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1. Introduction 

Acute myeloid leukemia (AML) is a cancer wherein dysregulated differentiation, 
uncontrolled growth and inhibition of apoptosis lead to accumulation of immature myeloid 
progenitor cells and progression of oncogenic expression (Lowenberg et al., 1999). AML is 
now seen to be initiated and maintained from a small, self-renewing population of leukemic 
stem cells (LSCs), which give rise to a progeny of more mature and highly cycling 
progenitors (colony forming unit-leukemia, CFU-L). CFU-Ls do not self-renew, however 
they are committed to proliferation and limited differentiation. By doing so, they originate a 
population of blast cells which constitute the majority of leukemic cells in both the bone 
marrow and peripheral blood of patients. The exact phenotype of LSCs is still debated, but 
they are comprised in the CD34+/CD38-/low population (Lane et al., 2009). CD34+/CD38+ 
leukemic cells were unable to initiate leukemia in immunodeficient mice. It should be noted 
that only about 50% of AML are able to initiate leukemia in NOD/SCID mice (Testa et al., 
2007) 

2. Leukemogenesis 

The pathogenesis of leukemia may be explained by two classes of alterations of oncogenic 
genes as a result of chromosomal aberrations. Class I mutations confers a proliferative 
and/or survival advantage to the cells. The current list of known leukemogenic class I 
mutations consists of more than 10 different protein tyrosine kinases (PTK) that undergo 
constitutive activation either by being fused to different N-terminal partner proteins 
providing an oligomerization domain, or by activating mutations such as point mutations in 
their kinase domain or internal tandem repeats (length mutations) in the juxtamembrane 
domain (Flt3, Kit). Most of these alterations are associated with chronic myeloproliferative 
disorders such as chronic myeloid leukemia/chronic myelomonocytic leukemia 
(CML/CMML) or Philadelphia negative myeloproliferative disorders, except activating 
mutations of Flt3 and Kit which are found almost exclusively in acute leukemia. Flt3 ITD 
(internal tandem duplication) mutants constitutively activate MAPK, AKT and STAT5, 
leading to Pim-1 activation and Bcl-xL (B-cell lymphoma) hyperexpression (Minami et al., 
2003; Kim et al., 2005). Extracellular c-Kit mutations resulted in c-Kit receptor 
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hyperactivation in response to Kit ligand, with subsequent strong activation of MAPK and 
PI3K, while codon 816 c-Kit mutations induced constitutive STAT-3 activation and 
upregulation of Bcl-xL and c-myc (Schnittger et al., 2006)). Other class I alterations are gain 
of function mutations of the three main RAS isoforms (N-Ras, Ki-Ras, Ha-Ras) which are 
frequently seen in different myeloid malignancies (Beaupre and Kurzrock, 1999). N-Ras 
mutations lead to increased activity of the Ras pathway, resulting in increased proliferation 
and decreased apoptosis (Testa et al., 2007). Overexpression of class I mutations is generally 
sufficient to transform hematopoietic cells to growth-factor independence in vitro and to 
induce a lethal leukemialike myeloproliferative disorder in mice (Ilaria, 2004). 
(Flt- FMS-Like Tyrosine Kinase 3, STAT- Signal Transducer and Activator of Transcription, 
MAPK-Mitogen-Activated Protein Kinase) 
In contrast to class I mutations, there is a large group of genetic alterations mostly associated 
with acute leukemia, referred to as class II mutations, which impair differentiation of 
hematopoietic cells and subsequent apoptosis but do not directly provide proliferative 
and/or survival advantage. Many of them are loss of function mutations (either through 
fusion formation or point mutations) of transcriptional regulators that are critical for normal 
hematopoietic development and differentiation. Transcription factor fusion genes include 
CBF, RAR, MLL, HOX and CBP while loss of function mutations occur in AML1, CEBP/a, 
PU.1, GATA1 and IKAROS (reviewed in Chalandon and Schwaller, 2005). Via mediators of 
apoptosis, fusion proteins send anti-apoptotic signals that favor the preferential survival of 
leukemic cells:PML/RAR-ǂ or CBF/SMMHC through the p53 pathway and AML1/ETO 
through the Bcl2-related pathway (Klampfer et al., 1996; Britos-bray et al., 1998; Pandolfi, 
2001). PML/RARǂ fusion protein was also shown to exert an anti-apoptotic activity by 
downmodulating the expression of some death-inducing genes, such as TNF-R1 (Testa et al., 
1998) and TRAIL-R1/-R2 (Ricioni et al., 2005). Nucleophosmin acts as a cellular p53 negative 
regulator to protect hematopoietic cells from stress-induced apoptosis (Lambert and Buckle, 
2006). These mutations are usually not sufficient to mimic the human disease in transgenic 
mice since they do not readily induce a leukemia phenotype. However, after a long latency 
period, signs of myelodysplasia are often seen with a variable propensity to develop an 
immature and clonal hematologic disorder closely resembling human AML (reviewed in 
Chalandon and Schwaller, 2005). Additional mutations, occurring at the level of signal 
transduction molecules (the receptor tyrosine kinases Flt3 or c-Kit, NRas and Ki-Ras), are 
required for the generation of disease (reviewed in Testa et al., 2007). This hypothesis is 
supported by the analysis of unselected blood samples from neonates which showed that 
about 1% have class II genetic alterations that are detectable by PCR (Greaves et al., 2003). 
(CBF-core binding factor, RAR –retinoic acid receptor, MLL-mixed lineage leukemia, HOX-
homeobox, CBP-CREB binding protein, CEBP/a-CCAAT/enhancer binding protein, PML-
promyelocyte leukemia, SMMHC-smooth muscle myosin heavy chain, TRAIL-tumor 
necrosis factor–related apoptosis-inducing ligand) 
In the same light, being a heterogeneous disease, relapsed AML is unlikely to emanate from 
one predominant mechanism; instead, there are likely to be multiple biologic factors at play 
that allow for clinical relapse to occur. These factors likely include multidrug resistance 
proteins, aberrant signal transduction pathways, survival of leukemia stem cells, 
microenvironmental interactions, and immune tolerance. Many conditions in the 
environment select for the development of these target mechanisms, ranging from 
chemotherapeutic modalities, to signal transduction inhibitors, to upregulation of 
antileukemic immune responses (reviewed in Lancet and Karp, 2009) 
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PTK involved Fusion gene Chromosomal 
aberration 

Disease phenotype 

A. Fusion genes    

ABL (9q34)  BCR/ABL t(9;22)(q34;q11) CML 
(ABL1)  TEL/ABL t(9;12)(q34;p13)  Atypical CML 
ARG (1q24)  BCR/ARG t(1;22)(q24;q11)  Atypical CML 
(ABL2)  TEL/ARG t(1;12)(q24;p13) Atypical CML 

PDGFR (5q33)  TEL/PDGFR t(5;12)(q33;p13) CMML, atypical 
CML 

 HIP1/PDGFR t(5;7)(q33;q11) CMML, atypical 
CML 

 RAB5/PDGFR  t(5;17)(q33;p13) CMML, atypical 
CML 

 H4/PDGFR  t(5;10)(q33;q21) CMML,atypical CML 

 Myomegalin/PDGFR  t(1;5)(q23;q33) CMML,atypical CML 

 CEV14/PDGFR  t(5;14)(q33;q32) relapse AML 

 NIN1/PDGFR  t(1;5)(q23;q33) atypical CML 

 HCMOGT/PDGFR t(5;17)(q33;p11)  juvenile CMML 

 TP53BP1/PDGFR  t(5;15)(q33;q22) atypical CML 

PDGFR (4q12) BCR/PDGFR  t(4;22)(q12;q11) Atypical CML 

AK2 (9p24)  BCR/JAK2 t(9;22)(p24;q11) CML, atypical CML 

 TEL/JAK2  t(9;12)(p24;p13) Atypical CML, ALL, 

AML 

 PCM1/JAK2  t(8;9)(p21-22;p23-24) Atypical CML, AML, 

ALL 

TRKC (15q25)  TEL/TRKC t(12;15)(p13;q25) AML 

GFR3 (4p16)  TEL/FGFR3 t(4;12)(p16;p13) AML 

FRK(6q21)  TEL/FRK t(6;12)(q21;p13) AML 
B. Gain of function mutations   

FLT3 (13q12)  ITD (80%), activation loop kinase domain (15%) AML 

KIT (4q12)  JM region, activation loop kinase domain AML 

JAK2 (9p21)  JAK2 V617F mutation 9pLOH PV, ET, 
myelofibrosis 

C. Deregulated expression
FLT3 (13q12)  Overexpression MLL alterations ALL/AML 

CML: chronic myeloid leukemia; AML: acute myeloid leukemia; ALL: acute lymphoblastic leukemia; CMML: 
chronic myelomonocytic leukemia; EMS; ITD: internal tandem duplication; JM: juxtamembrane; PV: 
polycythemia vera; ET: essential thrombocythemia; LOH: loss of heterozygosity 

Table 1. Deregulated protein tyrosine kinases in myeloid leukemias (taken from Chalandon 
and Schwaller, 2005) 

3. Signal Transduction Pathways (STP) 

Signal transduction is the primary means by which eukaryotic cells respond to external 

signals from their environment and coordinate complex cellular changes. Extracellular 

signal is transduced into the cell through ligand-receptor binding, followed by the activation 
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of intracellular signaling pathways that involve a series of protein phosphorylation and 

dephosphorylation, protein-protein interaction, and protein-small molecules interaction (Liu 

and Zhou, 2004). Cytokines interact with cell-surface receptors initiating signaling cascades 

that promote cell growth and division, while inhibiting the pathways of apoptotic cell death. 

The JAK/STAT, Raf/ MEK/ERK and PI3K/Akt signaling pathways are activated by a 

variety of cytokines that function to potentiate or inhibit hematopoiesis. These include IL 

(interleukin)-3, IL-7, SCF (stem cell factor), G (granulocyte)-CSF, type I interferons (IFN) and 

TGF- (transforming growth factor)- beta (Steelman et al., 2004). 

The phosphatidylinositol 3-kinase (PI3K) 

PI3K /protein kinase B (Akt)/mammalian target of rapamycin (mTOR) (a family of lipid 
kinases) signaling cascade is crucial to many widely divergent physiological processes 
which include cell cycle progression, transcription, translation, differentiation, apoptosis, 
motility, and metabolism (Yuan and Cantley, 2008). The family of PI3K enzymes 
phosphorylates inositol lipids and comprises three different classes, I, II, and III. 
Phosphorylated phosphatidylinositol 3,4,5trisphosphate [PtdIns (3,4,5)P3] recruits to the 
plasma membrane pleckstrin homology (PH) domain-containing proteins, which include 
phosphoinositide-dependent protein kinase 1 (PDK1) and Akt. The phospholipid products 
of PI3K activate downstream targets, including PDK, Akt and PKC (Palmer et al., 1995; 
Toker et al., 1994; Nakanishi et al., 1993). 
Class I PI3K is further classified as A [activated by receptor tyrosine kinases (RTKs), Ras, 

and G-protein coupled receptors (GPCRs)] and B (activated by GPCRs) subtype. Class IA 

and 1B PI3Ks are heterodimeric enzymes composed of a regulatory and of catalytic subunits 

(Martelli et al., 2010).  

Phosphoinositide-dependent kinase (PDK) 

PDK requires the phospholipid product of PI3K for activation. There are believed to be two 

members of the PDK family – PDK1 and PDK2. Association of Akt with phosphoinositides 

produces a conformational change allowing Ser473 to be phosphorylated by PDK1 (Scheid 

et al., 2002). 

Protein kinase B (Akt) 

Akt is a 57-kDa serine/threonine protein kinase central to cell signaling downstream of 
growth factors, cytokines, and other cellular stimuli. Activated Akt was originally isolated 
from cells of the leukemia and lymphoma prone AKR strain of mice (Staal, 1987). It 
comprises three highly conserved isoforms: Akt1/ǂ, Akt2/ǃ, and Akt3/Ǆ which are 
functionally different (Staal, 1987; Nicolson and Anderson, 2002; Staal et al., 1988). Once Akt 
is recruited at the plasma membrane, its activation loop is phosphorylated on Thr308 by 
PDK1 while the mTOR complex 2 (mTORC2), activated by RTK, phosphorylates Ser473 in 
the Akt COOH-terminus. Full Akt activation requires both phosphorylation steps. Active 
Akt migrates to both the cytosol and the nucleus. Nuclear Akt may fulfill important anti-
apoptotic roles. So far, over 100 Akt substrates have been identified (Manning and Cantley, 
2007). Of these, about 40 which mediate the pleiotropic Akt functions have been 
characterized, including Bad, caspase-9, murine double minute 2 (MDM2), IĸB kinase (IKK) 
ǂ, proline-rich Akt substrate 40-kDa (PRAS40) 40, the Foxo family of Forkhead box-o 
transcription factors, apoptosis signal-regulated kinase 1 [ASK1, a negative regulator of pro-
apoptotic c-Jun N-terminal kinase (JNK)], Raf, p27Kip1, p21Cip1, glycogen synthase kinase 
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3ǃ (GSK3ǃ). Each of these substrates has a key role in the regulation of cell survival and 
proliferation, either directly or through an intermediary.  
The antiapoptotic effects of Akt occur through its phosphorylation of a wide variety of 
targets. The first antiapoptotic target identified was Bad, a member of the Bcl-2 family. 
Phosphorylation of Bad at S136 by Akt allows phosphorylated Bad to interact with 14-3-3 
proteins, promoting cell survival (Datta et al., 1997; Andreeff et al., 1999). Interaction of Bad 
with 14-3-3 proteins inhibits the ability of Bad to interact with Bcl-2 and Bcl-xL. This allows 
Bcl-xL to bind to proapoptotic Bax molecules and prevent the formation of proapoptotic Bax 
homodimers. However, Bad is also phosphorylated on different sites by members of the 
Raf/MEK/ERK (S112) and PKA (S112, S155) pathways.  
In human cells, Akt phosphorylates and inactivates caspase-9. Overexpression of Akt 
inhibits cytochrome c-induced activation of caspase-9 (Cardone et al., 1998). 
Phosphorylation of the Foxo family of transcription factors is also attributed to Akt (Biggs et 
al 1999); Brunet et al., 1999; Rena et al., 1999; Tang et al., 1999).This phosphorylation results 
in forkhead transcription factors translocation to the cytoplasm, thus inhibiting transcription 
of pro-apoptotic genes such as FasL (Brunet et al., 1999). Akt activates transcription of 
antiapoptotic genes through phosphorylation of IKK and regulation of nuclear factor-kappa 
B (NF-kB) (Ozes et al., 1999). Akt also promotes cell survival and cell cycle progression by its 
ability to phosphorylate MDM2 and GSK-3 (Fukumoto et al., 2001; Zhou et al., 2001). Once 
phosphorylated by Akt, MDM2 translocates to the nucleus and interacts with p300. p300 
dissociates from p19ARF, resulting in the degradation of p53 and cell cycle progression. Akt 
phosphorylates GSK-3, inhibiting its activity. The decreased GSK-3 activity increases 

stability ofcatenin and enhances its association with lymphoid enhancer factor/T cell factor 

(LEF/TCF) (Fukumoto et al., 2001). Thecatenin–LEF/TCF complex increases transcription 
of proteins such as cyclin D1 and c-myc, promoting cell cycle progression (Fukumoto et al., 
2001). Clearly, Akt can affect both cell cycle progression and apoptosis (reviewed in 
Steelman et al., 2004). 
MTORC1 is a critical regulator of translation initiation and ribosome biogenesis and plays 
an evolutionarily conserved role in cell growth control (Wullschleger et al., 2006). The 
enhanced sensitivity of cancer cells and mouse tumor models exhibiting oncogenic 
activation of the PI3K-Akt pathway to mTORC1 inhibitors, such as rapamycin, illustrates 
the importance of mTORC1 activation downstream of Akt (Sabatini, 2006). One of the best-
conserved functions of Akt is its role in promoting cell growth (i.e., an increase in cell mass). 
The predominant mechanism appears to be through activation of mTOR complex 1 
(mTORC1 or the mTOR-raptor complex), which is regulated by both nutrients and growth 
factor signaling. mTORC1 signaling integrates environmental clues (growth factors, 
hormones, nutrients, stressors) and information from the cell metabolic status. Thus, 
mTORC1 controls anabolic processes for promoting protein synthesis and cell growth 
(Manning and Cantley, 2007). 

Janus kinase/Signal Transducer and Activator of Transcription (JAK/STAT)  

The JAK/STAT pathway consists of three families of genes: the JAK, or Janus family of 
tyrosine kinases, the STAT (signal transducers and activators of transcription) family and 
the CIS/SOCS family, which serves to downregulate the activity of the JAK/STAT pathway 
(Silvennoinen et al., 1993; Kisseleva et al., 2002; Krebs and Hilton, 2002; Fujitani et al., 1997). 
The JAK/STAT pathway involves signaling from the cytokine receptor to the nucleus. JAKs 
are stimulated by activation of a cytokine receptor. Stimulation of JAKs results in STAT 
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transcription factor activity. JAKs are a family of large tyrosine kinases, having molecular 
weights in the range of 120–140 kDa (1130–1142 aa). Four JAKs (JAK1, JAK2, JAK3 and 
Tyk2) have been identified in mammals. JAK3 expression is limited to hematopoietic cells 
(Steelman et al., 2004). 
The STAT gene family consists of seven proteins (STAT1,STAT2, STAT3, STAT4, STAT5a, 
STAT5b and STAT6). Upregulation of STAT3 is detected with high frequency inhuman 
cancer. STAT3 is activated not only by cytokine receptors, such as the receptor for the IL-6 
family cytokines, but also growth receptor tyrosine kinases, such as the EGFR family 
including Her2/Neu, and non-receptor tyrosine kinases such as Src and Abl(Turkson et al., 
1998), and is also activated in response to stimulation of G-protein-coupled receptors 
(GPCR) (Pelletier et al., 2003). Classically, the receptor stimulation by ligand induces STAT3 
binding to phosphotyrosine residues of receptors through its SH2 domain and its 
phosphorylation on a critical tyr705 residue by the receptor itself, or by associated Janus 
kinase (JAK, Jak1–3, Tyk2) or Src family tyrosine kinases (Yu et al., 2004). 

Ras/Raf/MAPK kinase/extracellular signal-regulated kinase pathway 
(Ras/Raf/MEK/ERK) 

The Ras/Raf/MEK/ERK pathway is a central signal transduction pathway, which transmits 

signals from multiple cell surface receptors to transcription factors in the nucleus (Chang et 

al., 2003a; Chang et al., 2003b; Chang et al., 2003c). This pathway is frequently referred to as 

the MAP kinase pathway as MAPK stands for mitogen-activated protein kinase indicating 

that this pathway can be stimulated by mitogens, cytokines and growth factors. The 

pathway can be activated by Ras stimulating the membrane translocation of Raf. This 

pathway also interacts with many different signal transduction pathways including 

PI3K/Akt and JAK/STAT. 

Ras is a small GTP-binding protein, which is the common upstream molecule of several 
signaling pathways including Raf/MEK/ERK, PI3K/Akt and RalEGF/Ral (Chang et al., 
2003a; Chang et al., 2003b; Chang et al., 2003c). There are three different Ras family 
members: Ha-Ras, Ki-Ras and N-Ras. The Ras proteins show varying abilities to activate the 
Raf/MEK/ERK and PI3K/Akt cascades, as Ki-Ras has been associated with Raf/MEK/ERK 
while Ha-Ras is associated with PI3K/Akt activation. 
The Raf protein family consists of A-Raf, B-Raf and Raf-1, which are involved in the 
regulation of proliferation, differentiation and apoptosis induced after cytokine stimulation 
(Blalock et al., 1999; Mercer et al., 2003; Naumann et al., 1007, Pritchard et al., 1996; Mercer et 
al., 2002).Raf-1 has many effects on the regulation of apoptosis. Some of these effects occur 
at the mitochondrial membrane and are independent of MEK and ERK activity. It was 
observed that overexpression of activated A-Raf abrogates the cytokine dependence of 
hematopoietic cells. Overexpression of B-Raf in Rat-1 cells results in decreased apoptosis 
due to inhibition of caspase activity. Raf-1 has important roles in apoptosis as it 
phosphorylates and inactivates Bad (Wang et al., 1996). Raf-1 phosphorylates and co-
immunoprecipitates with Bcl-2, as well as regulates Bag and Bad expression, in BCR/ABL-
expressing cells (Salomoni et al., 1998). The ability of Raf proteins to phosphorylate MEK1 
varies from B-Raf, Raf-1, A-Raf. The ability of Raf to abrogate cytokine dependency is 
inversely proportional to their MEK1 activity, with A-Raf, Raf-1, B-Raf (McCubrey et al., 
1998; Hoyle et al., 2000). Stimulation of Raf activates MEK1 and ERK resulting in 
phosphorylation of transcription factors, proliferation, and inhibition of apoptosis (Steelman 
et al., 2004).  
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Raf-1 is also phosphorylated by Akt which has been associated with inhibition of Raf-1 
activity (Wojknowski et al., 1997; Rommel et al., 1999). CAMP-dependent protein kinase 
(PKA) inhibits Raf-1 (Wu et al., 1993; Schramm et al., 1994; Dumaz et al., 2002). Protein 
kinase C isoforms (a, b and g) stimulates Raf-1 activity (Sozeri t al., 1992). Raf-1 has been 
postulated to have important roles in cell cycle progression, activation of the p53 and NF-kB 
transcription factors and the prevention of apoptosis (reviewed in Steelman et al., 2004) 
Interactions between the Raf and PI3K/Akt pathways, or crosstalk, is an area of intense 
research Recently, it was demonstrated that it is more effective to inhibit the growth of Raf- 
and MEK1-transformed hematopoietic cells with inhibitors that target both the 
Raf/MEK/ERK and PI3K/Akt pathways (Navolanic et al., 2004). 

MEK 

MEK proteins are the primary downstream targets of Raf. The MEK family of genes consists 

of five genes: MEK1, MEK2, MEK3, MEK4 and MEK5. The structure of MEK consists of an 

amino-terminal negative regulatory domain and a carboxy-terminal MAP kinase-binding 

domain, which is necessary for binding and activation of ERKs (Huang et al., 1995; Tanoue 

et al., 2001; Crews et al., 1992). Deletion of the regulatory MEK1 domain results in 

constitutive MEK1 and ERK activation. Activated MEK1 could abrogate cytokine 

dependency of certain hematopoietic cells. Constitutive activity of MEK1 inhibits NF-kB 

transcription by negatively regulating p38MAPK activity (Carter et al., 2000). 

ERK 

The main physiological substrates of MEK are the members of the ERK (extracellular signal-

regulated kinase) or MAPK (mitogen activated protein kinase) family of genes. The ERK 

family consists of four distinct groups of kinases: ERK, Jun amino terminal kinases 

(JNK1/2/3), p38MAPK (p38 a/b/g/d) and ERK5. In addition, there are ERK3, ERK4, ERK6, 

ERK7 and ERK8 kinases, which while related to ERK1 and ERK2 have different modes of 

activation, and their biochemical roles are not as well characterized. Downstream targets of 

ERK include the p90Rsk kinase and the CREB, c-Myc and other transcription factors. ERK 

and p90Rsk can enter the nucleus to phosphorylate transcription factors which can lead to 

their activation (reviewed in Steelman et al., 2004). 

Nuclear factor kappa B (NFkB) 

Cilloni et al. (2007) have presented a comprehensive review on NF-kB. NF-kB proteins are a 
small group of related and evolutionarily conserved proteins which in mammals consists of 
five members: Rel (c-Rel), RelA/p65, RelB, p50, and p52 (Ghosh et al., 1998; Hayden et al., 
2004).In resting cells, NF-kB proteins arepredominantly cytoplasmic, associating with 
members of the inhibitory IkB family such as IkBa, IkBb and Ikbe (Ghosh et al., 1998).These 
interact with NF-kB through multiple ankyrin repeats and as a result inhibit its DNA 
binding activity. Two NF-kB activation pathways exist; the first is normally triggered in 
response to infections or exposure to pro-inflammatorycytokines that activate the IkB kinase 
(IKK) complex leading to phosphorylation-induced IkB degradation, the other pathway 
leads to selective activation of p52: RelB dimers. This pathway is triggered by certain 
membersof the tumor necrosis factor (TNF)cytokine family through selective activation of 
IKKa by the upstream kinase, NF-kappa B-inducing kinase (NIK).In response to many stimuli 
such as inflammatorycytokines, bacterial lipopolysaccharide, phorbol esters, viral infection or 
stress, IkB are phosphorylated on two critical serine residues (Senftleben et al., 2001).  
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Fig. 1. Signal transduction pathways (refer text for details) 

This modification triggers IkB ubiquitination and destruction via the 26Sproteasome 

degradation machinery. As a consequence, NF-kBis freed to enter the nucleus and 

regulate transcription of over 150 genes encoding cell adhesion molecules, cytokines, 

growth factors, components of the immune systems and anti-apoptotic genes such as FLIP 

(FLICE inhibitory protein), cIAPs (inhibitor of apoptosis), Bcl-2 and Bcl-xL (Aggarwall, 

2004). It is also implicated in the regulation of cell proliferation by controlling D-type 

cyclins (Takebayashi et al., 2003). 
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The three main signaling pathways are kept in check by naturally occurring inhibitors or 
tumor suppressor proteins. For example, the JAK/STAT pathway has the SOCS/CIS family 
of proteins, which serve to limit its effects by a negative feedback pathway. The 
Raf/MEK/ERK pathway can be negatively regulated by the PI3K/Akt cascade as well as 
the MKP1 phosphatase, which inactivates phosphorylated ERK. The PI3K/Akt pathway has 
the PTEN and SHIP phosphatases, which serve to fine-tune its antiapoptotic effects 
(reviewed in Steelman et al., 2004). 

4. Aberrant STP and drug resistance in AML 

Genetic events that give rise to leukemic transformation occur through activation of 
components of receptor tyrosine kinase (RTK) signaling pathways (Liu and Zhou, 2004). 
These include fusion proteins or gene mutations such as seen with activated TEL-JAK, 
STAT5A and BCR-ABL. Transforming activity of oncogenic PTK is mediated by parallel 
activation of several downstream signaling pathways. Final downstream mediators of this 
complex signaling network are phosphoproteins that translocate to the nucleus and act as 
transcriptional regulators activating a distinct group of target genes. The oncogenic activity 
of a given PTK is mediated by several signaling pathways including JAK/STAT, 
Ras/MAPK, PI3K/AKT, or NF-kB.  
Oncogenic activity severs dependence of transformed cell on external stimulation for 
survival. TEL-JAK fusion proteins contain the oligomerization domain of TEL and the 
tyrosine kinase domains of JAK1, JAK2, JAK3, or TYK2. These efficiently substitute for the 
survival and mitogenic signals controlled by IL-3, without concomitant activation of the IL-3 
receptor. STAT5 are constitutively active in TEL-JAK2- and TEL-JAK1-expressing cells 
(Lacronique et al., 2000). The BCR-ABL oncogene produces an activated tyrosine kinase 
fusion protein and gain independence from IL-3 for cell growth (Mandanas et al., 1992). 
Activated forms of Ras, Raf, MEK, PI3K and Akt however, show significant differences in 
the ability to abrogate cytokine dependence (Steelman et al., 2004). 
TEL/JAK2 isoforms, depending on the location of the breakpoints in the JAK2 gene, have 
been described in acute lymphoblastic leukemia of the B-cell type and atypical CML 
(Lacronique et al., 1997). Somatically acquired JAK2 mutation (V617F) was detected in 
472/944 (50%) of patients with Ph-negative chronic myeloproliferative disorders [including 
polycythemia vera (PV), idiopathic myelofibrosis (IMF) and essential thrombocytosis (ET)] 
with predominance in PV (66%) followed by IMF (42%) and ET (26%) (Jones et al., 2005). 
Recent investigation of novel mutations in JAK2 revealed a higher incidence, ~99% and 55% 
in PV and ET, respectively (Tefferi, 2010).  
Flt-3 mediates its proliferative and antiapoptotic effects through several signaling pathways 
including the STAT5, Ras/MAPK and PI3K/AKT pathways. Overexpression of Flt-3 was 
detected in 73% of AML and 78% of ALL patients (Nakao et al., 1996). Flt-3 length mutations 
(internal tandem duplications (ITD) in the juxtamembrane domain) (Nakao et al., 1996), is 
observed in more than 20% of adult and more than 10% of pediatric AML patients harbor an 
Flt-3-ITD (reviewed in Testa et al., 2007). In general, patients with mutant FLT3 show higher 
cell counts and decreased overall survival. Absence of the wild-type allele in patients with 
Flt-3-ITD predicted poor prognosis in 82 adult de novo AML cases with otherwise normal 
cytogenetics who received uniform high-dose therapy. Of the the 23 (28%) patients with 
Flt3-ITD, disease-free survival (DFS) was inferior (P = 0.03), yet overall survival (OS) was 
not different (P = 0.14) (Whitman et al., 2001). In cytogenetic normal AML patients aged > 60 
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years treated on Cancer and Leukemia Group B frontline trials, FLT3-ITD remained 
associated with shorter disease-free survival (P < .001; hazard ratio 2.10) and overall 
survival (P < .001; hazard Ratio 1.97) in multivariable analyses (Whitman et al., 2010). Flt3 
kinase domain point mutants is mutated in about 35% of AML (Stirewalt et al., 2003). In a 
study of 481 patients, FLT3 mutation did not have an impact on event-free survival (EFS) in 
patients with CBF-AML (P = .84) and poor-risk AML (P = .37). However, while event-free 
survival was worse in the FLT3-internal tandem duplication (ITD) group (20 weeks vs 41 
weeks; P < .00,001) this was not observed for the FLT3-tyrosine kinase domain (TKD) point 
mutation group (61 weeks vs 41 weeks; P = .15) (Santos et al., 2011).  
The profiles of signal transduction that correlated with poor response to chemotherapy 
showed potentiated STAT5 and STAT3 phosphorylations as well as attenuated STAT1 
phosphorylation following cytokine stimulation (Irish et al., 2004) 
Ras mutations are frequently observed in certain hematopoietic malignancies including 
myelodysplastic syndromes, juvenile myelomonocytic leukemia and acute myeloid 
leukemia (Bartram et al., 1988; Flotho et al., 1999; Stirewalt et al., 2001). lt has been shown to 
activate both the Raf/MEK/ERK and the PI3K/Akt pathways. Thus, mutations at Ras 
should theoretically activate both pathways simultaneously. Consequence of this activation 
may be the increased expression of growth factors that can potentially further activate this 
cascade by an autocrine loop. Many cytokine and growth factor gene promoters contain 
binding sites for transcription factors (Ets, Elk, Jun, Fos, CREB) whose activities are often 
activated by the Raf/MEK/ERK cascade (reviewed in Steelman et al., 2004). 
There is increasing evidence that activation of the PI3K/AKT signaling pathway leading to 
downstream inactivation of Foxo transcription factors, activation of the mammalian target of 
rapamycin (mTOR), or induction of Skp2 (leading to degradation of the cell cycle inhibitor 
p27), plays a central role in transformation by several mutated PTK such as BCR/ABL, 
mutated FLT3 or KIT (Scheijen et al., 2004; Andreu et al., 2005). Emerging evidence suggests 
that activation of NF-kB involves crosstalk between the PI3K and Ras/MAPK pathways 
(Gelfanov et al., 2001; Kirchner et al., 2003). Several NF-kB target genes, such as 
cIAP1/cIAP2, Bcl-xL, or Mcl-1, are well-known inhibitors of apoptosis that may co-mediate 
the antiapoptotic effect of a constitutively activated PTK (Aichberger et al., 2005).  
Expression of transcription factor fusions like AML1/ETO and PML/RARa in leukemic cells 
leads to induction of several genes associated with WNT signaling (Muller-Tidow et al., 
2004). WNT signaling activation was found in a significant fraction of leukemic blasts from 
patients with AML-M0 (Zheng et al., 2004). 
Other causes of PI3K/Akt/mTOR activation in AML may be the result of several factors, 
including low levels of PP2A, autocrine/paracrine secretion of growth factors such as IGF-1 
and VEGF (reviewed in Martelli et al., 2010). Interactions between leukemic cells and bone 
marrow stromal cells through CXCR4 (a GPCR) which is abundantly expressed on leukemic 
cell surface where it is up-regulated by hypoxic conditions and its physiological ligand, 
(Fierro et al., 2009; Fiegl et al., 2009) CXCL12, produced by stromal cells, (Fiegl et al., 2009; 
Ayala et al., 2009) could result in PI3K/Akt/mTOR activation (Zeng et al., 2009). 
Furthermore, interactions between ǃ1 integrins on AML cells and stromal fibronectin could 
lead to pathway activation, (Matsunaga et al., 2003; Matsunaga et al., 2008) possibly through 
up-regulation of integrin-linked kinase 1 (ILK1) which is involved in Akt phosphorylation 
on Ser473 in a PI3K-dependent manner in AML cells (Tabe et al., 2007). 
PI3K/Akt/ mTOR pathway influences proliferation, survival, and drug resistance of AML 
cells.  

www.intechopen.com



 
Role of Signaling Pathways in Acute Myeloid Leukemia 

 

439 

From 50% to 80% of patients with AML display Akt phosphorylated on either Thr308 or 

Ser473 (or both) (Xu et al., 2003; Min et al., 2003). Univariate analysis of 146 AML patients 

revealed those with low levels of pAKT had somewhat better CR rates (60% versus 50%; 

P=0.21), longer median CR durations (71 versus 32 weeks; P=0.13), and statistically 

significant longer median survival times (59 versus 30 weeks; P=0.02) compared with those 

with high levels of pAKT. In another study, single analysis of Akt phosphorylated at 

threonine 308 (Thr308) and serine 473 (Ser473) showed AktThr308(high) patients had 

significantly shorter overall survival (11 vs 47 months; P=0.01), event-free survival (9 vs 26 

months; P=0.005) and relapse-free survival (10 months vs not reached; P=0.02) than 

Thr308(low) patients. This was not observed for Akt Ser473 (Gallay et al., 2009). Poor 

prognosis of AML patients with elevated PI3K/Akt/mTOR signaling could be also related 

to the fact that this pathway controls the expression of the membrane ATP binding cassette 

(ABC) transporter, multidrug resistance-associated protein 1, associated with a lower 

survival rate (Tazzari et al., 2007; Schaich et al., 2005). Nevertheless, a more recent report has 

highlighted that constitutive activation of PI3K/Akt/mTOR signaling could be a favourable 

prognostic factor in de novo cases of AML. One hypothesis for the lower relapse rate in 

patients with enhanced PI3K/Akt/mTOR signaling is that it could drive immature leukemic 

cells (LSCs and CFU-L) into S phase, thus rendering them more susceptible to 

polychemotherapy (Tamburini et al., 2005) 

The AKT pathway was among the signaling cascades whose simultaneous activation with 

other pathways, such as PKCǂ and ERK, was found to confer a poor prognosis in AML 

(Altman et al., 2011). Eventhough often mutated in human cancer, MMAC1/PTEN gene are 

infrequent as genetic aberrations in myeloid leukaemia (Aggerholm et al., 2000) 

NF-kB has been found to be activated in CD34+/CD38– blast cells derived from patients 

with de novo AML (Guzman et al., 2001; Baumgartner et al., 2002). Leukemic stem cells 

residing in this population are quiescent or slowly cycling and therefore less sensitive to 

chemotherapy. They are therefore likely to be responsible for disease relapse and represent 

the target for future innovative therapies (Bonnett et al.,1997; Lowenberg et al., 1999; Jordan, 

2002). Activation of NF-kB in leukemia patients has been well documented though NF-kB 

activation is not uniform among AML patients. Forty percent of AML patients evaluated 

presented with increased NF-kB DNA binding activity. These patients are characterized by 

increased white cell counts at diagnosis and increased blast percentages in the bone marrow 

suggesting a link between NF-kB and cell proliferation. In particular, cyclin D1, whose 

expression is regulated by NF-kB. Alternatively, NF-kB action could be due to the induction 

of genes coding for AML growth factors such as GM-CSF or granulocyte colony-stimulating 

factor (G-CSF) (Cilloni et al., 2007). 

The majority of LSCs are quiescent and insensitive to traditional chemotherapeutic drugs. 

This latter feature explains, at least in part, the difficulties in eradicating this cell population 

by conventional polychemotherapy. Thus, novel therapeutic strategies for AML eradication 

should also target LSCs (Misaghian et al., 2009). In AML, aberrant activation of several 

signal transduction pathways strongly enhances the proliferation and survival of both LSCs 

and CFU-Ls (McCubrey et al., 2008; Steelman et al., 2008). Therefore, these signaling 

networks are attractive targets for the development of innovative therapeutic strategies in 

AML (Scholl et al., 2008). 
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5. Conclusion 

Expression of STP proteins is heterogenous and of prognostic value in AML (Kornblau et al., 
2009). These signaling pathways in AML may in the future help rationally select targeted 
therapies in individual patients (Foran, 2010). While current classification schemes have 
prognostic relevance they generally do not alter therapeutic recommendations. As 
knowledge of mutated genes in cancersim proves, our ability to treat patients afflicted with 
certain diseases will increase substantially. The genetic mutation may affect multiple signal 
transduction pathways. Targeting multiple pathways may be more efficacious as this 
approach may suppress or eliminate tumor growth at lower concentrations of the drugs 
than that required to inhibit growth by targeting a single pathway (Steelmanet al., 2004). 
The heterogeneity in AML continues to elude the best methods to characterize them. 
Genome and proteome-wide analysis has further revealed complexity in the makeup of the 
leukemic cell. The rapid advancement in targeted therapies implied the urgent need for 
alternative therapy and the readiness of the community to embrace it. Nevertheless so far, 
combinatorial medicine still holds out as the best option for successful treatment. If targeted 
therapies remain the way forward it will eventually bank deeply on the ability to identify 
molecular signatures in the individual leading to the establishment of personalized 
medicine. 
Novel array technologies enabled the analysis of numerous features at the level of DNA for 
gene copy number variation, mutations, methylation in addition to mRNA transcription and 
regulatory microRNA. Emerging technologies to assess protein expression and 
phosphorylation levels within cells e.g. cytokine and chemokine arrays to assess external 
forces acting on leukemic cells and phosphoproteins in apoptosis, cell-cycle, and signal-
transduction pathways, are highly needed. Protein expression and posttranslational 
modifications, either alone or in concert with other profiling approaches, could provide 
independent or complementary information not captured by transcriptional profiles. Protein 
signature groups, with prognostic information distinct from cytogenetics may reveal 
underlying similarities indistinguishable by cytogenetics (Kornblau et al., 2009). 
Quantitative flow cytometry appears well suited for identifying predictive markers in AML 
patients because it offers obvious advantages over other techniques (western blot, for 
example), including rapidness, a much lower number of cells required to perform the assay, 
and the possibility of identifying different subclones in the leukemic population by 
coimmunostaining with multiple antibodies to surface antigens (Martelli et al., 2010). The 
mechanisms in leukemogenesis, drug resistance and relapse remain an area of much 
research. From cell biology to cytogenetics to molecular defects to signaling pathways, all 
have contributed to a better understanding of the cancer. New knowledge in epigenetics 
and microRNA remain to be elucidated. 
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