
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



23 
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1. Introduction  

1.1 Global incidence of breast cancer 

Worldwide, breast cancer remains a leading cause of death amongst women. Annually, it is 
estimated that breast cancer is diagnosed in over a million women (Kasler et al., 2009) with 
over 450,000 deaths worldwide (Tirona et al., 2010). The incidence of the disease is highest in 
economically-developed countries, with lower rates in developing countries. Despite 
continual advances in breast cancer care which have led to reduced mortality, however, the 
incidence of the disease is still rising. The decrease in breast cancer-specific mortality has 
been attributed to improvements in screening techniques which permit earlier detection, 
surgical and radiotherapy interventions, better understanding of disease pathogenesis and 
utilization of traditional chemotherapies in a more efficacious manner. Consequently, early 
stage breast cancer is now a curable disease while advanced breast cancer remains a 
significant clinical problem. 
Breast cancer is a heterogeneous disease encompassing many subtypes, which differ both in 
terms of their molecular backgrounds and clinical prognosis. These breast cancer subtypes 
range from pre-invasive early stage disease to advanced invasive disease. The simplest 
classifications of disease subdivide breast cancer into pre-invasive and invasive forms; with 
the pre-invasive forms being ductal carcinoma in situ (DCIS) and lobular carcinoma in situ 
(LCIS). Carcinoma in situ is proliferation of cancer cells within the epithelial tissue without 
invasion of the surrounding stromal tissue (Bland & Copeland, 1998). DCIS arises in the 
terminal ductal lobular units (TDLU) and in extra-lobular ducts while LCIS occurs in the 
breast lobules, and is recognisable histopathologically by the presence of populations of 
aberrant cells with small nuclei (Hanby & Hughes, 2008). Invasive breast cancers are sub-
classified into invasive ductal breast cancer, invasive lobular breast cancer, inflammatory 
breast cancer and Paget's disease. Invasive ductal carcinoma (IDC) is the most common form 
of invasive breast cancer, accounting for around 85% of all cases. 
DCIS is frequently considered as an obligate precursor to IDC, progressing from lower to 
higher grades and then onto invasive cancer with progressive accumulation of genomic 
changes (Farabegoli et al., 2002). However it has alternately been suggested that there exist 
genetically-distinct subgroups of DCIS, only some of which have the potential to progress to 
invasion (Shackney & Silverman, 2003). Long-term natural history studies of DCIS have 
provided supportive evidence for both possibilities (Page et al., 1995; Collins et al., 2005; 
Sanders et al., 2005). Despite such controversies, the large extent to which the genome is 
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altered in DCIS strongly suggests that genomic instability precedes phenotypic evidence of 
invasion (Hwang et al., 2004). This serves to underline the fact that malignant transformation 
in a heterogeneous disease like breast cancer is a dynamic process evolving through 
multiple multi-step pathway models. 
Many factors are thought to be responsible for the development of breast cancer. Genetic 
factors play a vital role in the predisposition to breast cancer, with mutations of BRCA1 
and BRCA2 genes accounting for 5–10% of breast cancer cases and being responsible for 
80% of inherited breast cancers (Nathanson et al., 2001). On a more complex level, much 
insight has been gained from the genetic profiling of thousands of tumours to generate 
gene signatures of prognostic value (Sorlie et al., 2001; van 't Veer et al., 2002; van de 
Vijver et al., 2002), which have spurred the development of commercially-available 
diagnostic tests. The importance of reproductive factors in the aetiology of breast cancer is 
also well recognised with early onset of menarche, nulliparity, late menopause, 
endogenous and exogenous hormones representing the main risk factors (Reeves et al., 
2000; Key et al., 2001; Howell & Evans, 2011). Several other studies have reported an 
increased risk of breast cancer with lack of physical activity (especially in pre menopausal 
women), as well as increasing age and obesity (Clarke et al., 2006; Walker & Martin, 2007; 
Harrison et al., 2009; Rod et al., 2009; Awatef et al., 2011). These risk factors accentuate the 
abnormal growth control of cells by increasing the circulating levels of oestrogen thereby 
promoting tumourigenesis within the breast microenvironment. A proper understanding 
of the breast cancer microenvironment is essential for understanding breast cancer, and 
will be explored in detail in the next sections.  

1.2 Breast structure and breast cancer microenvironment  

The breasts are modified sweat glands with a specialized function to produce milk. In the 

adult, the mature breast extends from the second ribs to the seventh rib and from the 

lateral border of the sternum to the midaxillary line and projects into the axilla at the 

axillary tail of Spence (Monkhouse, 2007). The breast is located within the superficial 

fascia of the anterior thoracic wall and is made up of 15-20 lobes of glandular tissue 

(Bland & Copeland, 1998). Fibrous connective tissue forms the framework that supports 

the lobes and adipose tissue which fills the space between the lobes. Each lobe of the 

mammary gland terminates in a lactiferous duct which opens onto the nipple and is lined 

with breast epithelial tissue. These ducts have a sinus at the base beneath the areola called 

the lactiferous sinus (Figure 1). 

Breast cancers are characterised by abnormal proliferation of breast epithelial cells and 
mostly originate in milk ducts (Sainsbury et al., 2000). Normal milk ducts consist of an outer 
myoepithelial cell layer and an inner luminal epithelial layer. Myoepithelial cells, which are 
of ectodermal origin, lie between the surface epithelial cells and the basal lamina. Both the 
epithelial and myoepithelial cells of the breast duct lie on a basement membrane composed 
of extracellular matrix factors secreted by those cells (Figure 2). The basement membrane is 
important for defining the barriers of the normal duct, and thus alterations in the basement 
membrane have been implicated in abnormal cell differentiation and the formation of 
metastases (Kleinman et al., 2001).  
Proliferation of cells within the breast ducts is controlled by growth-promoting proto-

oncogenes and growth-inhibiting tumour suppressor genes. In most cases, normal cells 

divide as many times as needed and then stop. Carcinogenic mutations in either (or both) 
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oncogenes and tumour suppressor genes (along with subsequent interactions between 

defective genes and the breast microenvironment) alter not just cell proliferation, but also 

differentiation, survival and genome stability (Hahn & Weinberg, 2002) of breast cells, 

leading to abnormal cell growth and potentially cancer. 

Much evidence supports the contention that the pathogenesis of breast cancer is influenced 
by complex interactions between ductal epithelial cells and the cells that compose the 
tumour microenvironment (Weaver et al., 1996; Polyak & Hu, 2005; Hu et al., 2008). The next 
section will focus on the cells of the microenvironment with respect to normal breast tissue 
structure and also their possible involvement in breast tumourigenesis.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 1. Structure of the breast showing lobules and lactiferous ducts terminating at the nipple 
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Fig. 2. Diagram of a normal breast duct depicting cells of the microenvironment.  

1.2.1 Cells of the breast microenvironment 

The abnormal epithelial cells composing a breast carcinoma form only one component of a 

complex microenvironment which influences the success or failure of a developing tumour. 

In fact the breast tumour microenvironment consists also of multiple cell types; including 

myoepithelial cells, fibroblasts, endothelial cells and immune cells such as macrophages 

(Figure 2). In terms of their likely contributions to breast tumourigenesis, fibroblasts and 

macrophages are often considered as tumour promoters through downstream signalling 

from various secreted factors, while the endothelial cells which develop in tumour-

associated blood vessels also support cancer development. In contrast, myoepithelial cells 

exert functions broadly considered as tumour-suppressive. 

Fibroblasts are an important structural component of the extracellular environment in the 

normal breast, where they help control the development of the breast epithelium (McCave et 

al. 2010). Their secretion of extracellular matrix components and cytokines has also 

implicated them in tumorigenic growth associated with invasive breast cancer (Orimo et al., 

2005), and differences in cellular responsiveness to normal versus tumour-derived 

fibroblasts have been noted (Sadlonova et al., 2005). Many studies have highlighted the 
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potential involvement of fibroblasts in promoting tumour progression both at genomic and 

transcriptomic levels, with reports of altered genetic signatures between normal and 

tumour-associated fibroblasts supporting a complex role for fibroblasts in influencing 

tumour progression (Hu et al., 2005; Hu et al., 2008; Ma et al., 2009). 

Macrophages within the breast cancer microenvironment have been shown to enhance 
tumour growth through the secretion of pro-angiogenic factors like vascular endothelial 
growth factor (VEGF); (Murdoch et al., 2004; Lamagna et al., 2005 ; Lewis & Hughes, 2007). 
They have also been implicated in promoting a metastatic phenotype, via the secretion of 
pro-migratory factors such as EGF (Wyckoff et al., 2004) which enhance cellular 
dissemination from a primary tumour. Accordingly, the enhanced physical juxtaposition of 
macrophages, tumour cells and endothelial cells has been proposed as a new prognostic 
histopathological marker associated with increased risk of metastases in human breast 
cancer (Robinson et al., 2009).  
Endothelial cells which line the blood vessels are derived from angioblasts forming the 
vascular network. Enhanced vessel density occurring as a result of tumour-associated 
angiogenesis is a major contributor to both the survival of primary breast tumours (via the 
delivery of systemic growth factors) and the risk of metastasis (via increased access of 
disseminated tumour cells to a circulatory source). Expression of pro-angiogenic factors 
such as VEGF has been shown to increase in haematological malignancies (Fiedler et al., 
1997; Molica et al., 1999) in addition to solid tumours including breast, renal, ovarian, gastric 
and lung cancer (Patel et al., 2009; Burger, 2011; Gou et al., 2011; Sharma et al., 2011). VEGF 
promotes neovascularisation via mitogenic and pro-migratory effects on endothelial cells 
(Asahara et al., 1999).  
Finally, myoepithelial cells are known to play a role in the formation of the basement 
membrane and thereby assist in maintaining polarity of the breast ductal epithelium. They 
also interact with epithelial cells to regulate the cell cycle and suppress breast cancer cell 
growth, invasion and angiogenesis (Weaver et al., 1996; Alpaugh et al., 2000; Barsky, 2003). 
Tumour and non-tumour primary myoepithelial cells have been described to differ in 
functional properties relating to the secretion of extracellular matrix components such as 
laminin-1 (Gudjonsson et al., 2002), and accordingly myoepithelial cells reportedly lose their 
established tumour-suppressive properties during tumour progression (Polyak & Hu, 2005). 
Taken together, the many cell types within the breast tumour microenvironment can both 
individually and coordinately regulate several functions relevant to tumour progression. In 
order to better understand their relative contributions to breast cancer, it is necessary to 
dissect the signals that regulate their own functions. Since adhesive functions are central to 
the behaviour of all of these cell types, the remainder of this chapter will focus on their 
potential regulation by a family of adhesion proteins termed the Junction Adhesion 
Molecules (JAMs), whose role in breast cancer initiation and progression is just emerging. 

2. Cell-cell adhesion and the functional roles of JAMs in epithelial/endothelial 
cells 

2.1 Introduction to cell-cell adhesion complexes and JAMs 

Cells within the breast tumour microenvironment physically interact with each other and 
with the extracellular matrix through a range of cell adhesion proteins. Cell adhesion 
proteins play fundamental roles in normal physiology (such as the control of cell polarity 
and epithelial barrier function), but their dysregulation has been shown to participate in 
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tumour cell migration, invasion and adhesion (for review, see Brennan et al.,2010). Adhesion 
proteins rarely exist in isolation from each other on the cell membrane, rather they form 
components of multi-cellular adhesion complexes containing a network of adhesion, 
scaffolding and signalling proteins. Breast epithelial cells express various types of adhesion 
complexes, namely hemidesmosomes and focal adhesions at the cell-matrix interface, with 
tight junctions, adherens junctions, desmosomes and gap junctions at the cell-cell interface. 
Collectively, adhesion complexes are composed of integral membrane proteins and 
cytoplasmic scaffolding proteins that organise signalling complexes and anchor cell-cell 
contacts to intermediate filaments (at desmosomes and hemidesmosomes) or to actin 
filaments (at adherens junctions, tight junctions and focal adhesions).  
Tight junctions (TJs) play a vital role in regulating the paracellular flux of ions, small 

molecules and inflammatory cells as well as defining distinctly-polarized membrane 

domains and facilitating bi-directional signalling between the intracellular and extracellular 

compartments. These functions of the TJ are regulated by the balance of three different types 

of integral membrane proteins; (1) Occludins and Tricellulin, (2) Claudins and (3) 

Immunoglobulin Superfamily (IgSF) members. Of most interest in this chapter is the 

Junctional Adhesion Molecule (JAM) subfamily of the IgSF, and its potential contribution to 

cancer initiation and progression. 

The JAM family consists of 5 proteins (JAM-A, -B, -C, -4, -L) which are major components of 

TJs in endothelial and epithelial cells in a variety of vertebrate and invertebrate tissues 

(Martin-Padura et al., 1998; Liang et al., 2000; Liu et al., 2000; Arrate et al., 2001; Aurrand-

Lions et al., 2001; Itoh et al., 2001; Hirabayashi et al., 2003; Tajima et al., 2003). JAM proteins 

are also expressed on the surface of haematopoetic cells such as platelets, neutrophils, 

monocytes, lymphocytes, leukocytes and erythrocytes; in addition to connective tissue cells 

such as fibroblasts and smooth muscle cells (Azari et al., 2010; Kornecki et al., 1990; Naik et 

al., 1995; Malergue et al., 1998; Williams et al., 1999; Cunningham et al., 2000; Palmeri et al., 

2000; Arrate et al., 2001; Aurrand-Lions et al., 2001; Moog-Lutz et al., 2003; Morris et al., 2006). 

JAMs are type I transmembrane proteins consisting of an N-terminal signal peptide, an 

extracellular domain (consisting of two immunoglobulin-like domains), a single membrane-

spanning domain and a short cytoplasmic tail (Martin-Padura et al., 1998; Liu et al., 2000; 

Sobocka et al., 2000; Aurrand-Lions et al., 2001; Naik et al., 2001; Santoso et al., 2002). The 

cytoplasmic tail is thought to play a major role in the assembly of adhesion signalling 

complexes, since it has been reported to bind to PDZ domain-containing scaffold proteins 

such as ZO-1 (Bazzoni et al., 2000; Ebnet et al., 2000), AF-6 (Ebnet et al., 2000) and MUPP1 

(Hamazaki et al., 2002).  

JAMs -A, -B and -C exhibit a short cytoplasmic tail of 45–50 residues that ends with a type II 

PDZ binding motif, while JAM-4 and JAM-L have longer cytoplasmic tails (of 105 and 98 

residues respectively). JAM-4 and JAM-L differ in that the cytoplasmic tail of the former 

ends in a canonical type I PDZ binding motif, while that of the latter lacks a PDZ-binding 

motif (Mandell & Parkos, 2005). The cytoplasmic tails of JAM proteins also contain 

consensus phosphorylation sites that may serve as substrates for protein kinase C, protein 

kinase A and Casein Kinase II (Naik et al., 1995; Cunningham et al., 2000; Ozaki et al., 2000; 

Sobocka et al., 2000; Arrate et al., 2001; Naik et al., 2001). Indeed, evidence suggests that 

specific phosphorylation sites may be critical for targeting of JAMs to intercellular junctions 

(Ozaki et al., 2000; Ebnet et al., 2003).  
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JAM proteins have been implicated in a diverse array of physiological functions involving 

cell–cell adhesion/barrier function (Liang et al., 2000; Liu et al., 2000; Mandell et al., 2004), 

leukocyte migration (Martin-Padura et al., 1998; Palmeri et al., 2000; Johnson-Leger et al., 

2002; Ostermann et al., 2002), platelet activation (Kornecki et al., 1990; Naik et al., 1995; Gupta 

et al., 2000; Ozaki et al., 2000; Sobocka et al., 2000; Naik et al., 2001; Babinska et al., 2002; 

Babinska et al., 2002) and angiogenesis (Naik et al., 2003; Naik et al., 2003). These functions 

will be further discussed in the next sections. 

2.2 JAM proteins regulate epithelial/endothelial cell–cell adhesion and barrier function 

JAM proteins are well-known to be important for cell-cell adhesion in both epithelial and 
endothelial cells (for review see Mandell & Parkos, 2005), but emerging evidence supports 
the possibility that they also regulate cell-matrix adhesion complexes. Interestingly, JAM-A 
knockdown in endothelial cells and MCF7 breast cancer cells has been shown to reduce 
adhesion to fibronectin and vitronectin (McSherry et al., 2011; Naik & Naik, 2006), while 
JAM-C overexpression in endothelial cells reportedly decreases attachment to fibronectin, 
vitronectin, and laminin (Li et al., 2009). This apparent incongruity may relate to the fact that 
JAM-A may activate ǃ1 integrins (McSherry et al., 2011), while JAM-C has conversely been 
described to inactivate ǃ1 integrins (Li et al., 2009). An inverse relationship between JAMs –
A and –C has also been observed in terms of tight junction function, with JAM-A promoting 
tight junction sealing while phosphorylated JAM-C increases paracellular leakiness due to 
its redistribution away from TJs (Li et al., 2009). Furthermore, adhesion of the lung 
carcinoma cell line NCI-H522 to endothelial cells was significantly blocked by soluble JAM-
C (Santoso et al., 2005). 
The contribution of JAM proteins to cell-cell adhesion and the assembly of 

epithelial/endothelial TJs relates to their ability to promote the localization of ZO-1, AF-6, 

CASK and occludin at points of cell-cell contact. Evidence suggests that both homophilic 

and heterophilic interactions, as well as an intact PDZ binding motif, are important for such 

protein functions of JAMs. Accordingly, JAMs have been shown to physically interact with 

the PDZ proteins, ZO-1 (Bazzoni et al., 2000; Ebnet et al., 2000), AF-6 (Ebnet et al., 2000), 

CASK (Martinez-Estrada et al., 2001), PAR-3 (Ebnet et al., 2001; Itoh et al., 2001) and MUPP-1 

(Hamazaki et al., 2002); which are involved in actin cytoskeletal rearrangement (Fanning et 

al., 2002), cell signalling (McSherry et al., 2011; Boettner et al., 2000) and the control of cell 

polarity. However JAMs can also bind to non-PDZ proteins such as cingulin (Bazzoni et al., 

2000), and indirectly bind occludin (Bazzoni et al., 2000) and claudin 1 via their interactions 

with ZO-1 (Hamazaki et al., 2002). Although the manner in which JAMs interact with some 

of these proteins is incompletely understood, it appears that homo-dimerisation of JAM 

proteins is important for regulating some key downstream functions. This has been 

illustrated by the fact that dimerisation-blocking anti-JAM-A antibodies (Liu et al., 2000) and 

soluble Fc–JAM-A (Liang et al., 2000) delay the recovery of electrical resistance (a marker of 

TJ function) in epithelial cells following transient depletion of extracellular calcium.  

2.3 JAM proteins regulate epithelial/endothelial migration 

In general cell adhesion and cell migration are inversely related, and serve to control 
important physiological functions and pathophysiological events. However, in the case of JAM 
family members, close functional associations with cell polarity proteins may act as a switch 
between increased adhesion (predisposing to slow, directional migration) and decreased 
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adhesion (predisposing to faster, more random motility). For example, JAM-A re-expression in 
JAM-A-/- mouse endothelial cells has been shown to reduce the occurrence of spontaneous 
and random motility. This ability of JAM-A to influence the polarised movement of cells was 
reliant on its interaction with polarity proteins through its PDZ binding motif (Bazzoni & 
Dejana, 2004). JAM-A deletion mutants lacking their PDZ-binding residues have been shown 
to have increased availability of Par3 (Ebnet et al., 2001), resulting in PKCζ inactivation and the 
loss of contact-dependent inhibition of cell motility (Mishima et al., 2002; Bazzoni & Dejana, 
2004). These data show that loss of functional JAM-A results in faster random motility with 
reduced cell-cell contact inhibition of migration. Interestingly, JAM-C redistribution away 
from TJs stimulates ǃ1 and ǃ3 integrin activation, resulting in increased cell migration and 
adhesion (Aurrand-Lions et al., 2001). Furthermore, JAM-A and JAM-4 have been found to 
induce the formation of actin-based membrane protrusions, an essential part of cell migration, 
in endothelial and COS-7 cells (Mori et al., 2004). Together these data suggest loss of JAM-A 
promotes random motility, while JAM-A, JAM-C and JAM-4 promote directional cell 
migration through their effects on integrin function and cytoskeletal reorganization. 
In the context of cancer, knockdown of JAM-A has been shown to enhance invasiveness of 

the breast cancer cell lines MDA-MB-231 and T47D, and the renal cancer cell line RCC4 

(Naik et al., 2008; Gutwein et al., 2009). Conversely, the overexpression of JAM-A in MDA-

MB-231 cells reportedly inhibits both migration and invasion through collagen gels (Naik et 

al., 2008), suggesting that loss of JAM-A expression increases cancer cell dissemination and 

invasion. However, the specific contribution of JAM-A to breast cancer progression remains 

controversial. McSherry et al showed a significant association between high JAM-A gene or 

protein expression and poor survival in 2 large cohorts of patients with invasive breast 

cancer, and concurrently a decrease in the migratory abilities of high JAM-A-expressing 

MCF-7 cells upon knockdown or functional inhibition of JAM-A (McSherry et al., 2009). 

Reduced motility after JAM-A loss was subsequently linked to reduced interactions between 

JAM-A, AF-6 and the Rap1 activator PDZ-GEF2, resulting in reduced activity of Rap1 

GTPase (McSherry et al., 2011), a known activator of ǃ1-integrins (Sebzda et al., 2002) and a 

regulator of breast tumourigenesis (Itoh et al., 2007). Complementary evidence in a recent 

publication by Gotte et al. has also supported the theory that JAM-A overexpression is of 

more functional relevance in breast cancer than JAM-A loss, since over-expression of micro 

RNA (miR)-145 in breast cancer cells led to a decrease in cellular migration and invasion via 

downregulation of JAM-A expression (Gotte et al., 2010). Still more recently (during the 

proofing stage of this chapter), additional histopathological evidence has been provided for 

a link between JAM-A over-expression and poor prognosis in breast cancer patients 

(Murakami et al., 2011). This, along with the finding that JAM-A promotes the survival of 

mammary cancer cells (Murakami et al., 2011), strongly suggests that JAM-A depletion or 

antagonism could offer promise in reducing breast tumour progression. Furthermore, 

depletion of JAM-A has been found to inhibit bFGF-induced migration of human umbilical 

vein endothelial cells (HUVEC) on vitronectin, through effects on integrin function (Naik & 

Naik, 2006). In other cell systems, silencing of the JAM-A gene has been shown to block the 

migration of inflamed smooth muscle cells (Azari et al., 2010) and to increase the random 

motility of dendritic cells (Cera et al., 2004). JAM-A has also been shown to be required for 

neutrophil directional motility (Corada et al., 2005), and to promote neutrophil chemotaxis 

by controlling integrin internalization and recycling (Cera et al., 2009). Thus while the area 

remains controversial, increasing evidence is suggesting that JAMs promote migration and 
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invasion through the regulation of integrin expression and activation (McSherry et al., 2011; 

Naik & Naik, 2006; Li et al., 2009; McSherry et al., 2009).  

In breast cancer, the formation of metastases at distant sites is the leading cause of cancer-

related death. In order for breast cancer cells to metastasize, they must first migrate out of 

the primary tumour before ever reaching a distant organ and potentially proliferating into a 

secondary tumour. While JAMs are already known to regulate migration, the possibility that 

they are also involved in the regulation of proliferation will be referred to in section 3.3 of 

this chapter. 

All together these data highlight the role of JAM family members in controlling the balance 
between cell adhesion and migration. Although much remains to be understood about the 
exact role of JAMs in breast cancer cell migration, the classic description of tumours as 
“wounds which do not heal” (Riss et al., 2006) suggests that the migratory mechanisms 
employed by JAMs in physiological responses (such as wound healing) may also be utilised 
by cancer cells to promote tumour progression or survival. 

2.4 Potential role of JAM proteins in epithelial/endothelial differentiation 

In previous sections we discussed the biphasic role of JAM family members in regulating 

cell adhesion and migration. In this section we will outline the emerging contribution of the 

JAM family to cellular differentiation. Cell differentiation in the context of normal tissue 

usually involves the transition from an undifferentiated stem/progenitor cell to a 

terminally-differentiated cell such as an epithelial, muscle or nerve cell. 

JAM-A, JAM-B, JAM-C and JAM-4 have been found to be highly expressed on 
hematopoietic stem cells (HSCs) in the bone marrow, with their expression decreasing 
during the acquisition of a more differentiated state (Nagamatsu et al., 2006; Sakaguchi et 
al., 2006; Sugano et al., 2008; Praetor et al., 2009). Furthermore JAM-A expression has been 
reported to be high on undifferentiated HC11 mammary epithelial cells relative to 
differentiated cells (Perotti et al., 2009). In support of a potential association between high 
JAM-A and poor differentiation status, high JAM-A gene or protein expression has been 
associated with a poorer grade of differentiation in tissues from patients with invasive 
breast cancer (McSherry et al., 2009). Conversely, JAM-A has been found to mediate the 
differentiation of CD34+ progenitor cells to endothelial progenitor cells and to facilitate 
CD34+ cell-induced re-endothelialization in vitro (Stellos et al., 2010). This suggests that 
JAM-A is required for circulating CD34+ progenitor cells to recognise a site of injury, 
differentiate into endothelial cells and proliferate to repair the injured endothelium. In 
addition, JAM-A is reportedly upregulated during the differentiation of pancreatic AR42J 
cells (Yoshikumi et al., 2008), while JAM-A mRNA and protein levels have been shown to 
be increased during differentiation of human monocytic cell THP-1 into mature dendritic 
cells (Ogasawara et al., 2009). JAM-L is also induced during differentiation of myeloid 
leukaemia cells, with expression of JAM-L in myeloid leukaemia cells resulting in 
enhanced cell adhesion to endothelial cells (Moog-Lutz et al., 2003). This upregulation of 
JAM-A during differentiation is reportedly followed by increased expression of the 
polarity proteins par3 and PKCλ (Yoshikumi et al., 2008), which have been previously 
shown to affect cell polarity and migration. While these data suggest conflicting roles for 
JAMs in stem cell populations versus their role in differentiation, at this early stage the 
exact role(s) of JAMs in stem cell renewal or differentiation can only be speculated upon. 
Fundamentally, it is also unknown whether the expression of JAMs is actively required or 
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passively upregulated in stem cell populations. However, based on the increased 
expression of JAM-A in poorly-differentiated breast cancers (McSherry et al., 2009) and the 
emerging role of JAM-A in regulating proliferation and apoptosis (Azari et al., 2010; Nava 
et al., 2011; Naik et al., 2003; Murakami et al., 2011), it will be interesting to determine if 
JAM-A is upregulated on cancer stem cell populations and whether its expression 
promotes self-renewal. 

3. Functional regulation of cells in the breast cancer microenvironment by 
JAMs 

3.1 JAM proteins regulate endothelial angiogenesis 

As already alluded to, JAM proteins are highly expressed on endothelial cells and have been 
crucially implicated in the control of barrier function and cell motility. In the context of 
cancer, however, endothelial cells assume a new importance via the development of 
neovascularisation sites to support growing tumours (Hanahan & Folkman, 1996). This 
section will review the evidence currently linking JAM proteins to angiogenesis as a 
contributory mechanism to cancer progression. 
Angiogenesis in response to enhanced growth factor signalling is of particular relevance in 
tumour microenvironments. A body of work from Naik et al has convincingly shown an 
important role for JAM-A in angiogenesis induced by basic fibroblast growth factor (bFGF). 
Specifically, bFGF signalling facilitates the disassembly of an inhibitory complex between 
JAM-A and ǂvǃ3 integrin, permitting JAM-A-dependent activation of MAP kinase which 
leads to endothelial tube formation, a surrogate for angiogenesis (Naik et al., 2003). JAM-A 
has also been shown to activate extracellular signal-related kinase (ERK) signalling in 
response to bFGF, facilitating endothelial migration (Naik et al., 2003) in a matrix-specific 
context (Naik & Naik, 2006). In vivo, JAM-A expression has been linked with the very early 
stages of murine embryonic vasculature development (Parris et al., 2005), and although 
deletion of JAM-A appears to be dispensable for vascular tree development, homozygous 
JAM-null mice were found to be incapable of supporting FGF-2-induced angiogenesis in 
isolated aortic ring assays (Cooke et al., 2006). In the context of tumour neovascularisation, 
others have reported reduced angiogenesis in a model of pancreatic carcinoma in JAM-A-
null mice (Murakami et al., 2010). 
Other JAM family members appear to contribute similarly to angiogenesis; with functional 
blockade of JAM-C being shown to decrease aortic ring angiogenesis and block angiogenesis 
in hypoxic vessels of the murine retina (Lamagna et al., 2005; Orlova et al., 2006). 
Furthermore, soluble JAM-C shed into the serum of patients with inflammatory conditions 
(presumably following cleavage by ADAM enzymes) was noted to induce endothelial tube 
formation in a Matrigel model (Rabquer et al., 2010). An interesting dichotomy, however, is 
that amplification of JAM-B in a trisomy-21 mouse model of Down’s syndrome has been 
linked with reductions in VEGF-induced angiogenesis and thus anti-tumour effects in a 
lung carcinoma model in these mice (Reynolds et al., 2010). 
Taken together, these studies illustrate that by influencing angiogenic functions in 

endothelial cells, JAMs may indirectly influence the ability of tumours to survive and 

progress. While there appears to be a consensus that JAMs –A and –C activate signalling 

cascades that promote angiogenesis, it is possible that clear roles for the other family 

members in the regulation of angiogenesis will also emerge in time. It is tempting to 

speculate that pharmacological antagonism of JAMs will show promise as an option for 
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blocking tumour progression, similar to the VEGF-A-neutralizing antibody bevacizumab 

(avastin) (Van Meter & Kim, 2010). 

3.2 JAM proteins regulate trafficking of leukocytes 

In addition to the potential regulatory roles of JAM proteins on the vascular endothelium, 
effects exerted on JAM-expressing leukocytes within the breast tumour microenvironment 
may also have relevance to cancer progression. For instance, JAMs are known to play 
important roles in the transendothelial migration of monocytes, which differentiate into 
macrophages once in the breast tissue. Accordingly, a function-blocking monoclonal 
antibody directed against JAM-A (BV11) has been described to inhibit spontaneous and 
chemokine-induced monocyte transmigration both in vitro and in vivo (Martin-Padura et al., 
1998). Furthermore, treatment of mice with a monoclonal antibody directed against JAM-C 
has been shown to reduce macrophage infiltration into a murine lung tumour model 
(Lamagna et al., 2005), and to promote reverse transmigration of monocytes back into the 
bloodstream from inflamed tissue sites (Bradfield et al., 2007). Given the existence of a breast 
tumour-promoting paracrine loop between epidermal growth factor secreted by 
macrophages and colony-stimulating factor-1 secreted by tumour cells (Goswami et al., 
2005), this implies that JAM-based regulation of monocyte transmigration could have a 
profound and self-amplifying influence on macrophage trafficking and tumour 
proliferation. 
In the context of leukocytes other than monocytes/macrophages, many studies have 
implicated JAMs in the functional control of neutrophil transmigration across both epithelial 
(Zen et al., 2004; Zen et al., 2005) and endothelial (Sircar et al., 2007; Woodfin et al., 2007) 
barriers. As yet nothing is known about JAM-dependent events that might control 
neutrophil trafficking or activation within the breast tissue, despite the fact that neutrophils 
accumulate in highly aggressive inflammatory breast cancers. In other tissues, JAM-A has 
been shown to be required for efficient infiltration of neutrophils into the inflamed 
peritoneum or into the heart upon ischemia–reperfusion injury; as evidenced by increased 
adhesion and impaired transmigration in JAM-A-deficient mice (Corada et al., 2005). 
Interestingly, in this model JAM-A expression on the neutrophil appears to be more 
important than that on the endothelium; since selective loss of endothelial JAM-A did not 
phenocopy the transmigration deficits (Corada et al., 2005). In addition, soluble JAM-A shed 
from cultured endothelial cells has been shown to reduce in vitro transendothelial migration 
of neutrophils and to decrease neutrophil infiltration in vivo (Koenen et al., 2009). 
Recent evidence also proves that family members other than JAM-A can participate in 

leukocyte trafficking, with JAM-C over-expressing mice exhibiting an increased 

accumulation of leukocytes into inflammatory sites or during ischaemia/reperfusion injury, 

while JAM-C neutralization or loss reduces leukocyte recruitment in models of lung, kidney 

or muscular inflammation (Aurrand-Lions et al., 2005; Scheiermann et al., 2009). Finally 

leukocytic expression of JAM-L has been shown to promote attachment to endothelium 

(Luissint et al., 2008), and functional inhibition of JAM-B is reported to decrease migration of 

peripheral blood lymphocytes across cultured human umbilical vein endothelial cells 

(HUVECs) (Johnson-Leger et al., 2002). 

Collectively these data highlight an important role for JAMs in the migration of immune 

cells across endothelia, a mechanism that could be hijacked by JAM-overexpressing cancer 

cells as they leave the breast and invade into blood vessels.  
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3.3 JAM proteins and the regulation of stromal cells 

The final grouping of breast cancer microenvironmental cells which will be discussed are 

stromal cells, broadly including fibroblasts and myoepithelial cells. Although little is known 

about JAM-mediated control of breast stromal cells specifically, insights from other cellular 

systems may suggest that this multifunctional family of proteins could have a hand in 

influencing the mesenchymal element of tumourigenic processes. 

JAM-C expression has been noted on the surface of primary fibroblasts derived from human 
lung, skin and cornea (Morris et al., 2006). The same authors observed JAM-A and JAM-C 
expression on the widely-studied NIH-3T3 fibroblast cell line. Interestingly, high JAM-C 
expression on synovial fibroblasts has been associated with the pathology of murine 
experimental arthritis, and JAM-C antagonism shown to have functional benefits in 
reducing the severity of inflammation (Palmer et al., 2007). An immunohistochemical study 
in human arthritis has also demonstrated JAM-C expression on the synovial fibroblasts of 
both osteoarthritis and rheumatoid arthritis patients, in conjunction with JAM-C-dependent 
adhesion of myeloid cells to these fibroblasts (Rabquer et al., 2008). Enhanced expression of 
JAM-A has also been described on the skin of patients with the inflammatory disorder 
systemic sclerosis, in comparison to that on normal dermal fibroblasts (Hou et al., 2009). 
Aside from facilitating adhesion of leukocytic cells to stromal elements such as fibroblasts, 
another way in which JAM family members could influence the breast cancer 
microenvironment is by altering proliferation of fibroblasts or other accessory cells. JAM-A 
has been reported to be required for proliferation of vascular smooth muscle cells, since 
JAM-A gene silencing exerted anti-proliferative effects in this system (Azari et al., 2010). 
Whether this is through direct or indirect mechanisms remains uncertain, particularly in 
light of conflicting evidence in intestinal epithelial cells suggesting that JAM-A expression 
restricts proliferation by inhibiting Akt-dependent Wnt signalling (Nava et al., 2011). 
However functional inhibition of the extracellular domain of JAM-A has been shown to 
inhibit bFGF-induced endothelial cell proliferation, and overexpression of JAM-A was also 
found to increase endothelial cell proliferation (Naik et al., 2003). Accordingly, very recent 
evidence has suggested that JAM-A expression exerts a negative tone on apoptosis in the 
mammary epithelium (Murakami et al., 2011). It is likely that processes as crucial as 
proliferation are strictly regulated in a spatial manner, which could account for tissue-
specific differences as observed from the little available evidence to date. Whether or not 
JAM family members may influence proliferation of breast stromal cells like fibroblasts and 
the myoepithelium remains to be investigated. However, it is tempting to speculate that the 
acquisition of a proliferative phenotype in tumours may be co-ordinately linked to the pro-
migratory “mesenchymal” phenotypes observed in many aggressive, poorly-differentiated 
breast cancers, to which evidence has already linked members of the JAM family. Co-culture 
models which better recapitulate the complexity of the breast cancer microenvironment than 
mono-cultures (Holliday et al., 2009) may offer promise in dissecting the relative cellular 
contributions of JAMs to tumour progression at a reductionist level. 

4. JAMs as novel potential drug targets in breast cancer 

The pleiotrophic roles of JAM family members in regulating both the breast epithelium and 
cells of the microenvironment may suggest JAMs as novel therapeutic targets for the future 
management of breast cancer. Whether by aiming to block migratory behaviour, 
angiogenesis, proliferation or to promote polarisation and differentiation, selective 
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pharmacological targeting of JAM molecules could prove particularly useful in cancers that 
overexpress one or more JAMs. This naturally pre-supposes that JAMs are causally involved 
in the disease process rather than simply acting as passive biomarkers, a fact that remains to 
be solidified. However, irrespective of the last caveat, another facet worth exploring is the 
potential of targeting JAMs to promote drug delivery. Since tight junctions (TJs) as a whole 
are primary regulators of paracellular transport across epithelial cells (Gonzalez-Mariscal et 
al., 2005), successful drug delivery may require modulation of TJ proteins to allow drug 
molecules to pass (Matsuhisa et al., 2009). However disruption of TJ proteins for drug 
delivery purposes is a double-edged sword, given the risk of disrupting homeostatic 
mechanisms of polarity, differentiation and migration which are tightly regulated by TJs in 
normal tissues and whose dysregulation may themselves promote tumourigenesis. 
As yet, there are no cancer therapies on the market which specifically target tight junctions. 
However several tight junction proteins have been described as receptors for specific 
molecules or organisms, and as such, these might provide valid and novel targets for drug 
delivery. A particular precedent exists with the claudin family of TJ proteins; Claudins-3 
and -4 having been suggested as drug delivery targets since they act as the receptor for 
Clostridium perfringens enterotoxin (CPE). The ability of CPE to rapidly and specifically lyse 
cells expressing claudin-3 or -4 could potentially be exploited in the treatment of breast 
cancers over-expressing these proteins (Katahira et al., 1997; Morin, 2005; Santin et al., 2007; 
Santin et al., 2007). Sub-lytic doses of CPE could alternatively be used to compromise TJs 
thus enhancing the influx of drug molecules across the epithelium. This could be of 
particular benefit in accessing hypoxic tumour cores, around which the tumour cells may be 
very tightly packed and thus relatively inaccessible to chemotherapeutic drugs. To date CPE 
administration has been shown to reduce growth of claudin-4 overexpressing pancreatic 
tumour cells (Michl et al., 2001; Michl et al., 2003), but their potential use in other cancer 
settings remains an open question. 
How JAM molecules might be therapeutically targeted also remains an unanswered 
question, but one could predict value in using monoclonal antibodies or small molecule 
inhibitors to block the signalling functions which contribute to processes such as migration 
and angiogenesis. However, to date, the role of JAMs as chemotherapeutic targets (or even 
prognostic/predictive biomarkers) in the clinical setting of breast cancer has yet to be 
elucidated and validated. Following the lead of JAM-A as a potential biomarker and 
therapeutic target for breast cancer (McSherry et al., 2009; Gotte et al., 2010; McSherry et al., 
2011; Murakami et al., 2011), we speculate that this will be a lucrative area of research in the 
future. 

5. Conclusion  

To conclude, breast cancer remains a leading cause of cancer worldwide (Jemal et al., 2008), 
and the search for new targets of prognostic and therapeutic relevance will continue 
particularly in this era where semi-personalised medicine is becoming more of a likelihood 
than an aspiration. 
This chapter has attempted to summarize the known roles of the JAM family in controlling 
cell adhesion, polarity and barrier function, and their emerging roles in controlling 
functional behaviours within cells of the breast tumour microenvironment which promote 
cancer progression. Finally, it introduced the topic of JAM as a potential drug target in 
breast cancer; whether to directly influence JAM-dependent oncogenic signalling or indeed 
to interfere with cell-cell adhesion for the purposes of enhancing drug delivery. Continued 
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expansion in our understanding of the cell and molecular biology of JAMs and their roles in 
tumour progression may open up new horizons supporting their evaluation as breast cancer 
biomarkers and drug targets of the future.  
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