanolic solution by slow evaporation as the octasolvate
(Kondo et al., 2005a).

Regarding p-sulfonatocalix[8]arenes, structural authentication involved the co-
crystallization of the decaanion (eight sulfonate and two phenolate groups) in the presence
of 4,4'-dipyridine-N,N’-dioxide and Eu?* (Dalgarno et al., 2005). Despite the presence of -
stacking interactions and europium-O(sulfonate) coordination, these do not seem to perturb
the macrocyclic conformation, which can be best described as the ubiquitous pleated loop.
The anionic p-sulfonatocalix[8]arene has been crystallized with a variety of inorganic and
organic cations, including combinations such as Yb3* and three PhyP* cations encapsulated
by two anionic p-sulfonatocalix[8]arenes (Makha et al., 2006). Ytterbium also favors the
encapsulation of the globular [Co(phen)s;]** cation (phen = 1,10-phenanthroline) by the
anionic macrocycle in a chalice-like conformation (Smith et al., 2006). Likewise, in the
isomorphous structures of [M(phen)>(H2O)]>[M(phen),]»-p-sulfonatocalix[8]arene-2H,O (M =
Cu, Zn) the octaanionic calix[8]arene in a 1,2,3,4-alternate conformation encapsulates one
[M(phen),(H20O)]?* in each of the two cone subunits defined by four adjacent phenols; the
[M(phen);]?* complexes join two cones from adjacent calixarenes via M-O(sulfonate) and n-n
interactions (Liu et al.,, 2009). Among organic guests, 14-butanediamine and 1,2-cis-
cyclohexanediamine have been co-crystallized from methanolic solutions by mixing with

www.intechopen.com



Calix[8]arenes Solid-State Structures: Derivatization and Crystallization Strategies 59

aqueous solutions of the p-sulfonatocalix[8]arene, followed by slow evaporation (Perret et
al., 2006). The solid-state structures determined are characterized by an almost flat versus an
‘inverted double partial cone” (1,2,3,4-alternate) conformation, respectively. The latter
structure has a 1:2:4 stoichiometry of tetraanionic p-sulfonatocalix[8]arene,
cyclohexanediammonium, and water, in which the ammonium cations are included deep
within the macrocyclic cavity.

2.2 General overview of crystallization conditions

An initial assessment of the observations presented for the different types of calix[8]arenes
points to the inherent difficulty in either obtaining adequate crystals, or being able to
stabilize them in the absence of guests to fill the voids of the macrocycles. For this purpose,
the use of solvents with high boiling points and the capability to form hydrogen bonds
facilitates crystal formation and subsequent data collection, particularly in the case of O-
unsubstituted calix[8]arenes. Moreover, acquisition of diffraction data at low temperature
has become standard procedure for the resolution of the solid-state structures of the large
macrocycles, since the commonly observed disorder in t-Bu groups is minimized, along with
thermal motion that might be present in other parts of the molecules, for example in p-SO3
groups or in solvates. These general considerations may result in the formation of stable
crystals of both parent calix[8]arenes and their derivatives to be taken as a first approach
towards successful crystallization and data collection.

Further analysis of the data reveals that octasubstituted derivatives lacking OH groups for
hydrogen bonding can generally be crystallized from non-polar solvents. In this class of
compounds, some of the phenolic O-substituents generally participate in self-inclusion, thus
eliminating the need for high-boiling solvents; moreover, solvents with the ability to act as
hydrogen bond acceptors are not essential due to the absence of phenolic OH groups
available for this kind of interaction. Clathrates can indeed form, but they tend to include
solvents such as chloroform, carbon tetrachloride, benzene, toluene, and tetrahydrofuran.
Calix[8]arene derivatives with elements of the p-block that attain a closed-shell electronic
configuration can also be included in this category, since they do not need solvent molecules
as auxiliary ligands. This is the case with the aluminum-, phosphorus-, and germanium-
containing calix[8]arenes, which were crystallized predominantly from aromatic, non-
coordinating solvents. Bismuth deviates from this general rule, probably due to its larger
ionic size that results in a tendency to form complexes with higher coordination numbers.
For calix[8]arene derivatives with phenolic OH groups and calix[8]arene-metal complexes
with open-shell electronic configurations, solvents that can act as electron pair donors towards
hydrogen atoms or electron-deficient metal centers are of key importance. Among the solvents
that meet the criteria of high boiling points and electron donor capabilities, acetonitrile,
dimethylformamide, dimethylsulfoxide, and in some instances pyridine, have been the most
successful for the crystallization of calix[8]arenes. Their properties appear to be better suited
than those of methanol or ethanol, which are only represented in a few solid-state structures,
despite the comparable polarity of the alcohols and the aprotic solvents (Flick, 1998). While
alcoholic solvents can act as both donors and acceptors in H-bonding interactions, the former
property (with the alcohol as H-donor) does not seem to be crucial in the stabilization of most
calix[8]arene crystal lattices. A disadvantage in the use of polar aprotic solvents may be the
low solubility of some macrocyclic derivatives, but a co-solvent can be employed to dissolve
the calix[8]arenes in appreciable quantities for crystallization.
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Fig. 6. Conformation adopted by the large macrocycles in the solid state: a) Pleated loop
(from Martinez-Alanis and Castillo, 2005); b) 1,2-alternate (Ettahiri et al., 2003); c) cone
(Volkmer et al., 2004)
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Fig. 7. Conformation adopted by the large macrocycles in the solid state: a) %2 Cones facing
away (from Casnati et al., 2000); b) %2 cones facing each other (Gibson et al., 2002); c) 1,2,3,4-
alternate (from Liu et al., 2009)
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For this purpose, volatile solvents such as acetone or dichloromethane are ideal, since slow
evaporation tends to result in saturated solutions of the desired compounds predominantly
in the high-boiling solvent. Alternatively, heating solutions of the calix[8]arene derivatives
followed by slow cooling may result in crystal formation. These guidelines apply for
unsubstituted and partially substituted calix[8]arenes with phenolic OH groups, including
the covalently bridged derivatives, thiacalixarenes, and complexes with electron-deficient
metals. Regarding water as a solvent, most macrocycles are insoluble with the exception of
p-sulfonatocalix[8]arene, providing the opportunity to further test the interfacial technique.
Finally, a summary of the calix[8]arene conformations determined in the solid state is
presented in Figs. 6 and 7, complementing those already presented in previous sections.
While it is expected that the macrocycles characterized in the future will adopt one of the
conformations herein included, novel structures cannot be ruled out, including variations
and intermediate structures related to those already described in the current Chapter.

3. Conclusions

Solid-state characterization of calix[8]arene derivatives involves subtle details, but general
trends emerge from an analysis of the reported structures. Complete functionalization at the
penolic rim with substituents capable of filling the cavity by self-inclusion may result in
derivatives that can be crystallized from non-polar solvents. This method may also be
applied to calix[8]arenes with light p-block elements. Introduction of organic bridges at the
phenolic OH groups, together with complex formation of alkali, alkaline earth, and open-
shell (d- and f-block) metals may result in crystalline derivatives primarily from polar
aprotic solvents that can H-bond to the remaining OH functional groups, and coordinate to
the electron-deficient metals. The presence of solvent molecules is stabilized by collection of
diffraction data at low temperature, although crystal formation appears to be facilitated by
slow evaporation of solvent, rather than by cooling. These general guidelines should serve
as a first approximation for crystal growth of calix[8]arene derivatives.
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