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1. Introduction  

Phospholipases A2 (PLA2s) constitute a large and diverse group of enzymes with broad 
biological functions, ranging from membrane synthesis and turnover to the generation of 
signaling molecules. So far, more than 20 isoforms of PLA2 presenting diverse 
characteristics, including calcium requirement and subcellular localization, have been 
documented. Based on their nucleotide sequence and other properties, PLA2 enzymes have 
been categorized into 15 groups (I-XV) − according to the classification of Dennis (Burke & 
Dennis, 2009a, 2009b). Released by cells, several groups of PLA2s are relatively small 
proteins (~14 kDa) that require millimolar amounts of calcium for their optimal activation. 
These groups of enzymes have historically been called the secreted forms of PLA2 (or 
sPLA2). The remaining groups are larger proteins, localized in intracellular compartments, 
which are either dependent or not on calcium ions. 
The first intracellular PLA2 to be cloned was a 85-kD protein, classified as a group IV PLA2 

(Dennis, 1997; Leslie, 1997). This enzyme, now designated as cytosolic PLA2α (cPLA2α), is 
known to be under the influence of extracellular signals likely to induce calcium 
mobilization and phosphorylation (Leslie, 1997). Another group of PLA2 (group VI), which 
does not require calcium variations for its activity, has been cloned (Balboa et al., 1997; Ma 
et al., 1997; Tang et al., 1997). This PLA2 isoform has been designated as calcium-
independent PLA2 (iPLA2) (Balsinde & Dennis, 1997; Dennis, 1997) and, according to 
numerous lines of biochemical evidence, may account for most of the PLA2 activity 
detected in resting cells. From a pharmacological perspective, iPLA2 activity is markedly 
reduced by bromoenol lactone (BEL) suicide substrate, which is not an effective inhibitor of 
sPLA2 or cPLA2 enzymes at comparable concentrations (Balboa et al., 1997; Kudo & 
Murakami, 2002). Several interesting reviews have considered the functional and 
pathological implications of PLA2 enzymes (Balsinde & Balboa, 2005; Bazan et al., 1993; 
Brown et al., 2003; Farooqui & Horrocks, 2004; Farooqui et al., 2004; Hooks & Cummings, 
2008; Kolko et al., 2007; Kudo & Murakami, 2002; Leslie, 2004; Phillis & O'Regan, 2004; Sun 
et al., 2004; Sun et al., 2005). In this report, we will describe new and unique functional 
roles of iPLA2 in the regulation of brain glutamate receptor functions, neuronal plasticity 
and neurodegenerative processes.  

www.intechopen.com



 
Neurodegenerative Diseases – Processes, Prevention, Protection and Monitoring 

 

202 

2. iPLA2 isoforms and functions 

Among PLA2 enzymes, group IV (cPLA2) and group VI (iPLA2) families represent 
intracellular enzymes with a catalytic serine in their lipase consensus motif. Various studies, 
including gene targeting, have indicated that group IVA cPLA2 (cPLA2α), which is 
regulated by calcium-dependent membrane translocation and mitogen-activated protein 
kinase (MAPK)-dependent phosphorylation, is central in stimulus-dependent eicosanoid 
biosynthesis (Bonventre et al., 1997; Uozumi et al., 1997). On the other hand, group VIA 
iPLA2 (iPLA2β) and group VIB iPLA2 (iPLA2γ) isoforms mainly exhibit PLA2 activity, 
whereas other iPLA2 isoforms δ, ε, ξ and η display triglyceride lipase and transacylase 
activities (Table 1) in marked preference to PLA2 activity (Jenkins et al., 2004; Quistad et al., 
2003). Group VIA iPLA2β, the most extensively studied iPLA2 isoform, has been implicated 
in various cellular events, such as phospholipid remodelling (Balsinde et al., 1997; Balsinde 
& Dennis, 1997), eicosanoid formation (Tay & Melendez, 2004), cell proliferation (Herbert & 
Walker, 2006), apoptosis (Atsumi et al., 1998), and activation of store-operated channels and 
capacitative calcium influx (Smani et al., 2004). Disruption of the iPLA2β gene causes 
impaired sperm motility (Bao et al., 2004), mitigated insulin secretion (Bao, Bohrer et al., 
2006; Bao, Song et al., 2006) and neuronal disorders presenting iron dyshomeostasis 
(Morgan et al., 2006). 
 

Molecular Alternate

Mass (kDa) names

VIA-1 Human/Murine 84-85 8 ankyrin repeats iPLA2

VIA-2 Human/Murine 88-90 7 ankyrin repeats iPLA2β

VIB Human/Murine 88-91 Membrane-bound iPLA2γ

VIC Human/Murine 146
Integral membrane 

protein
iPLA2

VID Human 53 Acylglycerol 

transacylase,triglycerol 

lipase

iPLA2ε

VIE Human 57 Acylglycerol 

transacylase,triglycerol 

lipase

iPLA2ζ

VIF Human 28 Acylglycerol 

transacylase,triglycerol 

lipase

iPLA2η

Group Source Feature

δ

 

Table 1. Calcium-independent group VI phospholipase A2 (iPLA2) (Adapted from 
(Schaloske & Dennis, 2006)) 
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Group VIB iPLA2γ is a membrane-bound iPLA2 enzyme with unique features, such as 
utilization of distinct translation initiation sites producing different sizes of enzymes with 
distinct subcellular localizations (Kinsey,McHowat,Beckett et al., 2007; Mancuso et al., 2000; 
Mancuso et al., 2004; Murakami et al., 2005; Tanaka et al., 2000; J. Yang et al., 2003) and 
phospholipid selectivity in terms of sn-1/sn-2 positional specificity that differs among 

substrates (Yan et al., 2005) iPLA2γ has a mitochondrial localization signal in the N-terminal 
region and a peroxisomal localization signal near the C-terminus, and the 88-kDa full-length 

and 63-kDa translation products of iPLA2γ are preferentially distributed in mitochondria 
and peroxisomes, respectively (Kinsey,McHowat,Beckett et al., 2007; Mancuso et al., 2004; 
Murakami et al., 2005). In the brain, iPLA2 represents predominant phospholipase activity in 
cells under resting conditions (Wolf et al., 1995; H. C. Yang et al., 1999). Reverse 
transcription-polymerase chain reaction experiments have revealed that rat brains 
constitutively express messenger RNAs for at least 3 calcium-independent PLA2 isoforms, 

iPLA2β, iPLA2γ and cPLA2γ (Kinsey et al., 2005; Tang et al., 1997; Underwood et al., 1998). 
These isoforms are characterized by differential sensitivity to PLA2 inhibitors and, by 
isolating each enantiomer of the iPLA2 inhibitor BEL, Jenkins et al. (Jenkins et al., 2002) 

established that the (S)-enantiomer of BEL selectively reduces iPLA2β activity, while its (R)-

enantiomer blocks the iPLA2γ isoform more efficiently. 
Although little is known about iPLA2 functions in neurons, a growing body of evidence 

suggests their involvement in hippocampal long-term potentiation (LTP) of excitatory 

synaptic transmission (Fujita et al., 2001; Wolf et al., 1995). Hippocampal LTP, first described 

by Bliss and Lomo in 1973, is commonly regarded as a functional model of synaptic 

adaptation (i.e. plasticity) that likely participates in learning and memory (Bliss & 

Collingridge, 1993). PLA2 activities are increased in membranes of slices prepared from the 

dentate gyrus after LTP induction in anaesthetized rats (Clements et al., 1991) and could be 

involved in hippocampal LTP expression by elevating the production of arachidonic acid 

(AA) that retrogradely increases transmitter release at glutamatergic synapses (Drapeau et 

al., 1990; J. H. Williams et al., 1989). Facilitation of transmitter release by PLA2s during LTP 

is also reinforced by the fact that iPLA2 activity plays an important role in membrane fusion 

processes required for exocytosis (Brown et al., 2003; Takuma & Ichida, 1997). 

The notion that iPLA2 activity may facilitate LTP expression by increasing glutamate release 
is complicated, however, by an abundant number of reports demonstrating that synaptic 
potentiation, at least in area CA1 of the hippocampus, is not dependent on changes in 
transmitter release, but is rather mediated by mechanisms involving the up-regulation of 
postsynaptic responses mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid (AMPA) receptors at glutamatergic synapses (Hayashi et al., 2000). Several 
alterations have been reported at postsynaptic sites during LTP, including faster kinetics of 
receptor-associated ion channels (Ambros-Ingerson & Lynch, 1993; Ambros-Ingerson et al., 
1993), redistribution of existing receptors within the postsynaptic density (Xie et al., 1997) 
and insertion of new receptors at synapses (Lu et al., 2001; Pickard et al., 2001). Consistent 
with these observations, we recently demonstrated that pretreatment of hippocampal slices 
with the iPLA2 inhibitor BEL completely abolishes AMPA receptor translocation in synaptic 
membranes and expression of CA1 hippocampal LTP (Martel et al., 2006). Interestingly, 
both LTP and AMPA receptor translocation display enantio-selective impairment by the 

iPLA2γ blocker (R)-BEL but not by the iPLA2β inhibitor (S)-BEL, suggesting that iPLA2γ 
represents the crucial isoform governing hippocampal synaptic strengthening.  
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iPLA2γ mRNAs and proteins are enriched in the endoplasmic reticulum (ER)-Golgi 
apparatus in several cell types (Kinsey et al., 2005), where they may be essential for diverse 
intracellular trafficking pathways, such as retrograde movement from the Golgi complex to 
the ER, transport of material from the trans-Golgi network to the plasma membrane or 
recycling of membrane and receptors through endocytic pathways (Brown et al., 2003). In 
this matter, Pechoux et al. (Pechoux et al., 2005) reported that iPLA2 inhibition slowed down 
the transport of caseins from the ER to the Golgi apparatus and from the trans-Golgi 
network to the plasma membrane, indicating that iPLA2 could participate in membrane 
trafficking events leading to the secretion of milk proteins. Interestingly, translocation of 
AMPA receptors originating from the ER-Golgi complex to postsynaptic membranes might 

be critically involved in LTP (Broutman & Baudry, 2001). Thus, the iPLA2γ isoform may be 
well-suited to favour AMPA receptor translocation from intracellular pools to synaptic 
membranes during LTP. 
Interestingly, impairment in synaptic plasticity by PLA2 inhibition is correlated with loss of 
animal abilities to perform on memory tasks. For instance, intracerebral injection of wide-
spectrum PLA2 inhibitors into the chick intermediate medial hyperstriatum ventrale curbs 
the learning of a passive avoidance task (Holscher & Rose, 1994), while intraperitoneal 
injections in rats impede spatial learning tested in the Morris water maze (Holscher et al., 
1995). Additionally, intracerebroventricular injection of specific iPLA2 inhibitors 30 min 
before a learning session impairs spatial working memory in rodents (Fujita et al., 2000). 
Acquisition of 1-trial step-down inhibitory avoidance in rats correlates with iPLA2 activity in 
the hippocampus, and bilateral injection of iPLA2 inhibitors in region CA1 of the dorsal 
hippocampus prior to training hinders both short-term and long-term memory (Schaeffer & 
Gattaz, 2005). Hence, intact iPLA2 activity seems important for proper acquisition of new 
memories. In a modified protocol developed to test memory retrieval, the same group 
recently showed that injection of the dual cPLA2 and iPLA2 inhibitor palmitoyl 
trifluoromethylketone in region CA1 of the rat dorsal hippocampus before performance 
testing impaired trained behavior in the step-down inhibitory avoidance task (Schaeffer & 
Gattaz, 2007). Importantly, memory retrieval was re-established after recovery of PLA2 
activity, indicating that these PLA2s are indeed necessary for memory retrieval. However, 
identification of iPLA2 isoforms in memory acquisition and retrieval remains to be 
addressed. 

3. iPLA2 and neuronal cell death mechanisms 

Recently, evidence from non-neuronal cells has suggested that iPLA2 enzymes may have 
diverse effects on cell death. First, constitutive iPLA2 activity may contribute to cell death 

since iPLA2β overexpression amplifies thapsigargin-induced apoptosis in INS-1 insulinoma 
cells (Ramanadham et al., 2004) and accelerates U937 cell death after long-term exposure to 
hydrogen peroxide (Perez et al., 2004). iPLA2 has been shown to play a pivotal role in 
oxidant damage of astrocytes (Xu et al., 2003), and its blockade by BEL dampens oligomeric 

amyloid-beta (Aβ1-42-induced mitochondrial membrane potential loss and reactive oxygen 
species production in these cells (Zhu et al., 2006). Moreover, iPLA2 inhibition reduces the 
size of infarcts produced by global ischemia (S. D. Williams & Gottlieb, 2002). On the other 
hand, iPLA2 activity has also been shown to protect against cell death, as inhibition of iPLA2 
accentuates oxidant-induced cell death in renal proximal tubule cells and astrocytes 
(Cummings et al., 2002; Peterson et al., 2007). Likewise, iPLA2 activity may also have 
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deleterious or beneficial effects on neurons. For instance, acute inhibition of iPLA2 activity 
by racemic BEL has been found to be neuroprotective in organotypic hippocampal slices 
exposed to oxygen-glucose deprivation (Strokin et al., 2006). In contrast, immature cultures 
of primary cortical neurons exposed for several days to BEL show decreased neuritogenesis 

and cellular viability (Forlenza et al., 2007; Mendes et al., 2005). Moreover, iPLA2β knockout 
mice exhibit abnormal motor behaviors accompanied by the appearance of vacuoles and 
ubiquitin-positive axonal swelling (spheroids) in many brain regions (Malik et al., 2008; 

Shinzawa et al., 2008), suggesting that iPLA2β dysfunction leads to neuroaxonal dystrophy. 

While the reported impact of iPLA2 on cell viablility is mostly attributable to iPLA2β, 

involvement of the iPLA2γ isoform is much less understood. A previous report 

demonstrated that iPLA2γ localized in mitochondria catalyzes AA liberation that mediates 
mitochondrial permeability transition, a key control point for apoptosis 

(Kinsey,McHowat,Patrick et al., 2007). On the other hand, iPLA2γ expression may exert 
cytoprotective effects during complement-mediated glomerular epithelial cell injury (Cohen 
et al., 2008). In addition, recent findings from our laboratory have revealed that constitutive 

iPLA2γ activity might represent an important neuroprotective system capable of limiting 

brain excitotoxic damage. We have shown that inhibition of iPLA2γ by the enantio-specific 
inhibitor (R)-BEL makes hippocampal slice cultures more vulnerable to AMPA-mediated 
excitotoxicity (Menard et al., 2007). Overactivation of N-methyl-D-aspartic acid (NMDA) or 
AMPA glutamatergic receptors, allowing the entry of high cation levels into cells, activates a 
number of enzymes, including ATPases, lipases, proteases and endonucleases that, in turn, 
deplete energy stores or damage cell membranes, cytoarchitecture or nucleus, respectively. 
Excitotoxicity has been reported to contribute to a variety of neuropathological disorders, 
including ischemic stroke, epilepsy, amyotrophic lateral sclerosis and Alzheimer’s disease 
(AD) (Kwak & Weiss, 2006; Villmann & Becker, 2007). 

Interestingly, the harmful effect of iPLA2γ inhibition on AMPA-mediated toxicity is 
associated with selective up-regulation of AMPA receptor GluR1 subunit (but not GluR2) 
phosphorylation with a subsequently increased level in synaptic membrane fractions 
(Menard et al., 2007; Menard et al., 2005; Villmann & Becker, 2007). In the hippocampus, 
AMPA receptors generally form heterodimers containing 2 copies of each of the GluR1 and 
GluR2 subunits. It is now well-recognized that GluR2 subunits render AMPA receptors 
impermeable to calcium. Consequently, its presence or absence plays a critical role in 
cellular calcium homeostasis and in determining susceptibility to excitotoxicity (Geiger et 

al., 1995; Sommer et al., 1991). Hence, the reduction of iPLA2γ activity, by promoting surface 
expression of the GluR1 subunit over the GluR2 subunit (which is reflected by a rise in the 
GluR1/GluR2 ratio in the membrane fraction), could exacerbate excitotoxic cell death 
through the formation of GluR2-lacking AMPA receptors that would allow adverse Ca2+ 
influx upon prolonged AMPA receptor activation. Consistent with this possibility, the 

greater cell death observed under iPLA2γ inhibition is prevented by GluR2-lacking AMPA 

receptor antagonists (Menard et al., 2007). How inhibition of iPLA2γ influences the 
expression of AMPA receptor subtypes in synaptic membranes remains an open question. 
As mentioned earlier, this may occur by the sorting of protein transport through 
intracellular secretory pathways (Pechoux et al., 2005). There are other circumstances in 
which GluR1 subunits are selectively up-regulated in hippocampal neurons, such as after 
activity deprivation elicited by prolonged blockade of AMPA receptors (Thiagarajan et al., 
2005) or tumor necrosis factor-alpha receptor activation (Stellwagen et al., 2005). In the latter 
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case, it has been proposed that up-regulation of GluR1 homomeric receptors could derive 
from a reserve pool of non-GluR2-containing AMPA receptors existing near the membrane. 

4. iPLA2 dysfunction and neuropathological disorders 

Whereas cPLA2 and sPLA2 are commonly believed to be preferentially involved in AA 
release, emerging evidence indicates that iPLA2 activity can contribute to docosahexaenoic 
acid (DHA) release from brain phospholipids (J. T. Green et al., 2008). To our knowledge, 
the first suggestion that brain iPLA2 activity may be crucial for DHA release came from a 
study by Strokin et al. (Strokin et al., 2003) who showed that racemic BEL inhibited DHA 
release from astrocytes. Later, using siRNA silencing procedures, the same group 
demonstrated that DHA release from phospholipids of astrocytes was mainly dependent on 

iPLA2γ activity (Strokin et al., 2007). DHA is one of the most abundant omega-3 
polyunsaturated fatty acids (PUFA) present in phospholipids of the mammalian brain 
(Glomset, 2006), where it is recognized to be important for the maintenance of neural 
membranes and brain function integrity (Youdim et al., 2000). Deficient dietary intake of 
DHA has been associated with lower performance of learning abilities in rodents (Catalan et 
al., 2002; Fedorova & Salem, 2006; Takeuchi et al., 2002). On the other hand, DHA dietary 
supplementation could decrease the risk of developing AD (Calon & Cole, 2007; Calon et al., 
2005; Calon et al., 2004) or exert neuroprotective actions in a mouse model presenting 
numerous aspects of Parkinson’s disease (Bousquet et al., 2008), while high-fat consumption 
combined with low omega-3 PUFA intake promotes AD-like neuropathology (Julien et al., 
2008). 
Both iPLA2 activity and DHA levels have been reported to be decreased in the plasma of AD 
patients (Conquer et al., 2000; Gattaz et al., 2004). iPLA2 activity is also lower in AD brains 

(Ross et al., 1999; Talbot et al., 2000). Whether or not decreased iPLA2γ activity, through its 
capacity to alter DHA release from brain astrocytes, is a factor that contributes to AD 
pathology remains to be established. Numerous neurobiological studies have demonstrated 
that DHA may be acting at different fundamental levels to counteract the cellular 
manifestations of AD. There are, for instance, strong indications that DHA release in the 
brain may diminish oxidative stress (Wu et al., 2004; Yavin et al., 2002) and glutamate-
induced toxicity (Wang et al., 2003). In this line, DHA-induced reduction of excitotoxic 
damage in the hippocampus might, in fact, be dependent on internalization of AMPA 
receptors (Menard et al., 2009). The potential ability of DHA to reduce caspase activation 

(Calon et al., 2005; Calon et al., 2004), Aβ peptide accumulation and tau 
hyperphosphorylation (K. N. Green et al., 2007; Oksman et al., 2006) also strongly supports 
the notion that DHA deficiency, through iPLA2 down-regulation, could represent a 
precursor event that likely initiates the cellular manifestations of AD pathology. 
This has been the premise of our recent investigation on the influence of iPLA2 inhibition on 
microtubule-associated protein tau phosphorylation. We determined whether iPLA2 
blockade could contribute to the development of tau hyperphosphorylation in cultured 
hippocampal slices from transgenic P301L mice expressing human tau. In this experimental 

model, treatment for up to 12 h with the specific iPLA2γ inhibitor (R)-BEL resulted in 
significantly increased tau phosphorylation at Thr231, Ser199/202 and Ser404 sites, and  
in total tau levels. High-resolution imaging studies have demonstrated that 
hyperphosphorylation is primarily localized in cell bodies and dendrites of hippocampal 
pyramidal neurons (Fig. 1). 
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These changes appear to be associated with up-regulation of P25, an activator of cyclin-
dependent kinase 5, and phosphorylation/activation of MAPK. These data provide strong 

evidence that constitutive iPLA2γ activity is important in the regulation of tau 
hyperphosphorylation in hippocampal pyramidal neurons, raising the possibility that iPLA2 
dysfunctions might contribute to the development of tauopathies in AD. In this line, a 

putative biochemical model that accounts for the potential influence of iPLA2γ on Tau 
pathology is represented in Figure 2 
 

AT231 DAPI Merge

 Control

(R)-BEL

 

Fig. 1. Inhibition of iPLA2γ induces Tau phosphorylation in area CA1 of the hippocampus. 
Cultured hippocampal slices from P301L tau transgenic mice were pre-exposed to the 

iPLA2γ  inhibitor R-BEL. Slices were then processed for confocal immunofluorescence 
microscopy with an antibody known to recognize the Thr-231 Tau epitope (AT231, in 
green). When compared to controls (upper panel), immunostaining revealed increased 
phosphorylation in the CA1 region of cultured hippocampal slices pre-exposed to 3 µM (R)-
BEL for a period of 12 h (lower panel). DAPI (in blue) was included in the mounting 
medium to label nuclei. Scale bar = 25 µm 

One of the central hypotheses underlying the pathophysiology of AD is the production of 

cytotoxic Aβ peptides that impairs neuronal activity and leads to a decline in memory and 

cognition (Palop et al., 2006). The exact mechanisms by which Aβ peptides contribute to AD 

pathogenesis remain uncertain. PLA2 enzymes may be involved in this condition, as Aβ 

peptides accentuate cPLA2α activity in neuronal cultures (Zhu et al., 2006) and primary 

cortical astrocytes (Sanchez-Mejia et al., 2008), while Aβ-induced learning and memory 
deficits in a transgenic mouse model of AD are prevented after genetic ablation of 

cPLA2α activity in the brain (Sanchez-Mejia et al., 2008). Regarding the iPLA2 system, it 
appears that its activity is essential for maintaining membrane phospholipid integrity by 
reducing peroxidative damage, especially injuries originating in the mitochondria. In this 
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regard, iPLA2 expression prevents the loss of mitochondrial membrane potential and 
attenuates the release of cytochrome c as well as apoptotic proteins, and ultimately 
diminishes apoptosis in INS-1 cells exposed to staurosporine (Seleznev et al., 2006). 
Furthermore, Kinsey et al. (Kinsey et al., 2008; Kinsey,McHowat,Patrick et al., 2007) reported 
that prominent PLA2 activity in the mitochondria of rabbit renal proximal tubular cells 

comes from iPLA2γ and is of capital importance for the prevention and repair of basal lipid 
peroxidation and the maintenance of mitochondrial viability. Based on recent studies, it has 

been proposed that Aβ-induced neurotoxicity might derive from mitochondrial defects. 

Indeed, in vitro experiments have shown that Aβ peptides can be internalized by cells, 
imported into mitochondria and ultimately elicit mitochondrial dysfunctions (Hansson 

Petersen et al., 2008). Given its localization, it is thus tempting to propose that iPLA2γ might 
represent an important cellular component that prevents mitochondrial dysfunctions. 

Experiments are required to determine whether iPLA2γ overexpression activity might exert 

protective effects against Aβ peptide-induced mitochondrial dysfunctions. 
 

 

Fig. 2. A putative model illustrating the potential implication of iPLA2γ in Alzheimer’s 
disease. In this simplified model, iPLA2 dysfunction leads to delivery of new GluR1-
containing receptors on neuronal membranes. These receptors are then inclined to induce 
calcium influx and, eventually, Tau phosphorylation by calcium-dependent protein kinases 

such as Cdk5 and GSK-3β 

5. Conclusion 

Besides AD, aberrant function of iPLA2s has also been observed in several other 
neurological disorders. For instance, increased iPLA2 activity might be an important factor 
that contributes to phospholipid abnormalities in schizophrenia or bipolar patients with a 
history of psychosis (Ross et al., 2006; Ross et al., 1999). However, the relationship between 
iPLA2 up-regulation and cellular manifestations of schizophrenia requires further 

investigation. As mentioned earlier, because iPLA2γ regulates glutamate receptor subunit 
expression on cell membranes and functions, it will be interesting to examine whether the 

increase in iPLA2γ activity can lead to down-regulation of the AMPA receptor GluR1 
subunit. This is of particular importance, since GluR1 down-regulation may evoke striatal 
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hyperdopaminergia (Wiedholz et al., 2008), a well-established biological defect involved in 
schizophrenia-related behaviours. Interestingly, the relationship between iPLA2s and the 
dopaminergic system is reinforced by the fact that iPLA2 inhibition or knockdown in the rat 
striatum, motor cortex and thalamus results in the apparition of Parkinson-related 
behaviours (Lee et al., 2007), which are also known to depend on dopamine dysfunction. 
Thus, given the growing evidence relating the importance of iPLA2s in physiological and 
pathological conditions, targeting iPLA2 activity may represent a potentially new 
therapeutic strategy against several neurological disorders. 
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