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1. Introduction 

Greater than 200,000 new cases of breast cancer cases were diagnosed in 2010 in the United 

States, with approximately 40,000 women succumbing to the disease (www.cancer.gov). 

Globally, an estimated 1.38 million new cases of breast cancer were diagnosed in 2008, with 

greater than 450,000 women succumbing to the disease (Jemal et al., 2011). Despite our 

improved understanding of breast carcinogenesis, breast cancer remains the second most 

commonly diagnosed cancer in women behind non-melanoma skin cancer and the second 

leading cause of death in women behind lung cancer. These epidemiological statistics 

highlight the overwhelming clinical dilemma of breast cancer and emphasize the need for 

novel therapeutic targets and prevention strategies. Countless studies in the fields of 

mammary gland development and breast cancer have led to an appreciation of a breast 

tumor microenvironment that actively contributes to the heterogeneous nature of breast 

cancer. The current review will focus on the impact of IL-6 and STAT3 activation in the 

breast tumor microenvironment and subsequently present rationale for targeting the IL-

6/STAT3 signaling pathway in this setting. IL-6 is a quintessential pleiotropic cytokine 

produced by a diverse number of cell populations, most of which can localize to the breast 

tumor microenvironment. Excessive IL-6 has been demonstrated in primary breast tumors 

and breast cancer patient sera and is associated with poor clinical outcomes in breast cancer. 

These clinical associations are corroborated by emerging preclinical data revealing that IL-6 

is a potent growth factor and promotes an epithelial-mesenchymal (EMT) phenotype in 

breast cancer cells to indicate that IL-6 in the breast tumor microenvironment is clinically 

relevant. Numerous clinical reports have now demonstrated the safety and efficacy of IL-6 

signaling antagonists in multiple diseases, which supports future investigations of these 

therapies in breast cancer. 

Estrogen receptor-alpha (ER┙) is a latent cytoplasmic ligand-activated transcription factor 
utilized by clinicians to subclassify the heterogeneous disease of breast cancer. ER┙-positive 
breast cancer incidence increases up to age 51, the mean age of menopause, and continues to 
increase until age 80. Conversely, ER┙-negative breast cancer incidence plateaus and even 
slightly decreases at age 51, while demonstrating an increase prior to age 50 comparable to 
that of ER┙-positive disease. This discrepancy between the two incidence rates at 
menopause produces an inflection in the incidence rate of all breast cancer cases which has 
been termed Clemmesen’s hook (Anderson and Matsuno, 2006). Whereas the prevalence of 
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ER┙-positive cells within terminal duct lobular units of the breast of healthy premenopausal 
women has been reported at 7%, this number is estimated at 42% in postmenopausal 
women (Shoker et al., 1999). In addition, approximately two-thirds of all breast cancers are 
diagnosed as ER┙-positive, and 75% of postmenopausal breast cancers are ER┙-positive 
(Macedo et al., 2009). Progesterone receptor (PR) and epidermal growth factor receptor 2 
(EGFR2; HER2; or ErbB2), a receptor tyrosine kinase involved in cellular proliferation, have 
also acquired much clinical attention following reports of dismal survival rates in “triple 
negative” (ER┙-negative/PR-negative/HER2 not overexpressed) breast cancer patients. 
Triple negative breast cancer represents approximately 15 to 20% of all breast cancer cases 
and can only be treated with standard chemotherapy as it lacks current adjuvant therapeutic 
targets. Such breast tumors are highly proliferative with a high mitotic index, increased 
necrosis, elevated apoptosis, and typically are of higher tumor grade. TP53 gene and p53 
protein mutations as well as loss of the Rb tumor suppressor protein are common. Familial 
breast cancer patients with congenital BRCA1 mutations often present with triple negative 
breast cancer, as do relatively younger breast cancer patients and African American women. 
Currently, triple negative breast cancers are associated with a poor prognosis largely due to 
poor survival rates and early relapse. The fact that these breast tumors respond well if not 
completely to initial chemotherapy may seem counterintuitive, but enhanced invasiveness, 
consequent distant metastasis, and residual local recurrence eventually promote poor 
survival rates (Irvin and Carey, 2008). 
Breast cancer most commonly metastasizes to bone, followed by lung, liver, and brain. 
Perhaps due to the heterogeneity across individual breast cancer cases, few prognostic 
molecular biomarkers have been demonstrated to accurately predict metastatic potential. 
One of the most important of these biomarkers is ER┙, which is clinically exploited as a 
predictor of bone metastasis (Kominsky and Davidson, 2006). Whereas ER┙-positive breast 
cancers have a strong tendency to metastasize to bone if at all (James et al., 2003), their ER┙-
negative counterparts favor visceral organs such as lung and liver (Hess et al., 2003). 
Primary mammary tumor cell dissemination has been quantified at 3 to 4 x 106 primary 
tumor cells in circulation per 24 hours per gram of tumor in a rat mammary carcinoma 
model, which exemplifies the inefficient nature of metastasis (Butler and Gullino, 1975). 
Although metastasis has been generally accepted as a relatively late event throughout 
cancer progression, recent work has revealed evidence of early primary tumor cell 
dissemination, thus refuting this paradigm (Klein, 2009). In particular, it has now been 
demonstrated that untransformed triple transgenic (doxycycline-inducible K-ras, MYC, and 
polyoma middle T antigen) mammary epithelial cells are capable of lung colonization when 
tail vein-injected into immunocompromised female mice on doxycycline. This work showed 
that untransformed “normal” mammary epithelial cells can colonize ectopic lung tissue, and 
upon oncogene activation, disseminated mammary epithelial cells within circulation or a 
foreign host microenvironment are capable of forming tumors at the ectopic site 
(Podsypanina et al., 2008). Additionally, reports of bone marrow cytokeratin-positive 
epithelial cells in up to 48% of breast cancer patients without overt metastases also offer 
support for early primary tumor cell dissemination. Decreased survival in patients with 
such cells was demonstrated in all studies (Braun et al., 2000; Diel et al., 1996; Gebauer et al., 
2001; Pantel et al., 2003; Vannucchi et al., 1998). Furthermore, only 8% of these patients with 
bone marrow micrometastases exhibited cytokeratin-positive/Ki67-positive cells, 
suggesting that lack of overt bone metastasis may be due to disseminated tumor cell 
dormancy (Pantel et al., 2003). 
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2. The breast tumor microenvironment 

A normal epithelial tissue can undergo hyperplasia and acquire tumorigenic properties that 

promote the development of a benign, non-invasive solid tumor known as carcinoma in situ. 

Normal epithelial tissues and non-invasive carcinoma in situ tumors are separated from a 

supportive stromal compartment by an intact basement membrane. Ultimately, carcinoma in 

situ can progress to a malignant, invasive carcinoma, the most common form of human 

cancer. The panoply of published investigations between the fields of mammary gland 

development and breast cancer has led to an appreciation for a supportive non-epithelial 

mammary stroma that mechanically and biologically restrains tumorigenesis. However, 

tumors of the breast and other epithelial tissues obviously overcome these growth restraints 

and exploit this stroma to sculpt a vastly divergent tumor stroma. Tumor stroma is 

generally divided into four main components:  tumor vasculature, inflammatory leukocytes, 

extracellular matrix (ECM) and soluble growth factors, and fibroblasts. Malignant carcinoma 

cells and tumor stromal cells bi-directionally communicate with one another through 

paracrine signaling and intercellular contacts in a disorganized ECM to constitute a tumor 

microenvironment. Tumor-associated fibroblasts (TAF), the predominant stromal cell 

population within the tumor microenvironment, acquire and sustain an “activated” 

phenotype that promotes tumor progression (Rasanen and Vaheri, 2010). TAF are capable of 

enhancing breast tumor growth and metastasis by means of promoting angiogenesis (Orimo 

et al., 2005), epithelial-mesenchymal transition (EMT) (Martin et al., 2010; Radisky et al., 

2005), and progressive genetic instability (Kurose et al., 2001; Moinfar et al., 2000). In 

contrast, a normal mammary microenvironment can act in a dominant manner to inhibit 

tumor growth and “revert” the malignant phenotype of breast cancer cells (Kenny and 

Bissell, 2003). While resident breast tissue fibroblasts can inhabit breast tumors as TAF, 

breast tumors also recruit distant cell populations that engraft within the breast tumor 

microenvironment where they actively contribute as TAF. For example, mesenchymal stem 

cells (MSC), a bone marrow-derived stromal cell population, home to breast cancer cell 

xenograft tumors and persist as TAF (Spaeth et al., 2009). 

3. Cancer-associated inflammation 

Although highly characterized for their protective capacity against infection, inflammatory 
leukocytes also reside within the tumor microenvironment. In fact, various immune cells are 
capable of eliminating transformed cells and thus preventing tumorigenesis in a process 
termed immunosurveillance (Dunn et al., 2004). Whereas acute inflammation may prevent 
tumorigenesis by promoting an immune response directed against transformed cells, 
chronic inflammation promotes tumorigenesis. Rudolf Virchow is credited with making the 
seminal link between chronic inflammation and cancer by noting that human tumor 
biopsies were often infiltrated with inflammatory cells (Balkwill and Mantovani, 2001). 
Leukocytes can be detected in non-malignant tumors and carcinomas, including breast 
cancer (DeNardo and Coussens, 2007), which suggests an ongoing antitumor immune 
response. Despite the infiltration of leukocytes such as cytotoxic T-cells and NK-cells, the 
persistence of a tumor demonstrates immune evasion and highlights the local and systemic 
immune suppressive state of the tumor microenvironment and the tumor-bearing host, 
respectively. 
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4. Interleukin-6: A quintessential pleiotropic cytokine 

Interleukin-6 (IL-6) is an inflammation-associated cytokine and major inducer of C-reactive 
protein (CRP) throughout the acute phase inflammatory response. IL6 gene expression is 
nuclear factor-kappaB (NF-κB)-dependent (Chauhan et al., 1996) and produces a 26 kDa IL-6 
protein product. First characterized as a T-cell-derived factor that induced proliferation, 
differentiation, and immunoglobulin production in B-cells, IL-6 was originally named B-cell 
stimulating factor-2 (BSF-2). It was later thought to be a novel interferon (IFN-┚2) due to 
studies demonstrating the ability of IL-6 to activate signal transducer and activator of 
transcription 3 (STAT3) (Kishimoto, 2006). Complementary DNA encoding the human IL-6 
gene was subsequently cloned, and human IL-6 transgenic mice demonstrated a polyclonal 
IgG1 plasmacytosis phenotype (Suematsu et al., 1989). Next, IL-6 knockout (IL-6-/-) mice 
were generated and characterized. IL-6-/- mice underwent normal development, but adult 
animals exhibited reduced numbers of peripheral T-cells and impaired antiviral cytotoxic T-
cell activity (Kopf et al., 1994). In addition, IL-6 is a critical factor during hematopoiesis and 
subsequent lymphocyte differentiation and activation. Multiple diverse cell populations 
including fibroblasts, T and B-cells, monocytes, macrophages, endothelial cells, 
keratinocytes, astrocytes, and smooth muscle cells all have the potential to produce 
constitutive or inducible IL-6 (Kishimoto, 2006). 
Depending on cellular context, IL-6 can signal through multiple kinase-dependent 

proliferation and anti-apoptosis pathways including the mitogen-activated protein kinase 

(MAPK) pathway, the phosphatidylinositol-triphosphate kinase (PI-3K)/Akt pathway, and 

perhaps the most commonly evaluated in breast cancer, the Janus kinase (JAK)/signal 

transducer and activator of transcription-3 (STAT3) pathway (Hodge et al., 2005). To do so, a 

plasma membrane-associated IL-6 receptor (IL-6R/CD126) homodimer first ligates two 

soluble IL-6 molecules, which leads to gp130 (CD130) homodimer ligation. Whereas IL-6R is 

only expressed on hepatocytes, osteoclasts, and most immune cells under normal 

physiological conditions, gp130 is a ubiquitous and promiscuous receptor involved in 

multiple cytokine signaling pathways (e.g., IL-11, leukemia inhibitory factor (LIF), 

oncostatin M (OSM), and ciliary neurotrophic factor (CNTF)) (Rose-John et al., 2006). To 

initiate classical JAK/STAT3 signal transduction, JAK are recruited to the intracellular 

domain of the gp130 receptor where they bind and autophosphorylate. Subsequent gp130 

phosphorylation via activated JAK offers docking sites for STAT3 and other receptor-

associated proteins. Once bound to the intracellular domain of gp130, STAT3 is specifically 

phosphorylated (pSTAT3) by adjacent JAK on a C-terminal tyrosine residue (Y705), which 

grants its disengagement from the receptor. Dissociation of pSTAT3Y705 from gp130 

facilitates its homodimerization within the cytoplasm, and the pSTAT3Y705 homodimer 

translocates to the nucleus. There, pSTAT3Y705 binds to specific promoters whereby it 

initiates the transcription of multiple downstream target genes (Clevenger, 2004). Under 

normal physiological conditions, an inhibitory feedback loop maintains rapid and transient 

STAT3 activation. Following activation in normal cells, STAT3 induces suppressors of 

cytokine signaling (SOCS) and protein inhibitors of activated STATs (PIAS) expression. 

While SOCS-1 specifically inhibits JAK function, SOCS-3 binds the IL-6R complex to inhibit 

IL-6 signal transduction. PIAS-3 directly interacts with STAT3 to inhibit all STAT3 target 

gene expression (Kishimoto, 2006). In contrast, many human cancers, including breast 

cancer, exhibit constitutive STAT3 activity. Recent studies have demonstrated that 

unphosphorylated STAT3 (U-STAT3) accumulates in tumor cells with constitutively active 
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STAT3 where it forms a complex with NF-κB to activate a subset of NF-κB target genes 

(Yang and Stark, 2008). 

Alternatively, IL-6 trans-signaling describes an IL-6 signaling pathway whereby an IL-6 

soluble receptor (IL-6sR) binds IL-6 and subsequently ligates gp130 to stimulate STAT3 

activation in cells that only express gp130. IL-6sR is naturally produced by either proteolytic 

cleavage of the membrane-bound IL-6R or alternative splicing of IL-6R mRNA (Rose-John et 

al., 2006). Whereas IL-6 serum levels continue to increase with age, levels of serum IL-6sR 

rise until approximately age 70 at which time they gradually decline (Giuliani et al., 2001). 

Furthermore, IL-6sR expression has been demonstrated in human breast cancer cell lines 

(Crichton et al., 1996; Oh et al., 1996; Singh et al., 1995), suggesting that IL-6 trans-signaling 

mediates the effects of IL-6 in breast cancer cells. In contrast, an endogenous soluble gp130 

(sgp130) specifically antagonizes IL-6 trans-signaling by exclusively ligating the IL-6/IL-6sR 

complex, thus having no effect on cells that express the membrane-bound IL-6R (Rose-John 

et al., 2006) (Figure 1). 

 

 

Fig. 1. The IL-6/STAT3 signaling pathway 

5. Excessive IL-6 in human breast cancer 

Aberrantly elevated IL-6 is associated with a poor prognosis in breast cancer (Bachelot et al., 
2003; Salgado et al., 2003; Zhang and Adachi, 1999). Human breast tumors produce more IL-
6 when compared to matched healthy breast tissue, and tumor IL-6 levels concurrently 
increase with tumor grade. In addition, increased serum IL-6 has been demonstrated in 
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breast cancer patients compared to normal donors and correlates with advanced breast 
tumor stage (Kozlowski et al., 2003) and increased number of metastatic sites (Salgado et al., 
2003). Furthermore, a single nucleotide polymorphism (SNP) exists at position -174 in the 
IL-6 gene promoter region, noted as IL-6 (-174 G>C), with the following allele frequency in a 
Caucasion population:  36% G/G, 44% G/C, and 18% C/C. An inflammatory stimulus such 
as Salmonella typhii vaccination induced higher serum IL-6 in those individuals with the 
G/G allele (Bennermo et al., 2004). Although the IL-6 (-174 G>C) SNP is not associated with 
increased risk of developing breast cancer (Gonzalez-Zuloeta Ladd et al., 2006; Litovkin et 
al., 2007; Yu et al., 2009b), it is significantly associated with disease-free and overall survival 
in breast cancer patients (DeMichele et al., 2003). 
ER┙ is expressed in luminal subtype breast tumors (Perou et al., 2000) and therefore 
associated with improved patient survival (Buyse et al., 2006; Sorlie et al., 2001). A clear and 
well-characterized inverse correlation exists between breast cancer ER┙ status and IL-6. In 
fact, ER┙ directly binds to NF-κB, thus preventing transactivation of IL6 gene expression 
(Galien and Garcia, 1997), which demonstrates a direct mechanism for such a correlation. 
Furthermore, ER┙-negative human breast tumors produce more IL-6 than tumors that 
express ER┙ (Chavey et al., 2007), and IL-6 serum levels are higher in ER┙-negative breast 
cancer patients compared to ER┙-positive patients (Jiang et al., 2000). Likewise, ER┙-
negative breast cancer cell lines produce autocrine IL-6 whereas ER┙-positive breast cancer 
cell lines do not (Sasser et al., 2007). Therefore, this strongly suggests that ER┙-negative 
breast cancer cells would exploit both paracrine (i.e., stromal cell-derived) and autocrine IL-
6 signaling, whereas ER┙-positive breast cancer cells could only utilize paracrine IL-6 
signaling. In addition, ER┙-negative breast cancer patients, whose tumors produce more IL-
6 than those that express ER┙ (Chavey et al., 2007), showed no difference in survival 
between the G/G allele (higher inducible serum IL-6) and any C allele (lower inducible 
serum IL-6) at the IL-6 (-174 G>C) promoter SNP. In contrast, ER┙-positive breast cancer 
patients with any C allele at the IL-6 (-174 G>C) promoter SNP demonstrated improved 
disease-free and overall survival compared to those with the G/G allele (DeMichele et al., 
2003). 

6. IL-6 promotes breast cancer cell growth 

Stromal fibroblasts isolated from multiple types of tumors (i.e., TAF) or cancers (i.e., CAF) 
are now appreciated as influential players in cancer progression and metastasis (Orimo and 
Weinberg, 2006). CAF derived from multiple cancer types, including murine mammary 
cancers, exhibit an activated, proinflammatory phenotype with increased IL-6 production 
(Erez et al., 2010). Furthermore, work from our laboratory has demonstated that fibroblasts 
isolated from breast tissue and common sites of breast cancer metastasis such as bone and 
lung enhance the growth of breast cancer cells in an IL-6-dependent manner, and IL-6 is the 
major fibroblast-derived soluble factor that induced STAT3 activation in breast cancer cells 
(Sasser et al., 2007; Studebaker et al., 2008). MDA-MB-231 breast cancer cells are commonly 
utilized to model triple negative breast cancer and produce autocrine IL-6. MDA-MB-231 
cells expressing a dominant negative isoform of gp130 lacked constitutively active STAT3 
and exhibited impaired tumorigenicity in an orthotopic xenograft model (Selander et al., 
2004), thus suggesting that IL-6 may drive tumor progression in this model. In addition, 
STAT3 is estimated to be constitutively activated in more than half of primary breast cancers 
due to IL-6 signaling (Berishaj et al., 2007). 
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Mesenchymal stem cells (MSC) are a bone marrow-derived fibroblast cell population that 
can be recruited to the breast tumor stroma, acquire a TAF phenotype, and produce high 
levels of IL-6. MSC enhance the growth of ER┙-positive breast cancer cells, which do not 
express IL-6 or activated STAT3. In contrast, MSC have no effect on IL-6-producing ER┙-
negative breast cancer cells, which express constitutively activated STAT3. Moreover, ER┙-
positive breast cancer cells orthotopically co-injected with MSC or MSC conditioned 
medium and ER┙-positive breast cancer cells that ectopically express IL-6 demonstrate 
enhanced xenograft tumor growth in the absence of exogenous 17┚-estradiol (Sasser et al., 
2007). Similar differential growth enhancement was demonstrated in vivo with ER┙-positive 
and ER┙-negative breast cancer cells co-injected with MSC, which also promoted metastasis 
(Karnoub et al., 2007). Interestingly, IL-6 has been reported to facilitate the recruitment of 
MSC to hypoxic breast tumor microenvironments (Rattigan et al., 2010). Likewise, IL-6 
secreted from breast cancer cells has been shown to contribute to a recently characterized 
phenomenon termed “self-seeding” in which aggressive circulating tumor cells engraft 
within their original xenograft tumor (Kim et al., 2009). MSC have also been shown to 
mediate the self-renewal capacity of breast cancer stem cells, in part, through a reciprocal IL-
6 loop (Liu et al., 2010). Taken together, preceding evidence strongly suggests that IL-6 
promotes breast cancer cell growth by activating STAT3, which culminates with the 
upregulation of proliferative oncogenes such as c-Myc and cyclin D1 and and growth factors 
such as IL-6, hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), 
and epidermal growth factor (EGF) (Yu et al., 2009a). 

7. IL-6 promotes epithelial-mesenchymal transition in breast cancer cells 

Normal polarized epithelial cells exhibit ‘cobblestone’ homophilic morphology and express 
E-cadherin, which is required for epithelial cell polarization, phenotype, and consequent 
homeostasis (Jeanes et al., 2008). E-cadherin is a key prognostic molecular biomarker 
clinically utilized to predict the metastatic propensity of breast cancer. Whereas very few 
studies have failed to demonstrate E-cadherin as an independent prognostic biomarker in 
breast cancer patients (Lipponen et al., 1994; Parker et al., 2001), the overwhelming majority 
of relevant studies have revealed E-cadherin as one of the strongest predictors of patient 
survival. Specifically, impaired E-cadherin expression in human breast tumors correlates 
with enhanced invasiveness, metastatic potential (Oka et al., 1993), and decreased breast 
cancer patient survival (Heimann and Hellman, 2000; Pedersen et al., 2002). While 
appropriate E-cadherin function is essential to the maintenance of epithelial cell 
morphology, phenotype, and homeostasis, regulation of E-cadherin expression is of equal 
importance. CDH1, the gene that encodes E-cadherin, is located on human chromosome 
16q22.1 (Rakha et al., 2006) and is susceptible to inactivation by promoter hypermethylation, 
somatic mutation, or aberrant overexpression of repressive transcription factors including 
Twist, Snail, and Slug among others (Hirohashi, 1998). Likewise, E-cadherin loss of function 
can arise due to extracellular domain-specific proteolytic cleavage. Although uncommon, 
germline mutations of CDH1 predispose individuals to hereditary diffuse gastric cancer 
(HDGC) syndrome, and a proportion of these patients present with other cancers, including 
breast cancer (Guilford, 1999). 
E-cadherin was initially termed uvomorulin in mice and L-CAM in chicks following its 
discovery as a 120 kDa calcium-dependent trypsin-labile cell surface glycoprotein required 
for intercellular adhesion in mouse blastomeres (Hyafil et al., 1981) and chick embryos 
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(Brackenbury et al., 1981). It now represents the best studied member of the cadherin family 
of tissue-specific homophilic intercellular adhesion molecules. E-cadherin knockout studies 
have demonstrated early embryonic lethality due to impaired maintenance of epithelial 
polarity and failure to form an intact epithelium in E-cadherin-/- embryos (Larue et al., 1994). 
E-cadherin is localized on the cell surface of epithelial cells, and each E-cadherin protein 
consists of an amino-terminal extracellular domain, a single-pass transmembrane segment, 
and a carboxy-terminal intracellular domain. Five calcium-binding repeated subunits 
comprise an extracellular domain that promotes homophilic interaction to ultimately form 
anti-parallel trans-E-cadherin dimers between adjacent cells (Guilford, 1999). The 
intracellular domain is comprised of a juxtamembrane p120-catenin binding subdomain and 
a C-terminal beta (┚)-catenin binding subdomain. ┚-catenin, a potent transcription factor, 
binds E-cadherin and alpha (┙)-catenin subsequently binds ┚-catenin. Although contentious 
(Weis and Nelson, 2006), it is generally acknowledged that ┙-catenin interacts with F-actin 
and thereby, facilitates the linkage of E-cadherin to the cytoskeleton. This E-cadherin-
catenin-actin complex localizes to epithelial intercellular junctions called adherens junctions 
and is critical to epithelial cell adhesion, polarity, and morphology (Hartsock and Nelson, 
2008). Furthermore, E-cadherin sequesters ┚-catenin at the cell surface as one means to 
inhibit ┚-catenin nuclear translocation and consequent expression of ┚-catenin responsive 
genes (Perez-Moreno et al., 2003). 
Another prominent role of E-cadherin is that of an invasion/metastasis suppressor 

protein. Upon loss of E-cadherin and subsequent dissociation of adherens junctions, 

epithelial cells acquire enhanced invasive capability (Behrens et al., 1989). MDA-MB-231 

cells, an ER┙-negative breast cancer cell line, lack E-cadherin, whereas MCF-7 cells, an 

ER┙-positive breast cancer cell line express high levels of E-cadherin (Kenny et al., 2007), 

and MDA-MB-231 cells exhibit enhanced invasive capability compared to MCF-7 cells 

(Sommers et al., 1991). Naturally, E-cadherin expression and consequent invasive capacity 

regulate the propensity of breast cancer metastasis. Multiple signaling pathways are 

activated following loss of E-cadherin protein, which promote transformed human breast 

epithelial cell metastasis in a xenograft model. Interestingly, Twist, a transcriptional 

repressor of CDH1, is induced upon loss of E-cadherin and is necessary for metastasis in 

this model. Furthermore, the E-cadherin binding partner, ┚-catenin, was shown to be 

necessary but not sufficient for the EMT phenotype induced following loss of E-cadherin 

(Onder et al., 2008). Ectopic expression of murine E-cadherin in highly metastatic human 

MDA-MB-231 cells significantly reduced osteolytic bone metastases in a murine 

intracardiac dissemination model (Mbalaviele et al., 1996). Likewise, aberrant cytoplasmic 

or diminished to negative E-cadherin immunostaining patterns are commonly detected in 

invasive poorly differentiated breast carcinomas compared to noninvasive well-

differentiated breast carcinomas and are associated with increased probability of breast 

carcinoma metastasis (Oka et al., 1993). The finding that distant metastases often express 

E-cadherin even in patients which exhibit primary breast carinomas which lack E-

cadherin suggests that ultimate re-expression may be necessary for colonization of 

secondary tissues (Kowalski et al., 2003; Saha et al., 2007). 

Loss of E-cadherin is a prerequisite for epithelial-mesenchymal transition (EMT), a highly 

conserved process which exemplifies the aberrant activation of an embryonic gene 

expression program during carcinoma progression. EMT is critical for multiple steps of 

developmental metazoan cellular morphogenesis as demonstrated in well-characterized 
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Drosophila and Xenopus models. Throughout embryonic development, EMT whereby 

epithelial cells give rise to more motile mesenchymal cells is essential for mesoderm and 

neural crest formation. Importantly, this is a transient process and mesenchymal-epithelial 

transition (MET) allows for cellular reversion (Yang and Weinberg, 2008). 

Whereas EMT has been extensively studied for its essential role in embryogenesis, the 

concept of EMT-like cellular changes in human cancers has gained acceptance as a major 

mechanism to promote primary tumor cell invasion and subsequent tumor metastasis. A 

carcinoma cell must first detach from the primary tumor and invade through the basement 

membrane into the underlying tissue parenchyma to initiate the metastasic cascade. 

Although cancer-associated EMT was considered a controversial notion even in recent years 

(Tarin et al., 2005), it has been demonstrated in multiple human carcinomas, including breast 

cancer (Cheng et al., 2008; Heimann and Hellman, 2000; Moody et al., 2005; Sarrio et al., 

2008), and is now recongnized as a putative mediator of tumor metastasis. An EMT 

phenotype including impaired E-cadherin expression with concominant induction of 

Vimentin, Alpha-smooth-muscle-actin, and/or N-cadherin is associated with the basal 

breast cancer subtype, suggesting that EMT may promote characteristic aggressiveness in 

these tumors and contribute to poor breast cancer patient survival (Sarrio et al., 2008). 

Likewise, relatively noninvasive ER┙-positive MCF-7 cells express E-cadherin, consistent 

with a characteristic epithelial phenotype, and are classified as luminal subtype, whereas 

highly invasive ER┙-negative MDA-MB-231 cells lack E-cadherin and are classified as basal 

subtype (Blick et al., 2008). Furthermore, ER┙ directly correlates with E-cadherin in primary 

human breast tumors (Ye et al., 2010). While EMT may enhance carcinoma cell invasion and 

subsequent dissemination which would increase metastatic potential, it is not synonymous 

with metastasis in all models. For example, Lou, et al. demonstrated that EMT alone was 

insufficient for spontaneous murine mammary carcinoma metastasis (Lou et al., 2008). Yet, 

Weinberg and colleagues described the promotion of metastasis with loss of E-cadherin and 

a consequent EMT phenotype in transformed human breast epithelial cells (Onder et al., 

2008). 

Our laboratory has previously demonstrated that exogenous IL-6 exposure induced an EMT 

phenotype in a panel of human ER┙-positive breast cancer cells, which included E-cadherin 

repression and concomitant induction of Vimentin, N-cadherin, Snail, and Twist. In 

addition, ectopic expression of IL-6 in ER┙-positive MCF-7 breast cancer cells promoted an 

EMT phenotype and enhanced invasiveness. Likewise, MCF-7 cells with ectopic Twist 

expression exhibit an EMT phenotype (Mironchik et al., 2005), autocrine IL-6 production, 

and constitutive STAT3 activation (Sullivan et al., 2009). 

8. Therapeutic targeting of the IL-6/STAT3 pathway 

IL-6 levels are increased in human breast tumors and breast cancer patient sera, and 
excessive IL-6, both circulating and within the breast tumor microenvironment, is associated 
with poor clinical outcomes in breast cancer. STAT3, a critical downstream mediator of IL-6 
signaling, is constitutively activated in more than half of human cancers and promotes the 
expression of proliferative, anti-apoptotic, immune suppressive, and pro-angiogenic target 
genes, which all potentiate carcinogenesis. Whereas the IL-6 signaling network has been 
targeted in numerous autoimmune diseases and cancers, this therapeutic strategy has yet to 
be clinically employed for breast cancer. Increased preclinical reports have revealed novel 
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mechanisms underlying IL-6/STAT3 signaling in breast cancer cells such as enhanced 
growth, induction of EMT, multidrug resistance, and recruitment of peripheral fibroblasts. 
Taken together, accumulating preclinical and clinical data emphasize IL-6 as a highly 
attractive therapeutic target in breast cancer. It is therefore imperative that more work be 
done to evaluate current therapeutics and develop novel agents that target IL-6/STAT3 
signaling in breast cancer models. 
Multiple strategies could be utilized to target the IL-6/STAT3 pathway, but first and most 

obvious would be anti-IL-6 neutralizing antibodies. One such anti-IL-6 monoclonal 

antibody is Siltuximab (CNTO 328). The safety and efficacy of Situximab has been 

demonstrated in preclinical studies and phase I/II clinical trials of diverse human 

pathologies and malignancies including Castleman’s disease (van Rhee et al., 2010), 

multiple myeloma (Hunsucker et al., 2011; Voorhees et al., 2007), prostate cancer 

(Cavarretta et al., 2007; Cavarretta et al., 2008; Dorff et al., 2010; Karkera et al., 2011), renal 

cell carcinoma (Puchalski et al., 2010; Rossi et al., 2010), non-small cell lung cancer (Song et 

al., 2010), and ovarian cancer (Guo et al., 2010). Furthermore, IL-6R can be targeted with 

tocilizumab, an anti-IL-6R monoclonal antibody that has shown promising results in IL-6-

driven autoimmune diseases (Tanaka et al., 2011) and was recently approved by the FDA 

for the treatment of rheumatoid arthritis. The promiscuous IL-6 coreceptor, gp130, also 

has an endogenous soluble form (sgp130) that exclusively inhibits IL-6 trans-signaling, 

thus preserving classical IL-6 signaling. Therapeutic sgp130 would potentially be more 

targeted toward breast cancer cells, which generally lack membrane-associated IL-6R and 

therefore utilize IL-6 trans-signaling through IL-6sR. Recombinant soluble gp130 (sgp130-

Fc) has been shown to inhibit murine colon carcinogenesis (Becker et al., 2004), suggesting 

that it may prove effective in breast cancer as well. Finally, a growing number of non-

selective kinase inhibitors and recent focus on specific JAK and STAT3 inhibitor 

development will provide further insight into the roles of JAK and STAT3 in breast 

cancer. 

9. Conclusions 

Breast cancer is a heterogeneous disease and thus, highly variable across individual patients. 
This heterogenicity arises not only due to the diversity of genetic and molecular aberrations 
in primary breast cancer cells but also due to the diversity of cellular populations that 
inhabit the breast tumor microenvironment. Although IL-6 levels are higher in breast 
tumors and patient sera, the precise source of this IL-6 remains elusive. Importantly, many 
breast tumor stromal cells provide a paracrine source of IL-6 for breast cancer cells within 
the breast tumor microenvironment. In addition, certain clinical subtypes of breast cancers 
and research models, such as ER┙-negative primary breast cancers and ER┙-negative breast 
cancer cell lines, produce excessive IL-6 (Figure 2). Therefore, ER┙-negative breast cancer 
cells may supply the tumor microenvironment with IL-6 by means of autocrine IL-6 
production to exacerbate the poor prognosis associated with this clinical subtype. It will be 
critical to determine the specific cellular source of breast tumor-associated IL-6 to advance 
our understanding of this pleiotropic cytokine in breast cancer progression and metastasis. 
Moreover, this knowledge will facilitate the validation and subsequent clinical utility of 
current and novel targeted antagonists of the IL-6/STAT3 signaling network in breast 
cancer. 
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Fig. 2. Breast cancer cell ER┙ status dictates paracrine vs. autocrine IL-6 utilization. 

10. References 

Anderson WF, Matsuno R (2006) Breast cancer heterogeneity: a mixture of at least two main 
types? J Natl Cancer Inst 98:948-951. 

Bachelot T, Ray-Coquard I, Menetrier-Caux C, Rastkha M, Duc A, Blay JY (2003) Prognostic 
value of serum levels of interleukin 6 and of serum and plasma levels of vascular 
endothelial growth factor in hormone-refractory metastatic breast cancer patients. 
Br J Cancer 88:1721-1726. 

Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539-
545. 

Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, et al. (2004) TGF-beta 
suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. 
Immunity 21:491-501. 

Behrens J, Mareel MM, Van Roy FM, Birchmeier W (1989) Dissecting tumor cell invasion: 
epithelial cells acquire invasive properties after the loss of uvomorulin-mediated 
cell-cell adhesion. J Cell Biol 108:2435-2447. 

Bennermo M, Held C, Stemme S, Ericsson CG, Silveira A, Green F, et al. (2004) Genetic 
predisposition of the interleukin-6 response to inflammation: implications for a 
variety of major diseases? Clin Chem 50:2136-2140. 

Berishaj M, Gao SP, Ahmed S, Leslie K, Al-Ahmadie H, Gerald WL, et al. (2007) Stat3 is 
tyrosine-phosphorylated through the interleukin-6/glycoprotein 130/Janus kinase 
pathway in breast cancer. Breast Cancer Res 9:R32. 

Blick T, Widodo E, Hugo H, Waltham M, Lenburg ME, Neve RM, et al. (2008) Epithelial 
mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis 
25:629-642. 

www.intechopen.com



 
Breast Cancer – Focusing Tumor Microenvironment, Stem Cells and Metastasis 

 

176 

Brackenbury R, Rutishauser U, Edelman GM (1981) Distinct calcium-independent and 
calcium-dependent adhesion systems of chicken embryo cells. Proc Natl Acad Sci U 
S A 78:387-391. 

Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich CR, et al. (2000) Cytokeratin-
positive cells in the bone marrow and survival of patients with stage I, II, or III 
breast cancer. N Engl J Med 342:525-533. 

Butler TP, Gullino PM (1975) Quantitation of cell shedding into efferent blood of mammary 
adenocarcinoma. Cancer Res 35:512-516. 

Buyse M, Loi S, van't Veer L, Viale G, Delorenzi M, Glas AM, et al. (2006) Validation and 
clinical utility of a 70-gene prognostic signature for women with node-negative 
breast cancer. J Natl Cancer Inst 98:1183-1192. 

Cavarretta IT, Neuwirt H, Untergasser G, Moser PL, Zaki MH, Steiner H, et al. (2007) The 
antiapoptotic effect of IL-6 autocrine loop in a cellular model of advanced prostate 
cancer is mediated by Mcl-1. Oncogene 26:2822-2832. 

Cavarretta IT, Neuwirt H, Zaki MH, Steiner H, Hobisch A, Nemeth JA, et al. (2008) Mcl-1 is 
regulated by IL-6 and mediates the survival activity of the cytokine in a model of 
late stage prostate carcinoma. Adv Exp Med Biol 617:547-555. 

Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann TA, et al. 
(1996) Multiple myeloma cell adhesion-induced interleukin-6 expression in bone 
marrow stromal cells involves activation of NF-kappa B. Blood 87:1104-1112. 

Chavey C, Bibeau F, Gourgou-Bourgade S, Burlinchon S, Boissiere F, Laune D, et al. (2007) 
Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast 
Cancer Res 9:R15. 

Cheng GZ, Zhang WZ, Sun M, Wang Q, Coppola D, Mansour M, et al. (2008) Twist is 
transcriptionally induced by activation of STAT3 and mediates STAT3 oncogenic 
function. J Biol Chem 283:14665-14673. 

Clevenger CV (2004) Roles and regulation of stat family transcription factors in human 
breast cancer. Am J Pathol 165:1449-1460. 

Crichton MB, Nichols JE, Zhao Y, Bulun SE, Simpson ER (1996) Expression of transcripts of 
interleukin-6 and related cytokines by human breast tumors, breast cancer cells, 
and adipose stromal cells. Mol Cell Endocrinol 118:215-220. 

DeMichele A, Martin AM, Mick R, Gor P, Wray L, Klein-Cabral M, et al. (2003) Interleukin-6 
-174G-->C polymorphism is associated with improved outcome in high-risk breast 
cancer. Cancer Res 63:8051-8056. 

DeNardo DG, Coussens LM (2007) Inflammation and breast cancer. Balancing immune 
response: crosstalk between adaptive and innate immune cells during breast cancer 
progression. Breast Cancer Res 9:212. 

Diel IJ, Kaufmann M, Costa SD, Holle R, von Minckwitz G, Solomayer EF, et al. (1996) 
Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic 
value in comparison with nodal status. J Natl Cancer Inst 88:1652-1658. 

Dorff TB, Goldman B, Pinski JK, Mack PC, Lara PN, Jr., Van Veldhuizen PJ, Jr., et al. (2010) 
Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 
(siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-
pretreated patients with castration-resistant prostate cancer. Clin Cancer Res 
16:3028-3034. 

www.intechopen.com



 
Interleukin-6 in the Breast Tumor Microenvironment 

 

177 

Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance 
and immunoediting. Immunity 21:137-148. 

Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-Associated Fibroblasts Are 
Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in 
an NF-kappaB-Dependent Manner. Cancer Cell 17:135-147. 

Galien R, Garcia T (1997) Estrogen receptor impairs interleukin-6 expression by preventing 
protein binding on the NF-kappaB site. Nucleic Acids Res 25:2424-2429. 

Gebauer G, Fehm T, Merkle E, Beck EP, Lang N, Jager W (2001) Epithelial cells in bone 
marrow of breast cancer patients at time of primary surgery: clinical outcome 
during long-term follow-up. J Clin Oncol 19:3669-3674. 

Giuliani N, Sansoni P, Girasole G, Vescovini R, Passeri G, Passeri M, et al. (2001) Serum 
interleukin-6, soluble interleukin-6 receptor and soluble gp130 exhibit different 
patterns of age- and menopause-related changes. Exp Gerontol 36:547-557. 

Gonzalez-Zuloeta Ladd AM, Arias Vasquez A, Witteman J, Uitterlinden AG, Coebergh JW, 
Hofman A, et al. (2006) Interleukin 6 G-174 C polymorphism and breast cancer risk. 
Eur J Epidemiol 21:373-376. 

Guilford P (1999) E-cadherin downregulation in cancer: fuel on the fire? Mol Med Today 
5:172-177. 

Guo Y, Nemeth J, O'Brien C, Susa M, Liu X, Zhang Z, et al. (2010) Effects of siltuximab on the 
IL-6-induced signaling pathway in ovarian cancer. Clin Cancer Res 16:5759-5769. 

Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure, function and 
connections to the actin cytoskeleton. Biochim Biophys Acta 1778:660-669. 

Heimann R, Hellman S (2000) Individual characterisation of the metastatic capacity of 
human breast carcinoma. Eur J Cancer 36:1631-1639. 

Hess KR, Pusztai L, Buzdar AU, Hortobagyi GN (2003) Estrogen receptors and distinct 
patterns of breast cancer relapse. Breast Cancer Res Treat 78:105-118. 

Hirohashi S (1998) Inactivation of the E-cadherin-mediated cell adhesion system in human 
cancers. Am J Pathol 153:333-339. 

Hodge DR, Hurt EM, Farrar WL (2005) The role of IL-6 and STAT3 in inflammation and 
cancer. Eur J Cancer 41:2502-2512. 

Hunsucker SA, Magarotto V, Kuhn DJ, Kornblau SM, Wang M, Weber DM, et al. (2011) 
Blockade of interleukin-6 signalling with siltuximab enhances melphalan 
cytotoxicity in preclinical models of multiple myeloma. Br J Haematol 152:579-592. 

Hyafil F, Babinet C, Jacob F (1981) Cell-cell interactions in early embryogenesis: a molecular 
approach to the role of calcium. Cell 26:447-454. 

Irvin WJ, Jr., Carey LA (2008) What is triple-negative breast cancer? Eur J Cancer 44:2799-
2805. 

James JJ, Evans AJ, Pinder SE, Gutteridge E, Cheung KL, Chan S, et al. (2003) Bone 
metastases from breast carcinoma: histopathological - radiological correlations and 
prognostic features. Br J Cancer 89:660-665. 

Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction 
promote tumor progression? Oncogene 27:6920-6929. 

Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA 
Cancer J Clin 61:69-90. 

www.intechopen.com



 
Breast Cancer – Focusing Tumor Microenvironment, Stem Cells and Metastasis 

 

178 

Jiang XP, Yang DC, Elliott RL, Head JF (2000) Reduction in serum IL-6 after vacination of 
breast cancer patients with tumour-associated antigens is related to estrogen 
receptor status. Cytokine 12:458-465. 

Karkera J, Steiner H, Li W, Skradski V, Moser PL, Riethdorf S, et al. (2011) The anti-
interleukin-6 antibody siltuximab down-regulates genes implicated in 
tumorigenesis in prostate cancer patients from a phase I study. Prostate. 

Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. (2007) Mesenchymal 
stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557-
563. 

Kenny PA, Bissell MJ (2003) Tumor reversion: correction of malignant behavior by 
microenvironmental cues. Int J Cancer 107:688-695. 

Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT, et al. (2007) The 
morphologies of breast cancer cell lines in three-dimensional assays correlate with 
their profiles of gene expression. Mol Oncol 1:84-96. 

Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, et al. (2009) Tumor 
self-seeding by circulating cancer cells. Cell 139:1315-1326. 

Kishimoto T (2006) Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther 8 
Suppl 2:S2. 

Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 
9:302-312. 

Kominsky SL, Davidson NE (2006) A "bone" fide predictor of metastasis? Predicting breast 
cancer metastasis to bone. J Clin Oncol 24:2227-2229. 

Kopf M, Baumann H, Freer G, Freudenberg M, Lamers M, Kishimoto T, et al. (1994) 
Impaired immune and acute-phase responses in interleukin-6-deficient mice. 
Nature 368:339-342. 

Kowalski PJ, Rubin MA, Kleer CG (2003) E-cadherin expression in primary carcinomas of 
the breast and its distant metastases. Breast Cancer Res 5:R217-222. 

Kozlowski L, Zakrzewska I, Tokajuk P, Wojtukiewicz MZ (2003) Concentration of 
interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of 
breast cancer patients. Rocz Akad Med Bialymst 48:82-84. 

Kurose K, Hoshaw-Woodard S, Adeyinka A, Lemeshow S, Watson PH, Eng C (2001) 
Genetic model of multi-step breast carcinogenesis involving the epithelium and 
stroma: clues to tumour-microenvironment interactions. Hum Mol Genet 10:1907-
1913. 

Larue L, Ohsugi M, Hirchenhain J, Kemler R (1994) E-cadherin null mutant embryos fail to 
form a trophectoderm epithelium. Proc Natl Acad Sci U S A 91:8263-8267. 

Lipponen P, Saarelainen E, Ji H, Aaltomaa S, Syrjanen K (1994) Expression of E-cadherin (E-
CD) as related to other prognostic factors and survival in breast cancer. J Pathol 
174:101-109. 

Litovkin KV, Domenyuk VP, Bubnov VV, Zaporozhan VN (2007) Interleukin-6 -174G/C 
polymorphism in breast cancer and uterine leiomyoma patients: a population-
based case control study. Exp Oncol 29:295-298. 

Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, et al. (2010) Breast cancer stem 
cells are regulated by mesenchymal stem cells through cytokine networks. Cancer 
Res 71:614-624. 

www.intechopen.com



 
Interleukin-6 in the Breast Tumor Microenvironment 

 

179 

Lou Y, Preobrazhenska O, auf dem Keller U, Sutcliffe M, Barclay L, McDonald PC, et al. 
(2008) Epithelial-mesenchymal transition (EMT) is not sufficient for spontaneous 
murine breast cancer metastasis. Dev Dyn 237:2755-2768. 

Macedo LF, Sabnis G, Brodie A (2009) Aromatase inhibitors and breast cancer. Ann N Y Acad 
Sci 1155:162-173. 

Martin FT, Dwyer RM, Kelly J, Khan S, Murphy JM, Curran C, et al. (2010) Potential role of 
mesenchymal stem cells (MSCs) in the breast tumour microenvironment: 
stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 
124:317-326. 

Mbalaviele G, Dunstan CR, Sasaki A, Williams PJ, Mundy GR, Yoneda T (1996) E-cadherin 
expression in human breast cancer cells suppresses the development of osteolytic 
bone metastases in an experimental metastasis model. Cancer Res 56:4063-4070. 

Mironchik Y, Winnard PT, Jr., Vesuna F, Kato Y, Wildes F, Pathak AP, et al. (2005) Twist 
overexpression induces in vivo angiogenesis and correlates with chromosomal 
instability in breast cancer. Cancer Res 65:10801-10809. 

Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavassoli FA (2000) Concurrent 
and independent genetic alterations in the stromal and epithelial cells of mammary 
carcinoma: implications for tumorigenesis. Cancer Res 60:2562-2566. 

Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ, et al. (2005) The 
transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 
8:197-209. 

Oh JW, Revel M, Chebath J (1996) A soluble interleukin 6 receptor isolated from conditioned 
medium of human breast cancer cells is encoded by a differentially spliced mRNA. 
Cytokine 8:401-409. 

Oka H, Shiozaki H, Kobayashi K, Inoue M, Tahara H, Kobayashi T, et al. (1993) Expression 
of E-cadherin cell adhesion molecules in human breast cancer tissues and its 
relationship to metastasis. Cancer Res 53:1696-1701. 

Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA (2008) Loss of E-cadherin 
promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 
68:3645-3654. 

Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. (2005) 
Stromal fibroblasts present in invasive human breast carcinomas promote tumor 
growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335-
348. 

Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell 
type. Cell Cycle 5:1597-1601. 

Pantel K, Muller V, Auer M, Nusser N, Harbeck N, Braun S (2003) Detection and clinical 
implications of early systemic tumor cell dissemination in breast cancer. Clin Cancer 
Res 9:6326-6334. 

Parker C, Rampaul RS, Pinder SE, Bell JA, Wencyk PM, Blamey RW, et al. (2001) E-cadherin 
as a prognostic indicator in primary breast cancer. Br J Cancer 85:1958-1963. 

Pedersen KB, Nesland JM, Fodstad O, Maelandsmo GM (2002) Expression of S100A4, E-
cadherin, alpha- and beta-catenin in breast cancer biopsies. Br J Cancer 87:1281-
1286. 

Perez-Moreno M, Jamora C, Fuchs E (2003) Sticky business: orchestrating cellular signals at 
adherens junctions. Cell 112:535-548. 

www.intechopen.com



 
Breast Cancer – Focusing Tumor Microenvironment, Stem Cells and Metastasis 

 

180 

Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. (2000) Molecular 
portraits of human breast tumours. Nature 406:747-752. 

Podsypanina K, Du YC, Jechlinger M, Beverly LJ, Hambardzumyan D, Varmus H (2008) 
Seeding and propagation of untransformed mouse mammary cells in the lung. 
Science 321:1841-1844. 

Puchalski T, Prabhakar U, Jiao Q, Berns B, Davis HM (2010) Pharmacokinetic and 
pharmacodynamic modeling of an anti-interleukin-6 chimeric monoclonal antibody 
(siltuximab) in patients with metastatic renal cell carcinoma. Clin Cancer Res 
16:1652-1661. 

Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, et al. (2005) Rac1b and 
reactive oxygen species mediate MMP-3-induced EMT and genomic instability. 
Nature 436:123-127. 

Rakha EA, Green AR, Powe DG, Roylance R, Ellis IO (2006) Chromosome 16 tumor-
suppressor genes in breast cancer. Genes Chromosomes Cancer 45:527-535. 

Rasanen K, Vaheri A (2010) Activation of fibroblasts in cancer stroma. Exp Cell Res 316:2713-
2722. 

Rattigan Y, Hsu JM, Mishra PJ, Glod J, Banerjee D (2010) Interleukin 6 mediated recruitment 
of mesenchymal stem cells to the hypoxic tumor milieu. Exp Cell Res 316:3417-3424. 

Rose-John S, Scheller J, Elson G, Jones SA (2006) Interleukin-6 biology is coordinated by 
membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc 
Biol 80:227-236. 

Rossi JF, Negrier S, James ND, Kocak I, Hawkins R, Davis H, et al. (2010) A phase I/II study 
of siltuximab (CNTO 328), an anti-interleukin-6 monoclonal antibody, in metastatic 
renal cell cancer. Br J Cancer 103:1154-1162. 

Saha B, Chaiwun B, Imam SS, Tsao-Wei DD, Groshen S, Naritoku WY, et al. (2007) 
Overexpression of E-cadherin protein in metastatic breast cancer cells in bone. 
Anticancer Res 27:3903-3908. 

Salgado R, Junius S, Benoy I, Van Dam P, Vermeulen P, Van Marck E, et al. (2003) 
Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. 
Int J Cancer 103:642-646. 

Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J (2008) 
Epithelial-mesenchymal transition in breast cancer relates to the basal-like 
phenotype. Cancer Res 68:989-997. 

Sasser AK, Sullivan NJ, Studebaker AW, Hendey LF, Axel AE, Hall BM (2007) Interleukin-6 
is a potent growth factor for ER-alpha-positive human breast cancer. Faseb J 
21:3763-3770. 

Selander KS, Li L, Watson L, Merrell M, Dahmen H, Heinrich PC, et al. (2004) Inhibition of 
gp130 signaling in breast cancer blocks constitutive activation of Stat3 and inhibits 
in vivo malignancy. Cancer Res 64:6924-6933. 

Shoker BS, Jarvis C, Clarke RB, Anderson E, Hewlett J, Davies MP, et al. (1999) Estrogen 
receptor-positive proliferating cells in the normal and precancerous breast. Am J 
Pathol 155:1811-1815. 

Singh A, Purohit A, Wang DY, Duncan LJ, Ghilchik MW, Reed MJ (1995) IL-6sR: release 
from MCF-7 breast cancer cells and role in regulating peripheral oestrogen 
synthesis. J Endocrinol 147:R9-12. 

www.intechopen.com



 
Interleukin-6 in the Breast Tumor Microenvironment 

 

181 

Sommers CL, Thompson EW, Torri JA, Kemler R, Gelmann EP, Byers SW (1991) Cell 
adhesion molecule uvomorulin expression in human breast cancer cell lines: 
relationship to morphology and invasive capacities. Cell Growth Differ 2:365-372. 

Song L, Rawal B, Nemeth JA, Haura EB (2010) JAK1 Activates STAT3 Activity in Non-Small-
Cell Lung Cancer Cells and IL-6 Neutralizing Antibodies Can Suppress JAK1-
STAT3 Signaling. Mol Cancer Ther 10:481-494. 

Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. (2001) Gene expression 
patterns of breast carcinomas distinguish tumor subclasses with clinical 
implications. Proc Natl Acad Sci U S A 98:10869-10874. 

Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, et al. (2009) Mesenchymal 
stem cell transition to tumor-associated fibroblasts contributes to fibrovascular 
network expansion and tumor progression. PLoS One 4:e4992. 

Studebaker AW, Storci G, Werbeck JL, Sansone P, Sasser AK, Tavolari S, et al. (2008) 
Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer 
cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer 
Res 68:9087-9095. 

Suematsu S, Matsuda T, Aozasa K, Akira S, Nakano N, Ohno S, et al. (1989) IgG1 
plasmacytosis in interleukin 6 transgenic mice. Proc Natl Acad Sci U S A 86:7547-
7551. 

Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N, et al. (2009) Interleukin-6 
induces an epithelial-mesenchymal transition phenotype in human breast cancer 
cells. Oncogene 28:2940-2947. 

Tanaka T, Narazaki M, Kishimoto T (2011) Anti-interleukin-6 receptor antibody, 
tocilizumab, for the treatment of autoimmune diseases. FEBS Lett. 

Tarin D, Thompson EW, Newgreen DF (2005) The fallacy of epithelial mesenchymal 
transition in neoplasia. Cancer Res 65:5996-6000; discussion 6000-5991. 

van Rhee F, Fayad L, Voorhees P, Furman R, Lonial S, Borghaei H, et al. (2010) Siltuximab, a 
novel anti-interleukin-6 monoclonal antibody, for Castleman's disease. J Clin Oncol 
28:3701-3708. 

Vannucchi AM, Bosi A, Glinz S, Pacini P, Linari S, Saccardi R, et al. (1998) Evaluation of 
breast tumour cell contamination in the bone marrow and leukapheresis collections 
by RT-PCR for cytokeratin-19 mRNA. Br J Haematol 103:610-617. 

Voorhees PM, Chen Q, Kuhn DJ, Small GW, Hunsucker SA, Strader JS, et al. (2007) 
Inhibition of interleukin-6 signaling with CNTO 328 enhances the activity of 
bortezomib in preclinical models of multiple myeloma. Clin Cancer Res 13:6469-
6478. 

Weis WI, Nelson WJ (2006) Re-solving the cadherin-catenin-actin conundrum. J Biol Chem 
281:35593-35597. 

Yang J, Stark GR (2008) Roles of unphosphorylated STATs in signaling. Cell Res 18:443-451. 
Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of 

development and tumor metastasis. Dev Cell 14:818-829. 
Ye Y, Xiao Y, Wang W, Yearsley K, Gao JX, Shetuni B, et al. (2010) ERalpha signaling 

through slug regulates E-cadherin and EMT. Oncogene 29:1451-1462. 
Yu H, Pardoll D, Jove R (2009a) STATs in cancer inflammation and immunity: a leading role 

for STAT3. Nat Rev Cancer 9:798-809. 

www.intechopen.com



 
Breast Cancer – Focusing Tumor Microenvironment, Stem Cells and Metastasis 

 

182 

Yu KD, Di GH, Fan L, Chen AX, Yang C, Shao ZM (2009b) Lack of an association between a 
functional polymorphism in the interleukin-6 gene promoter and breast cancer risk: 
a meta-analysis involving 25,703 subjects. Breast Cancer Res Treat 122:483-488. 

Zhang GJ, Adachi I (1999) Serum interleukin-6 levels correlate to tumor progression and 
prognosis in metastatic breast carcinoma. Anticancer Res 19:1427-1432. 

www.intechopen.com



Breast Cancer - Focusing Tumor Microenvironment, Stem cells and

Metastasis

Edited by Prof. Mehmet Gunduz

ISBN 978-953-307-766-6

Hard cover, 584 pages

Publisher InTech

Published online 14, December, 2011

Published in print edition December, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Cancer is the leading cause of death in most countries and its consequences result in huge economic, social

and psychological burden. Breast cancer is the most frequently diagnosed cancer type and the leading cause

of cancer death among females. In this book, we discussed characteristics of breast cancer cell, role of

microenvironment, stem cells and metastasis for this deadly cancer. We hope that this book will contribute to

the development of novel diagnostic as well as therapeutic approaches.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Nicholas J. Sullivan (2011). Interleukin-6 in the Breast Tumor Microenvironment, Breast Cancer - Focusing

Tumor Microenvironment, Stem cells and Metastasis, Prof. Mehmet Gunduz (Ed.), ISBN: 978-953-307-766-6,

InTech, Available from: http://www.intechopen.com/books/breast-cancer-focusing-tumor-microenvironment-

stem-cells-and-metastasis/interleukin-6-in-the-breast-tumor-microenvironment



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


