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1. Introduction 

Oxidative damage plays a pivotal role in the initiation and progress of many human 
diseases and also in the development of acute and chronic pathological conditions in brain 
tissue (Halliwell, 2006; Hyslop et al., 1995; Ischiropoulos & Beckman, 2003; Minghetti, 2005). 
Compared with other tissues, the brain is particularly vulnerable to oxidative damage due 
to its high rate of oxygen utilization and high contents of oxidizable polyunsaturated fatty 
acids (Floyd, 1999; Sastry, 1985). In addition, certain regions of the brain are highly enriched 
in iron, a metal that is catalytically involved in the production of damaging reactive oxygen 
species (ROS) (Hallgren & Sourander, 1958). Although ROS are critical intracellular 
signaling messengers (Schrecka & Baeuerlea, 1991), excess of free radicals may lead to 
peroxidative impairment of membrane lipids and, consequently, to disruption of neuronal 
functions, and apoptosis. Among the ROS that are responsible for oxidative stress, H2O2 is 
thought to be the major precursor of highly reactive free radicals, and is regarded as a key 
factor in both neuronal (Vaudry et al., 2002) and astroglial cell death (Ferrero-Gutierrez et al., 
2008). H2O2 is normally produced in reactions predominantly catalyzed by superoxide 
dismutase (SOD) and monoaminoxidases (MAO) A and B in the brain (Almeida et al., 2006; 
Duarte et al., 2007). As with both Ca2+ and NO, H2O2 appears to play contradictory roles, in 
that it is potentially toxic at high concentrations, even though it is a central signaling 
compound at low concentrations (Miura et al., 2002). Brain cells have the capacity to 
produce peroxides, particularly H2O2, in large amounts (Dringen et al., 2005). Excess of H2O2 
accumulates during brain injuries and neurodegenerative diseases, and can cross cell 
membranes to elicit its biological effects intracellularly (Bienert et al., 2006). Although H2O2 
is generally poorly reactive, it forms highly toxic hydroxyl radicals, which may damage all 
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the major classes of biological macromolecules in the cell, through iron- or copper ion-
mediated oxidation of lipids, proteins, and nucleic acids. This capability can partly account 
for H2O2-mediated neuronal and glial cell death. H2O2 also induces differential protein 
activation, which indicates varied biological effects of this molecule. In the mammalian 
central nervous system (CNS), the transition metal zinc is an endogenous molecule that is 
localized exclusively to the synaptic vesicles of glutamatergic neurons and that has a special 
role in modulating synaptic transmission. Chelatable zinc is released into the synaptic cleft 
with the neurotransmitter during neuronal execution (Assaf & Chung, 1984), and under 
normal circumstances the robust release of zinc is transient and is efficiently cleared from 
the synaptic cleft to ensure the performance of successive stimuli. However, in pathological 
conditions, zinc dyshomeostasis, with consequently elevated levels of extracellular zinc has 
been recognized as an important factor in the resulting neuropathology (Choi & Koh, 1998; 
Cote et al., 2005; Li et al., 2009). In neurotransmission, the amount of zinc in the synaptic 
cleft is in the 10- to 30-μM range, but in pathological conditions that involve sustained 
neuronal depolarization, e.g., ischemia, stroke, or traumatic brain injury, the levels of 
extracellular zinc can increase to 100- to 400-μM, at which it can contribute to the resulting 
neuropathology (Frederickson et al., 2005; Li et al., 2001). In vivo and in vitro studies showed 
that, at concentrations that can be reached in the mammalian CNS during excitotoxic 
episodes, injuries or diseases, zinc is toxic to both neurons and astrocytes (Bishop et al., 2007; 
Hwang et al., 2008; Kim et al., 1999a; Kim et al., 1999b; Koh et al., 1996; Ryu et al., 2002; 
Sheline et al., 2000; Stork & Li, 2009). Zinc induces oxidative stress and ROS production, 
which contribute to both glial cell death (Ryu et al., 2002) and neuronal cell death (Kim et al. 
1999a; Kim et al. 1999b). Zinc decreased the GSH content of primary cultures of astrocytes 
(Kim et al., 2003; Ryu et al., 2002), increased their GSSG content (Kim et al., 2003) and 
inhibited glutathione reductase activity in these cells (Bishop et al., 2007); furthermore, it 
slowed the clearance of exogenous H2O2 by astrocytes, and promoted intracellular 
production of ROS (Bishop et al., 2007). Thus, ROS generation, glutathione depletion and  
mitochondrial dysfunction may be key factors in ZnCl2–induced glial toxicity (Ryu et al., 
2002). Astrocytes are the most abundant glial cell type in the brain. They play important 
roles in maintenance of homeostasis, in provision of metabolic substrates for neurons, and 
also in coupling cerebral blood flow to neuronal activity. They are prominent in protecting 
neurons against oxidative stress and cell death, and in providing trophic supports such as 
the glial cell-line-derived neurotrophic factor (GDNF) (Sandhu et al., 2009). There is 
evidence that dysfunctional astrocytes can enhance neuronal degeneration by diminishing 
secretion of trophic factors (Takuma et al., 2004). The study of astrocytes is particularly 
important, in light of the co- existence of apoptotic death of neurons and astrocytes in 
damaged brains affected by ischemia and neurodegenerative diseases. Despite their high 
antioxidative activities, astrocytes exhibit a high degree of vulnerability, and are not 
resistant to the effects of ROS. They respond to substantial or sustained oxidative stress with 
increased intracellular Ca2+, loss of mitochondrial potential, and decreased oxidative 
phosphorylation (Robb et al., 1999). Since astrocytes determine the brain's vulnerability to 
oxidative injury, and form a tight functional unit with neurons, once astrocyte energy 
metabolism and antioxidant capacity are impaired, astrocytic death may critically impair 
neuronal survival (Feeney et al., 2008; Lu et al., 2008). Thus, protection of astrocytes from 
oxidative insult appears essential to brain function maintenance. Many herb and plant 
extracts are used as folk medicines for various kinds of diseases and organ dysfunctions. 
Achillea fragrantissima (Af; Asteraceae) is a desert plant that for many years has been used as 
a hypoglycemic medicinal plant in traditional medicine in the Arabian region (Yaniv et al.,  
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1987), and for the treatment of gastrointestinal disturbances (Segal et al., 1987). The 
ingredient responsible for the anti-spasmolytic activity was found to be a flavone aglycone 
named cirsiliol (5,3',4'-trihydroxy-6,7-dimethoxyflavone) that was shown to antagonize the 
spasmodic effects, inhibit Ca2+ influx and stimulate Ca2+ release from intracellular stores 
(Mustafa et al., 1992). In addition, the hydro-alcoholic extract of Af was shown to have a 
remarkable antiviral activity against poliomyelitis-1 virus (Soltan & Zaki, 2009). However, 
the effects of Af in the context of brain injuries and neurodegenerative diseases, have not 
been studied to date. In a recent study we have found that the ethanolic extract of Achillea 
fragrantissima inhibited lipopolysaccharide (LPS) –induced nitric oxide (NO) production by 
activated primary microglial cells. This extract also inhibited LPS - elicited expression of the 

pro-inflammatory cytokines interleukin1β (IL-1β) and tumor necrosis factor-α (TNFα), as 
well as expression of the proinflammatory enzymes, cyclooxygenase-2 (COX-2) and nitric 
oxide synthase (iNOS) by these cells (in preparation). Since oxidative stress has become 
accepted as a suitable target for early therapeutic intervention in brain injuries and 
neurodegenerative diseases, the present study addressed the astroprotective and antioxidant 
activities of this plant extract.  

2. Materials and methods 

2.1 Reagents 
Dulbecco's modified Eagle's medium (DMEM), Leibovitz-15 medium, glutamine, antibiotics 
(10,000 IU/ml penicillin and 10,000 μg/ml streptomycin), soybean trypsin inhibitor, fetal 
bovine serum (FBS) and Dulbecco’s phosphate buffered saline (PBS) (without calcium and 
magnesium) were purchased from Biological Industries (Beit Haemek, Israel); dimethyl 
sulfoxide (DMSO) was obtained from Applichem (Darmstadt, Germany); Hydrogen 
peroxide was obtained from MP Biomedicals (Ohio, USA); 2,2'-Azobis(amidinopropane) 
(ABAP) was obtained from Wako chemicals (Richmond, VA), and other chemicals including 
ZnCl2 and 2'7'-dichlorofluorescein diacetate (DCF) were purchased from Sigma Chemical 
Co. (St Louis, MO, USA). 

2.2 Preparation of Af Extracts 

The plant was collected in the Arava Valley and authenticated. The voucher specimens have 
been kept in as part of the Arava Rift Valley Plant Collection; VPC (Dead Sea & Arava 
Science Center, Central Arava Branch, Israel, http://www.deadseaarava-rd.co.il/) under 
the accession code AVPC0040. Freshly collected plants were dried at 40 °C for three days 
and extracted in ethanol (96%). The liquid phase was then evaporated off, and the dry 
material was dissolved in DMSO to a concentration of 100 mg/ml to produce the Af extract. 

2.3 High performance liquid chromatography (HPLC) conditions 

The ethanolic extract of Af was subjected to HPLC chromatography. Separation was made 
using reverse phase column (Betasil C-18, 5 μm, 250 × 0.46 mm; Thermo-Hypersil, UK) by 
gradient elution with water-acetic acid (97 : 3 V/V) and methanol as described previously 
(Chen et al., 2010), and detection at 360 nm (Blue line) and 280 nm (Red line) (Fig. 1). 

2.4 Liquid chromatography–mass spectrometry (LC–MS) conditions 

The ethanolic extract of Af was subjected to MS/MS (Fig. 2). The mass spectra were 
performed on a liquid chromatography–mass spectrometry (LC–MS) Agilent 1100LC series 
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(Wald- bronn, Germany) and Bruker Esquire 3000plus MS (Bremen, Germany) instrument, 
operated in the electrospray ionization (ESI) in a positive ion mode. A reverse phase column 
(BetasilC-18,5 mm, 250 mm x 0.46 mm, Thermo-Hypersil,UK) was used. The MS conditions  
 

 

Fig. 1. HPLC analysis of the ethanolic extract of Af 

 

         35              40                45                  50                   55  

Fig. 2. Liquid chromatography–mass spectrometry (LC–MS) analysis of the ethanolic extract 
of Af 
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were optimized as follows: API electron spray interface, positive mode polarity, a drying 
gas flow of 10L/min, an nebulizer gas pressure of 60psi,a drying gas temperature of 300°C, 
a fragmentor voltage of 0.4V and capillary voltage of 4.5kV.  
Four main peaks were identified by ESI-MS: Compound 1, (C27H34O14Na), r.t. 50.1, m/z 605 
[M+Na+146+146], m/z 582 [M+H+146+146]+, ; suggested as epicatechin-rhamnoside. 
Compound 2, (C28H33O13), r.t. 48.8- m/z 577 [M+H+146+146]+; suggested as Acacetin 
rhamnoside. Compound 3, (C22H22O10Na ), r.t. 47.4- m/z 469 [M+Na+162]+, , m/z 447 
[M+H+162]+,; suggested as Acacetin-glucoside, m/z 285 [M+H]+ aglycon. Compound 4, 
(C24H25O12), r.t. 46.6- m/z 465 [M+H+162]+, suggested as Quercetin-glucoside, m/z 303 
[M+H]+ aglycon.  

2.5 Preparation of primary glial cell cultures 

Cultures of primary rat glial cells were prepared from cerebral cortices of 1- to 2-day-old 
neonatal Wistar rats. Briefly, meninges and blood vessels were carefully removed from 
cerebral cortices kept in Leibovitz-15 medium; brain tissues were dissociated by 
trypsinization with 0.5% trypsin (10 min, 37 °C, 5% CO2); and cells were washed first with 
DMEM containing soybean trypsin inhibitor (100 μg/ml) and 10% FBS and then with 
DMEM containing 10% FBS. Cells were seeded in tissue culture flasks pre-coated with poly-
D-lysine (20 μg/ml in 0.1 M borate buffer pH 8.4) and incubated at 37 °C in humidified air 
with 5% CO2. The medium was changed on the second day and every second day thereafter. 
At the time of primary cell confluence (day 10), microglial and progenitor cells were 
discarded by shaking (180 RPM, 37 °C) the flasks on a horizontal shaking platform. 
Astrocytes were then replated on 24-well poly-D-lysine-coated plastic plates, at a density of 
1×105/well, in DMEM (without phenol red) containing 2% FBS, 2 mM glutamine, 100 U/ml 
penicillin, and 100 μg/ml streptomycin.  
The research was conducted in accordance with the internationally accepted principles for 
laboratory animal use and care, as found in the US guidelines, and was approved by the 
Institutional Animal Care and Use Committee of The Volcani Center, Agricultural Research 
Organization.  

2.6 Treatment of astrocytes 
Twenty four hours after plating, the original medium in which the cells were grown was 
aspirated off, and fresh medium was added to the cells. Dilutions of plant extracts first in 
DMSO and then in the growth medium were made freshly from stock solution just prior to 
each experiment and were used immediately. The final concentration of DMSO in the 
medium was 0.2%. Dilutions of H2O2 in the growth medium were made freshly from a 30% 
stock solution immediately prior to each experiment and were used immediately.  

2.7 Determination of cell viability 
Cell viability was determined using a commercial colorimetric assay (Roche Applied 
Science, Germany) according to the manufacturer's instructions. This assay is based on the 
measurement of lactate dehydrogenase (LDH) activity released from the cytosol of damaged 
cells into the incubation medium.  

2.8 Evaluation of intracellular ROS production 
Intracellular ROS production was detected using the non-fluorescent cell permeating 
compound, 2'7'-dichlorofluorescein diacetate (DCF-DA). DCF-DA is hydrolyzed by  
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intracellular esterases and then oxidized by ROS to a fluorescent compound 2'-7'-DCF. 
Astrocytes were plated onto 24 wells plates (300,000 cells/well) and treated with DCF-DA 
(20 µM) for 30 min at 370C. Following incubation with DCF, cultures were rinsed twice with 
PBS and then re-suspended (1) For measurement of H2O2-induced ROS: in DMEM 
containing 10% FBS, 8 mM HEPES, 2 mM glutamine, 100 U/ml penicillin, and 100 μg/ml 
streptomycin (2) For measurement of ZnCl2 - induced ROS: in a defined buffer containing 
116 mM NaCl, 1.8 mM CaCl2, 0.8 mM MgSO4, 5.4 mM KCl, 1 mM NaH2PO4, 14.7 mM 
NaHCO3, and 10 mM HEPES, pH, 7.4. The fluorescence was measured in a plate reader with 
excitation at 485 nm and emission at 520 nm.  

2.9 Cellular antioxidant activity of Af extract 

Peroxyl radicals are generated by thermolysis of 2,2'-Azobis(amidinopropane) (ABAP) at 
physiological temperature. ABAP decomposes at approximately 1.36x10-6s-1 at 37°C, 
producing at most 1x1012 radicals/ml/s (Bowry & Stocker, 1993; Niki et al., 1986; Thomas et 
al., 1997). Astrocytes were plated onto 24 wells plates (300,000 cells/well) and were 
incubated for 1 hr with Af extract. Then astrocytes were preloaded with DCF-DA for 30 min, 
washed, and ABAP (0.6 mM final concentration) was then added. The fluorescence, which 
indicates ROS levels, was measured in a plate reader with excitation at 485 nm and emission 
at 520 nm.  

2.10 Differential pulse voltammetry analysis 

Ethanolic extracts were obtained by dissolving 1 g of dry plant powder in 10 ml of ethanol 
overnight at room temperature. Before performing the differential pulse voltammetry (DPV) 
analysis, tetrabutylammonium perchlorate was added to the ethanolic extract to final 
concentration of 1% and the total reducing capacity of the Af extracts was analyzed, as 
described before (Butera et al., 2002). Briefly, the plant extract was placed in a cyclic 
voltammeter cell equipped with a working electrode (3.2 mm in diameters, glassy carbon), a 
reference electrode (Ag/AgCl), and an auxiliary electrode (platinum wire). The DPV 
potential was conducted at a scan rate of 40 mV/s, pulse amplitude 50 mV, sample width 17 
ms, pulse width 50 ms, pulse period 200 ms. An electrochemical working station (CH 
Instruments Inc., 610B, Austin, TX, USA) was used. The output of the DPV experiments was 
a potential-current curve (Kohen et al., 1999). 

2.11 Data analysis 

Statistical analyses were performed with one-way ANOVA followed by Tukey-Kramer 
multiple comparison tests using Graph Pad InStat 3 for windows (GraphPad Software, San 
Diego, CA, USA). 

3. Results 

3.1 Protection by the Af extract of astrocytes from H2O2 -induced cell death 

H2O2 exposure is used as a model of ischemia reperfusion. The concentration of H2O2 used 
in our experiments (175-200 microM) resembles the concentration reported by Hyslop et al 
to be the concentration of H2O2 that appears in the rat striatum under ischemic conditions 
(Hyslop et al., 1995). In order to characterize the astroprotective potential of the Af extract 
against H2O2 -induced oxidative stress, we have assessed changes in intracellular ROS 
production and in cell viability, using a model in which oxidative stress was induced by the 
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addition of this compound to cultured primary astrocytes. Exposure of normal primary 
astrocytes with H2O2 resulted in a time and concentration dependent astrocytic cell death 20 
h later (data not shown). To find out whether the Af extract has a protective effect and to 
determine the optimal concentration of the extract needed for such an effect, astrocytes were 
pre-incubated with different concentrations of Af extract. H2O2 was then added, and 
cytotoxicity was determined after 20 h. Our results showed that the Af extract exerted a 
protective action against H2O2 -induced cell death in a dose-dependent manner (Fig. 3). No 
significant changes were observed in the viability of cells treated with similar concentrations 
of the Af extract in the absence of H2O2 (Fig. 3). 
 

0

20

40

60

80

100

120

0 50 100 150 200

Af extract ( µg/mL)

C
y

to
to

xi
ci

ty
(%

) 

With H2O2

W/O H2O2

**
**

**
0

20

40

60

80

100

120

0 50 100 150 200

Af extract ( µg/mL)

C
y

to
to

xi
ci

ty
(%

) 

With H2O2

W/O H2O2

0

20

40

60

80

100

120

0 50 100 150 200

Af extract (µg/mL)

C
y

to
to

xi
ci

ty
(%

) 

With H2O2

W/O H2O2

**
**

**

 

Fig. 3. Protection from H2O2-induced astrocytic cell death by different concentrations of the 
extract of Af 

Astrocytes were treated with different concentrations of Af extract. H2O2 (200 μM) was 
added 2 h after the addition of Af extract. Cell death was determined 20 h later. Each point 
represents the means ± SEM of five experiments (n = 20). **p<0.001 compared to cells treated 
with H2O2 alone. 

3.2 Af extract inhibits H2O2- and ZnCl2-induced ROS generation 

In order to gain more insight into the mechanisms by which the Af extract might exert its 
protective effects, and to determine whether this extract could inhibit ROS production 
induced by H2O2 and ZnCl2, we assessed the intracellular generation of ROS by these toxic 
molecules, and tested whether treatment of astrocytes with the Af extract affected 
intracellular ROS levels. For the study of preventive effects against intracellular ROS 
formation the cells were preloaded with the ROS indicator DCF-DA, and were pretreated 
with various concentrations of Af extract before the application of H2O2 or ZnCl2 stress, and 
ROS formation was determined by reading fluorescence every hour for 4 h. As can be seen 
in Fig. 4A, H2O2 induced ROS production in astrocytes, with the maximum levels produced 
after 1 h. Pretreatment of astrocytes with the Af extract inhibited the H2O2-induced elevation 
of the levels of intracellular ROS in a dose-dependent manner (Fig. 4B). We also found that 
treatment with ZnCl2 increased ROS generation in astrocytes, and that, similarly to the effect 
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of the Af extract on H2O2-induced ROS, this extract greatly attenuated ZnCl2-induced ROS 
generation (Fig. 5). 
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(B) 

Fig. 4. The Af extract attenuates H2O2-induced ROS production in astrocytes 

Astrocytes were preloaded with the redox - sensitive DCF-DA for 30 min and washed with 
PBS. Preloaded astrocytes were then pre-incubated for 2 h with various concentrations of Af 
extract. H2O2 (175 μM) was added to the culture and the fluorescence intensity representing 
ROS production was measured. (A) Pre-incubation with 100 μg/ml Af extract and 
measurements at the indicated time points (B) Pre-incubation with various concentrations of 
Af extract and measurements after 1 h. Each point represents the mean ± SEM of two 
experiments (n=7). **p<0.001 when ROS production following treatment with H2O2+Af 

extract was compared to cells treated with H2O2 alone at each of the equivalent time points. 
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Fig. 5. Zinc induces ROS generation, and the Af extract attenuates ROS production following 
treatment of astrocytes with zinc  

Astrocytes were preloaded with DCF-DA for 30 min and washed with PBS. They were then 
pre-incubated for 2 h with various concentrations of Af extract, after which, ZnCl2 (50 μM) 
was added and the resulting fluorescence signal was measured at the indicated time points. 
Each point represents the mean ± SEM (n = 7). p<0.01 when ROS production following 
treatment with ZnCl2+Af extract was compared to cells treated with ZnCl2 alone at each of 
the equivalent time points 

3.3 Af extract reduces 2,2'-azobis(amidinopropane) (ABAP)-mediated peroxyl radicals 
levels in astrocytes 
In addition to H2O2, various other species, such as peroxynitrite (ONOO-), nitric oxide (NO.) 
and peroxyl radicals have been found to oxidize DCFH to DCF in cell culture (Wang & 
Joseph, 1999), therefore we have used the cellular antioxidant activity assay to measure the 
ability of compounds present in the Af extract to prevent formation of DCF by ABAP-
generated peroxyl radicals (Wolfe & Liu, 2007). The kinetics of DCFH oxidation in astrocytes 
by peroxyl radicals generated from ABAP is shown in Fig. 6A, where it can be seen that 
ABAP generated radicals in a time-dependent manner, and that treatment of cells with Af 
extract moderated this induction. Fig. 6B shows that the increase in ROS–induced fluorescence 
was inhibited by Af extract in a dose-dependent manner. This indicates that compounds 
present in the Af extract entered the cells and acted as efficient intracellular hydroperoxyl 
radical scavengers.  

3.4 Differential pulse voltammetry (DPV) analysis of the antioxidant capacity of Af 
extract  
Extract antioxidant capacity was evaluated by differential pulse voltammetry approach (DPV). 
Voltammetric techniques of analysis are increasingly being used for the determination of 
many substances of pharmaceutical importance (Zapata-Urzua et al., 2010) as well as of fruit 
extracts (Butera et al., 2002). These techniques are based on the measurement of current that 
results from oxidation or reduction at an electrode surface following an applied potential  
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(B) 

Fig. 6. Peroxyl radical - induced oxidation of DCFH to DCF in primary astrocytes, and the 
inhibition of oxidation by Af extract 

Astrocytes were incubated for 1 h with Af extract. They were then preloaded with DCF-DA 
for 30 min and washed with PBS, after which, 0.6 mM ABAP was added and ROS levels 
were measured at the indicated time points. Each point represents mean ± SEM of two 
experiments (n = 7). A. Af extract at 25 μg/ml. B. ROS production was measured 20 h after 
the addition of ABAP *p<0.01, **p<0.001 compared to cells treated with ABAP only at the 
equivalent time points. 
difference. The DPV technique has excellent resolving power, and is able to differentiate 
between peaks due to different electroactive species in the same solution which are no more 
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that 50 mV apart (Smyth & Woolfson, 1987). In the present study we have used the DPV 
approach to analyze the total reducing capacity of the ethanolic Af extract. On the potential-
current curve generated by DPV, the values of the potential are a characteristic of the 
antioxidant material and the values of the current are proportional to the amounts of the 
corresponding antioxidant. Analysis of the Af extract by DPV revealed two anodic waves 
that are caused by two major reducing groups of low-molecular-weight antioxidants, 
representing the total antioxidants in the extract (Fig. 7). The anodic wave potentials and 
their corresponding anodic currents, representing the amount of each antioxidant, are 
presented at Table 1.  
 

b

a

b

a

b

a

bb

aa

 

Fig. 7. Representative differential pulse voltammogram of the Af extract 

Differential pulse voltammetry (DPV) was conducted from E = 0.0 V to final E = 2.0 V at a 
scan rate of 40 mV/s, pulse amplitude 50 mV, sample width 17 ms, pulse width 50 ms, pulse 
period 200 ms. Extracts were prepared in duplicate, and each sample was traced three times. 
a - first anodic wave; b - second anodic wave. 
 

 Anodic wave a Anodic wave b 

Potential (V ± SD) 0.625±0.003 1.039±0.024 

Current (µA ± SD ) 3.233±0.251 7.027±0.063 

Table 1. Anodic potentials and currents of the ethanolic extracts of Af 

4. Discussion 

The main findings of the present study were that an ethanolic extract of the desert plant Af 
could protect primary cultures of rat brain astrocytes from H2O2 -induced cell death, and 
reduced the levels of intracellular ROS produced after treatment with H2O2, ZnCl2 or ABAP. 
This protective effect of Af and the reduction in ROS levels might be mediated by its 
antioxidant activities (as was demonstrated by the DPV experiments) or by modulation of 
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signals and processes induced by H2O2 and ZnCl2. For example, it has been found, that H2O2 
induced the phosphorylation of ERK1/2, AKT/protein kinase B and ATF-2 in C6 glioma 
cells (Altiok et al., 2006). It also has been demonstrated that cell death caused by zinc was 

accompanied by membrane translocation of protein kinase C-alpha (PKC-α), 
phosphorylation of extracellular signal-regulated kinase (ERK), and activation of group IV 
calcium-dependent cytosolic phospholipase A2 (cPLA2) (Chang et al., 2010; Liao et al., 2011). 
It was also reported that Zn2+ bound to and inhibited glutathione reductase and peroxidase, 
the major enzymes responsible for glutathione (GSH) metabolism and cellular antioxidative 
defense mechanisms (Mize & Langdon, 1962; Splittgerber & Tappel, 1979). 
Hydrogen peroxide also decreased astrocyte membrane fluidity, induced cytoskeletal 
reorganization, decreased the activities of the antioxidant enzymes catalase and superoxide 
dismutase (SOD) (Naval et al., 2007), and increased formation of cytonemes and cell-to-cell 
tunneling nanotube (TNT)-like connections (Zhu et al., 2005). Thus, the Af extract might 
interfere with any or all of the described processes, and enhance the resistance of astrocytes 
to ZnCl2 and H2O2 toxicity, and to oxidative stress. Moreover, defense of glial cells against 
oxidative damage would be essential for maintaining brain functions. 
There are two opportunities for compounds present in Af extract to elicit their antioxidant 
effects in our model: they can act at the cell membrane and break peroxyl radical chain 
reactions at the cell surface; or they can be taken up by the cell and react intracellularly with 
ROS. Therefore, the efficiency of cellular uptake and/or membrane binding, combined with 
the radical-scavenging activity dictates the efficacy of the tested compounds. In order to 
discriminate between these possibilities, astrocytes were pre-incubated with ABAP, which 
generates ROS intracellularly. According to our results, which show that Af extract inhibited 
intracellular ROS levels, in addition to other possible activities, compounds present in Af 
extract could enter the cells and react with ROS intracellularly. 
Because many low-molecular-weight antioxidants might contribute to the cellular 
antioxidant defense properties, we analyzed the total antioxidant content of the Af extract by 
the DPV method, which enabled us to demonstrate the presence of two reducing 
equivalents in the Af extract. The advantages of DPV over other voltammetric techniques 
include excellent sensitivity with a very wide useful linear concentration range for organic 
species (10–6 to 10–3 M), short analysis times, simultaneous determination of several analytes, 
and ease of generating a variety of potential waveforms and measuring small currents. 
Our LC-MS analysis identified quercetin-glucoside as one of the major peaks in the Af 
extract. Quercetin glycosides are widely consumed flavonoids that are found in many fruits 
and vegetables, e.g., onion, and, like other flavonoids, offer a wide range of potential health 
benefits, including prevention of atherosclerosis and cardiovascular diseases (Peluso, 2006; 
Terao et al., 2008). In recent years, intestinal absorption and metabolism of quercetin 
glucosides have been extensively investigated with regard to their bioavailability (Spencer 
et al., 2004; Walle, 2004). Quercetin glucosides are well absorbed by the small intestine 
because the presence of a glucose moiety significantly enhances absorption (Arts et al. 2004; 
Boyer et al., 2005; Hollman & Arts, 2000). In the process of intestinal absorption quercetin-
glucosides are subjected to hydrolysis and subsequent conversion into conjugated 
glucuronides and/or sulfates (Murota & Terao, 2003). A variety of metabolites circulating in 
the blood-stream were identified (Day et al., 2001; Mullen et al., 2002), and some of them 
were found to possess a substantial antioxidant activity (da Silva et al., 1998; Manach et al., 
1998). It was suggested that metabolites of quercetin glucosides accumulate in the aorta - a 
target site for its anti-atherosclerotic effect, and attenuate lipid peroxidation that occur in the 
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aorta, along with the attenuation of hyperlipidemia (Kamada et al., 2005; Terao, 1999; Terao 
et al., 2008). 
Two other compounds in the Af extract were also identified by LC-MS: acacetin  
7-o-rhamnoside, which was also identified in the aerial parts of several plants (El-Wakil, 
2007; Sharaf et al., 1997), and acacetin 7-o-glucoside, which was also found in the anti-
inflammatory extract of Mcfadyena unguis-cati L. (Aboutabl et al., 2008). All four 
compounds identified by LC-MS analysis as major peaks in Af extract, namely epicatechin-
rhamnoside, Acacetin rhamnoside, Acacetin-glucoside, and Quercetin-glucoside, are stable 
compounds, that under our experimental conditions (ethanol extraction, resolubilization in 
DMSO, and tissue culture experiments at 37°C and neutral pH) would not react chemically 
with each other. Chemical interactions between these compounds might occur under high 
temperatures and extreme pH values. 
Several studies have revealed that some herbal medications and antioxidants show promise 
in prevention of neurodegenerative diseases (Iriti et al., 2010). Substances that can restrict 
and/or protect brain cells from oxidative stress show promise as potential tools in the 
therapy of various brain injuries and neurodegenerative diseases. Desert plants survive 
various stress conditions, including oxidative stress., therefore it is reasonable to suppose 
that various endogenous molecules present in these plants might also assist animal cells to 
cope with stresses that develop during pathological conditions. 

5. Conclusions 

In light of their antioxidant and astroprotective properties, we suggest that Af extracts might 
serve as a new source of beneficial phytochemicals, and should be further evaluated for 
nutraceutical development as polyvalent cocktails for prevention or treatment of various 
brain injuries and neurodegenerative diseases, in which oxidative stress and astrocytic cell 
death form part of the pathophysiology. 
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