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1. Introduction

Mobile computing for massive users has gained enormous progresses in the last few years.
Among the main propelling forces for this momentum are the performance improvements
of mobile application processors, increasing of storage and sensing capabilities, as well as
breakthroughs in manufacturing technologies for high-quality mobile displays. Along with
such progresses, the way people perceive mobile devices evolved over time as well, maybe
best reflected by the changing names. During the 1990s, the mobile devices were called
cellular phones and PDAs (personal digital assistants), to differentiate between the then-major
functionalities of voice communication and handheld computing. Later the word "smart
phone" was more popularly used, attesting the convergence between communication and
computing elements. Nowadays, new technical jargons such as tablets, pads, and smart books
are often used to refer to mobile devices. Behind the hype of this name changing game is the
simple fact that personal computing is rapidly shifting towards being mobile.

There are large number of applications and services designed and optimized for mobile
computing. Within the herd Augmented Reality (AR) stands out and attracts considerable
attention. AR is the technology that superimposes computer generated graphics over real-life
live video feeds, using registration as the magic glue to blend the two seamlessly together.
The origin of the term "Augmented Reality" can be traced back to 1990, although applications
featuring some of the basic characteristics had been in place as early as the 1960s. On the other
hand, mobile AR systems which are of practical use are relatively new and did not emerge
until recently. The reason is that such systems put high requirements on the hosting device’s
software and hardware configurations.

To better understand the challenges, let’s take a look at Figure 1 which illustrates the
components of a conceptual mobile AR system. In this system, sensor (including both the
camera sensor and others) inputs are used to estimate the six degree-of-freedom pose of
the on-device camera. The sensor inputs are also used by a user interaction module which
implements functionality of gesture control. An I/O module reads graphics models from a
database and provides them to a rendering module. The latter combines rendered graphics
with live video. As the orchestrated output of all the modules, the interactive and augmented
scene is presented to the end user.

Now we examine what are the necessities to make the illustrated system capable of providing
smooth user experiences. First of all, the system needs to have interactivity, which translates
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2 Will-be-set-by-IN-TECH

Fig. 1. The components of a typical mobile AR system.

to frame rates above a minimum number, usually 30 frames per second. Fidelity is another
requirement, which means resolution of the final combined frames should achieve beyond
a decent level such as VGA (640 by 480 pixels), with sufficient graphical details. A further
requirement is scalability, indicating that there shall not be stringent restrictions on the
quantity of graphics models, nor the size of each individual ones. Last but not least, users
desire robustness, that is, even under noisy and complex environment conditions the pose
estimation module should still function with satisfactory detection rate and accuracy. Not
surprisingly, meeting these requirements calls for fast video processing, high I/O bandwidth
and efficient algorithm computation. These have been equipped more or less by modern
mobile devices, but not yet enough. The obstacles are multi-folds:

• Architecture difference – It is often the case that mobile application processors are designed
to have different architectures from high-end servers and even low-end PCs. The rationale
for such differences is mostly for power efficiency. At the price of this design choice is the
performance discrepancy introduced by architecture difference.

• Hardware capability – It is not completely uncommon for mobile devices to share the
same or similar architectures with their stationed counterparts. However, even under
this situation, significant capability gap may still exist between them. Take multi-core
architecture for example: the number of cores in a mobile multi-core processor is usually
much fewer than that of a desktop multi-core processor. Programable GPU architecture is
another example: most mobile GPUs implement only a subset of the functionalities of the
desktop products.

• System availability – Because mobile devices do not have the luxury of unlimited power,
energy conservation is a must-have for them. This impacts the system availability
accordingly. For instance, we cannot assume a smart phone in the field to run an intensive
computer vision task overnight without being plugged with external power supply. Albeit
the same operation could be conducted by a desktop PC with the same processor clock
frequency without difficulty.

Up to now, the approaches to tackle these constraints have been mainly focused on designing
algorithms as "lean and mean" as possible on the mobile devices. From this point of view,
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the endeavors of making AR to work on mobile devices are very similar to those of making
AR to work on PCs a decade ago. But unlike PCs by then, mobile devices nowadays often
find themselves surrounded by abundantly available cloud-based resources. In addition to
that, it is even often the case that correspondent AR components have been implemented on
these cloud peers more efficiently already. In this chapter we attempt to look at the problem
from a new and different perspective, i.e. closely integrate the computing resources on the
mobile device as well as in its cloud environment. We propose a novel alternative paradigm,
named Cloud-Mobile Convergence (CMC). Both the high-level design principle and low-level
proof-of-concept implementations of CMC are presented.

The rest of this chapter is organized as follows. In section 2 a review of traditional
techniques to solve "performance vs. resource" problem in AR is briefly given. Section
3 describes key concepts and high-level design principles of CMC. Following that, several
sample scenarios are presented in section 4. Section 5 conducts a deeper dive by studying in
detail a proof-of-concept application, which applies CMC paradigm to accelerate computer
vision-based human-computer interaction. We conclude the chapter in section 6 with
discussions.

2. Existing optimization measures for mobile AR

As illustrated in Figure 1, AR systems can use multiple sources of sensor inputs for camera
pose estimation and interaction. In practice, the camera sensor is mostly used. For simplicity
reasons, from now on if not specifically mentioned, the AR systems we discuss only include
vision-based ones. In such systems, vision-based processing tasks consists of recognition and
tracking.

Recognition is the task to find one or multiple pre-defined objects in the video scene. The
objects are first summarized – off-line or on-line – into digital presentation of features, and
then matched with the features extracted from the video scene. If there are matches found, the
corresponding objects are recognized. There have been a large number of feature detection
and description methods proposed and developed in recent decades. Representative ones
among them include Harris Corners (Harris & Stephens, 1988), Shi and Tomasi (Shi & Tomasi,
1994), SIFT (Lowe, 2004), SURF (Bay et al., 2006), FERNS (Ozuysal et al., 2007), and FAST
(Rosten & Drummond, 2003; 2005). Tracking is the task to keep track of the recognized
objects in video scene, and estimate camera pose continuously. In contrast to recognition task,
tracking task is free (or largely liberated) from the obligations of feature detection, description
and matching. This advantage makes it relatively faster to perform.

Although often underlooked, video acquisition itself is by no means a cheap operation. Quite
a few pre-processing steps need to be done before the video is supplied to recognition and
tracking tasks with satisfying quality: exposure control, focusing tuning, color adjustment etc.
State-of-art camera sensors try best to automate these steps, at the price of pre-processing time
that could be of the magnitude of tens of mini-seconds. The time taken by video acquisition
further tightens tracking and detection budgets.

One of the research directions undertaken is to make use of hardware elements that are more
efficient for computer vision algorithms processing than general-purpose CPUs. For instance,
with the rapid growing of programmable GPU capabilities, researchers have explored the
feasibility of porting some of the fundamental computer vision algorithms used by AR to
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GPU and showcased proven performance gains. Wu developed a software library for the
SIFT feature detector and descriptor (Wu, 2007). Terriberry et al. focused their efforts on
SURF (Terriberry et al., 2008) and provided a working prototype. But the gains provided by
following this direction were not as large as AR system designers and users had expected.
On one hand, parallelism potentials of many computer vision algorithms are intrinsically
limited, leaving a constrained space to fully utilize the GPU capability. On the other hand,
heavy communications cost introduced by data transfer between the CPU and GPU, or among
multiple GPU cores further handicapped the benefits introduced by the usage of parallel
computing. It is worth noting that the numbers in (Wu, 2007) and (Terriberry et al., 2008)
were based on the more favorable experimental results of using desktop GPU processors. The
benchmark values on mobile GPUs would obviously be even worse.

Another viable path is to reduce the complexity of the AR tasks. Not surprisingly, this has
been more or less used by most mobile AR developers. There have been several popular
practices:

1. Image resolution reduction. This is intuitive to understand with a simple example: the
number of pixels contained in a QVGA (320 by 240) resolution video frame is only a quarter
of those in a VGA (640 by 480) resolution counterpart. Although processing complexity
is not strictly linearly correlated with number of pixels, the reduction of pixels normally
brings down required CPU cycles considerably. Many mobile AR systems down-sample
camera frames with a gaussian kernel to archive the goal of pixel reduction.

2. Parametric tuning for computer vision algorithms. For example, the original SIFT
(Lowe, 2004) implementation used a 128-dimension feature descriptor. Some variant
implementation, such as (Wagner et al., 2009) used data dimension less than that to lower
processing time and memory usage. Similar measures had been taken by some systems by
restricting the number of feature points to detect and match.

3. Utilization of assumptions and heuristics. In a specific AR application, some useful
assumptions and heuristics can be made use of to make the computer vision tasks easier.
Quite a few mobile AR systems in the literature assumed that there should be no drastic
camera displacements across adjacent frames. By asserting this, the burden of extensive
area processing for tracking is eased. In the gesture recognition system described in
(Kolsch et al., 2004), users are required to put the hand within a certain sub-region of the
camera view in order to start the system. Consequently the detection cost was much lower
than a full frame search. Similar requirements were also imposed by some real-time text
translation applications on mobile devices (Fragoso et al., 2011).

Strictly speaking, the practices listed above should not be regarded as optimization measures.
The reason is that they are not able to realize repeatable results of tackling the problem at
original complexity: Down-sampling VGA resolution frames to QVGA might improve the
frame rate, but it is more likely to decrease the detection rate and tracking continuity; Tuning
feature descriptor dimension brings down both memory usage and detection accuracy;
Assumptions and heuristics work "most of the time" and fail in corner cases, which are
sometimes not rare at all to spot. Use of such techniques should be carefully thought of and
conducted.

Yet another approach is to optimize the AR processing pipeline. Because there are
multiple computer vision tasks in a mobile AR system, processing of them could be
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optimized by using concurrent programming techniques such as multi-threading. In a typical
acquisition-recognition-tracking pipeline, each downstream stage of the pipeline can start as
a separate thread and synchronize with the upper stream counterparts in parallel. When
the camera imager thread acquires a new frame and delivers it to recognition thread, it
starts the next frame acquisition right away instead of waiting for the latter to complete.
Recognition thread works in a similar relationship with the tracking thread. In general, this
mechanism can be applied for any intermediate processing stages in the pipeline: In the
Envisor (DiVerdi et al., 2008) system, an inertial sensor interpolation thread and a vision-based
calibration thread complemented each other for tracking and map construction. In the
HandyAR (Lee & Hollerer, 2007) system, separation was made for a foreground recognition
thread using low-cost features and a background calibration thread using expensive features.

Limitation of the pipeline optimization approach is that even under the most idealistic
situation, total processing time of the pipeline is still capped by the duration of the most
time-consuming stage. The work of (Wagner et al., 2009) proposed a solution which partially
alleviated this problem. The solution amortized the most expensive processing task, i.e. target
detection into multiple consecutive frames. By using this technique, it achieved the relatively
best performance among peers at the time of publication (multiple target recognition and
tracking in real-time on mobile phones). The caveat was that the number of frames involved
for task amortization could not be too large otherwise the system could be subject to stability
issues.

3. The Cloud-Mobile Convergence paradigm

In section 2 we briefly reviewed the existing performance optimization measures for mobile
AR. It can be seen that none of them could solve the performance issue with full satisfaction.
These measures differ largely from each other, but share one thing in common: they rely only
on the mobile device itself to overcome its intrinsic shortcoming of constrained resources.

In this section, we think "outside of the device" and present a novel paradigm called
Cloud-Mobile Convergence (CMC). CMC is based on the observation that present day mobile
devices are surrounded by abundantly available cloud resources, and access to these resources
has never been as convenient before. The fundamental difference between CMC and other
state-of-art solutions is that CMC considers performance improvement factors external of the
mobile device, in conjunction with those on the device itself.

Under the CMC paradigm, when a mobile AR system is designed at high level, the resources
pool available to it is not considered to merely reside locally. Instead, all the resources are
regarded as being possible to present either internally or externally of the device. The only
differentiations among the resources are the benefits they bring and the costs to use them,
rather than whether they reside on the mobile device or in the cloud. This is the "convergence"
essence of the paradigm.

The CMC paradigm considers computing for mobile AR tasks an optimization problem with
the optional requirement of satisfying multiple constraints. If we denote R1, R2, ..., RN as the
N available resources, B(Ri) to be the benefits brought by resource i, C(Ri) to be the cost of
using resource i, T1, T2, ..., TM to be the M constraints to be satisfied, then the problem of
optimizing a mobile AR system can be abstracted as:
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maximize
N

∑
i=1

B(Ri)

s.t.

T1, T2, ..., TM

optionally,

minimize
N

∑
i=1

C(Ri)

(1)

Now that the abstraction is in place, it is time to look at how to apply the CMC paradigm to
a specific mobile AR system. In a real world application, each of the variables in Equation
1 is mapped to an application-specific factor. Let’s use one hypothetical system as example.
This system employs two resources in the recognition stage: a worker thread R1 that matches
features extracted from the video scene to the local database, and another worker thread R2
which performs the same matching task but against a video library stored in a data center.
In this scenario two sets of definitions can be used to model benefits and costs, leading to
two different resource convergence strategies adopted by the system. In one set of definition,
B(Ri) is the total number of objects available in Ri, and C(Ri) is the average recognition time
for each object in the video scene. This set of definition is obviously favorable to cloud resource
R2, because R2 is able to provide more object candidates and perform faster object recognition
using data center processor farms. In another set of definition, B(Ri) is the number of objects
accessible in unit time in Ri, and C(Ri) is the average access latency. In contrast to the first set
of definition, this one favors local resource R1, because of the higher I/O throughput and
lower access latency provided by R1. Under both sets of definitions, constraint T can be
defined as a threshold of unit time power consumption, i.e. T regulates the battery draining
rate.

The above example clearly manifests the power of CMC paradigm: the generalized
description is concise, yet the parameterized interpretation is flexible. Because of these
advantages, CMC is an effective meta-method and philosophy that has the potential to be
used widely for mobile AR system design and implementation.

4. Sample scenarios for CMC paradigm

In this section we showcase three different sample scenarios where CMC paradigm could
be beneficial. Each of the scenarios sets up an unique environmental mix of on-device and
cloud resources. It is worth noting that the classification criteria of these scenarios resemble
those used for mobile networking characterization. The subtle difference here is that they are
modeled by computing and not communications contexts. In all three scenarios, we define
the benefit of a resource B(R) to be its processing power, and the cost C(R) to be its access
latency.

4.1 Enterprise

It is common that in an enterprise environment, mobile device users have access to high
quality-of-service infrastructure of Wi-Fi network, as well as powerful backend servers. Such
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servers could be maintained by the IT department of the enterprise itself, or leased from
server farm providers such as the Amazon Elastic Computing Cloud1. In this scenario, B(R)
is high and C(R) is low for the cloud resources. It is thus possible to fully offload some of the
computing intensive tasks, like recognition and tracking to the cloud resources, and render
the processed result on mobile device, making the latter a thin client (e.g. (Taylor & Pasquale,
2010)).

4.2 Hotspot

In some public locations, limited computing service might be provided by the venue
management. For example, at a metropolitan airport, in addition to the complementary
Wi-Fi service, computer nodes attached to the Wi-Fi access points could be offering users
with their processing capacities complementarily or at a nominal charge. In some literatures,
such enhanced network access points are called "Access Point 2.0". The characteristics of this
scenario is that B(R) has a moderate value, but C(R) is also considerable. With the presence
of "Access Point 2.0", the preferred approach is to rely on the on-device resources to perform
tasks that require low latency, in the mean time utilize the cloud resources to perform tasks
that are not sensitive to latency. For example, tracking could be conducted on-device, while
recognition could be accomplished in the cloud. Because the latter is either conducted at
application starting time or as a background task, latency introduced by using cloud-based
resources is less detrimental.

4.3 At home

In the home environment, each family member could own one or more mobile devices.
Additionally, these devices are capable of communicating with each other through ad-hoc or
home Wi-Fi network, or other short range radios such as Bluetooth�. The resources provided
by each mobile devices to others can be regarded as in the cloud from the other parties’ point of
view. In this scenario, B(R) is low and C(R) is high for the cloud resources, making them less
popular than in the previous two scenarios. Cloud resources thus cannot play primary roles
in computing, but only serve as auxiliary assistants. Possible usage of the CMC paradigm
include assigning some of the off-line tasks in AR to cloud resources. Such kind of tasks
include object database construction, feature updating in the database, and so on.

5. A proof-of-concept application

In this section we analyze an application in-depth to further study the CMC paradigm. This
application employs vision-based techniques for natural human-computer interaction with
the mobile device. As a result, it is subject to expensive computation of processing camera
frames and track the hand in real-time, which exceeds the capability of the mobile device
itself. We show that by using a computer cluster which is in the mobile device’s proximity,
the system performance can be speeded up and achieve significantly better usability. Abstract
of this work was originally published in (Luo & Kenyon, 2009). This section is an extended
version of the original publication.

1 http://aws.amazon.com/ec2/
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Fig. 2. A user interacts with a display wall with gestures, performing 2D window resizing
and moving tasks. Video frames are captured by a single camera on the tripod but processed
by multiple nodes of the cluster driving the display wall.

5.1 Background of the application

The last decade witnessed an increasing need for multi-million pixel resolution displays,
propelled by applications such as scientific visualization, viewing satellite/aerial imagery,
teleconferencing and a plethora of others. A successfully implemented solution to address this
need is to construct display systems that consist of multiple screen tiles driven by a computer
cluster. In such systems, each node in the computer cluster powers one or more of the display
tiles. Building on this hardware configuration, the synergy among the cluster nodes ensures
that pixel rendering across all the tiles are coordinated to provide the user with a large "single"
screen experience. Cluster-driven large displays can be a projection-based wall(Mechdyne,
2008), flat panel-based wall (Jeong et al., 2006; Sandin et al., 2005; Sandstrom et al., 2003) or
flat panel-based tabletop (Krumbholz et al., 2005). Two detailed reviews of recent progress on
large displays can be found in (Wallace et al., 2005) and (Ni et al., 2006).

Vision-based gesture interaction methods have focused on the most dexterous part of the
human body – the hand – so as to provide an intuitive means for human computer
interaction (HCI). For a large number of applications that use large displays, these approaches
can be especially advantageous compared to instrument-based counterparts under certain
circumstances. For instance, interacting from-afar the screens will provide more freedom
for the user to do arms-reach tasks. Similarly, during a tele-collaborative session, remote
speaker’s gestures can be automatically mapped to proper computer operation commands
(e.g. playing forward or backward presentation slides), in this way the users’ actions become
intuitive and they need not resort to any additional devices. That said, gesture-based methods
face a number of the performance challenges because of the requirements for low latency and
high throughput needed for video processing. High latency causes lengthy response time and
jeopardizes the user interactivity. On the other hand, low throughput forces the system to
monitor a limited field of view, which in turn constrains the user’s movement space.
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A promising way to address the performance challenge is using scalable computing
techniques to accelerate vision-based gesture interactions. This is based on the observation
that large displays boast not only display size, but also computing power. The number
of computer nodes in a cluster-driven large display system is usually considerable. In the
mean time, the CPU performance of each node is growing exponentially with Moore’s Law.
For example, Varrier (Sandin et al., 2005), a 35-tile system uses an 18-node cluster. While
Hyperwall (Sandstrom et al., 2003), a 49-tile system uses a 49-node cluster. In this section we
describe the scalable computing techniques for vision-based gesture interaction that utilize
the computing power inherent in cluster-driven displays. The processing of captured video
frames from a single camera is parallelized by multiple nodes of the cluster. Consequently,
we are able to achieve a lower processing latency and a higher processing throughput. When
the user’s hand is in the field of view of the camera, performance of predefined gestures
is interpreted into interaction commands for the large display system. Figure 2 shows a
prototypical vision-based gesture interface in use by a display wall, with the help of the
proposed methods. Our work has three major contributions: first, it analyzes the task
partitioning strategies for frame image scanning, a key task in both hand detection and
gesture identification. By examining in detail the advantages and disadvantages of two
strategies: by-region and by-scale, a hybrid strategy is developed by combining both of
them. Furthermore, a novel data structure, named the scanning tree, is devised for computing
nodes management. A load balancing algorithm for workload distribution across scanning
tree nodes is also presented. Last but not least, implementation has been accomplished
to incorporate the scalable computing techniques into a vision-based gesture interface for
a ultra-high-resolution tiled display wall. Evaluation results show the effectiveness of our
proposed techniques.

The rest of this section is organized as follows. Section 5.2 reviews related work in the existing
literature. The by-region and by-scale task partitioning strategies are discussed in section 5.3.
Based on the discussions, our final hybrid approach is presented. Section 5.4 describes the
scanning tree data structure, together with the load balancing algorithm. Integration work of
the prototypical vision-based gesture interface with the display wall is described in section 5.7.
Section 5.8 illustrates the evaluation results which validate the effectiveness of the proposed
techniques. At last, section 5.9 concludes the section.

5.2 Similar systems

Gesture-based HCI has been an active research topic for decades (Crowley et al., 2000;
Kage et al., 1999). Due to hardware limitations, early systems used tethered mechanical or
electromagnetic sensors to monitor hand gestures. For example, the MIT Media Room (Bolt,
1980) used an electromagnetical tracking sensor embedded in the wrist cuff to track spatial
translation of the user’s hand. The tracked gestures acted as an auxiliary control to move
objects displayed on a projection screen. The CHARADE system (Baudel & Beaudouin-lafon,
1993) improved gesture detection by having the user wear a data glove. Finger segments
positions reported by the glove are interpreted as gestures and then mapped to commands to
control computerized objects. With the advances of camera hardware and CPU processing
power, vision-based systems began to emerge for interaction with display systems. The
early systems used simple features and could recognize a limited number of gestures.
Freeman et al (Freeman & Weissman, 1995) used a video camera to detect hand movement.
In their system only one hand gesture, i.e. the open hand facing the camera could be
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identified. By waving the hand from side to side, the user was able to remotely control
the sound volume of a television. Segen et al (Segen & Kumar, 1998; 2000) constructed a
two-camera system to extract the fingertips of a hand from video, applied reverse kinematics
to derive an articulated hand model, and subsequently used the derived hand posture for
gesture-commands interpretation. Their system was fast (60Hz) because only the fingertips
needed to be tracked. However it was also prone to low accuracy since reverse kinematics
compute multiple hand postures for the the same fingertip configuration, which leaded to
ambiguous gesture interpretations. A comprehensive survey of these systems can be found in
(Joseph J. LaViola, 1999).

Besides the images of the hand itself, projected hand shadows could also be utilized for the
recognition of certain gestures. The Barehands system (Ringel, 2001) used infrared LED arrays
to illuminate a translucent touch screen from the rear. When the user’s hand touched the
screen a camera (with infrared filter) captured the hand’s shadow and translated it into gesture
commands. Image processing for Barehand was not computationally intensive, averaged
13.37 ms per frame. However, the needs for a touch-screen and high-intensity infrared
illumination limited its use for large displays needing interaction from-afar.

HandVu (Kolsch et al., 2004) is a vision-based gesture HCI developed by Kolsh et al. It allows
real-time capturing and processing of VGA-quality video frames, from a HMD-mounted
camera. HandVu is capable of working under different illumination conditions as well as
with various image backgrounds. Not surprisingly, such advantages are gained at the price
of computation-intensive image processing on multiple features: shape, color, optical flow,
and motion constraints. HandVu employs MPI(Message Passing Interface)-based parallel
processing for off-line model training but not for online video processing. To optimize online
processing performance, it takes several trade-offs in the implementation. For example,
hand presence is only detected in a sub-region of the camera’s field of view to initiate the
interaction. In the mean time, when running under asynchronous mode where response time
is guaranteed, unprocessed frames are discarded when timed out in a wait queue.

Researchers at the University of Toronto investigated interaction with large displays with
pen-based (Cao & Balakrishnan, 2003) and gesture-based techniques (Malik et al., 2006). The
work presented in (Malik et al., 2006) was a vision-based bimanual interaction system, which
used two 320 × 240 cameras to track the user’s fingers on a touch pad of black background.
The system mapped a rich set of gestural input on the touch pad to interaction commands
for a large display. Although detailed performance data was not available from the paper, the
authors discussed that frame processing time prevented the deployment of higher resolution
cameras. As a consequence, some users’ object-manipulation experiences were undermined.

It can be learned from (Kolsch et al., 2004) and (Malik et al., 2006) that the performance
of a single computer has already been one of the bottlenecks deterring the deployment
of computation-intensive image processing methods for vision-based gesture interaction
systems. Our scalable techniques are designed to address this challenge. The proposed
solution partitions the processing workload of each captured video frame across multiple
cluster nodes. Through such approach, it effectively improves the system performance.

Our solution complements other research work in the literature that uses computer cluster to
speed up image processing. In the RPV (Real-time Parallel Vision) programming environment
(Arita et al., 2000), three low level cluster computing functionalities, namely data transfer,
synchronization and error recovery are taken care of by the environment, and the user can
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use these functionalities directly instead of implement his/her own. An extension work
called RPV-II (Arita & ichiro Taniguchi, 2001) introduces stream data transfer to RPV, thus
the transmission latency is reduced. However, both RPV and RPV-II are only programming
environments and put the responsibility on their users to design parallel algorithms for a
specific computer vision application. A similar middleware is FlowVR (Allard & Raffin,
2006), which provides a data-flow model to encapsulate computation and I/O tasks for
parallel image processing. Most recently, the GrImage platform (Allard et al., 2007) proposes
a complete scalable vision architecture for real-time 3D modeling but not gesture interaction,
which is the question to be addressed by this paper.

5.3 Design of task partitioning strategy

Vision-based gesture interaction can be modeled as a pipeline process that consists of four
stages: detection, tracking, identification and interpretation. These stages can be disjointly
sequential with each other or have overlaps depending on the specific system. Generally
the pipeline runs as follows. First, detection senses the presence of the hand in the camera’s
field of view. Tracking is then conducted to monitor the hand position and report its spatial
coordinates. Any user gesture that has matches an entry in the predefined gesture vocabulary
is recognized by identification. As a final step, identified gestures are mapped to interaction
commands through interpretation.

It would be impractical to devise a universal solution for all vision-based gesture HCI systems
due to the large variety of implementations. To strike a balance between specificity and
generality, we examine the group of systems that use template matching during the detection
and identification stages. Such systems count for a considerable portion of the state-of-art
vision-based gesture HCIs. In them each incoming frame from the camera is scanned to find
possible matches with defined templates. If a match is found during the detection stage,
the hand is regarded to be in the camera’s field-of-view. Similarly, matches found during
the identification stage are recognized as gestures performed by the user. From this point of
view both the detection and identification stages can be abstracted to the same task of image
scanning. The difference is that they might use distinct template databases. Section 5.3.1
elaborates on the image scanning task.

5.3.1 Analysis of the image scanning task

In the image scanning task, each sub-window of the frame image of the templates’ size are
compared with templates stored in the vocabulary database. If the similarity between the
sub-window image and a template image satisfies a certain threshold, a template match is
reported. To enumerate all sub-windows of the frame image, the task scans along X and Y
dimensions in small steps until the whole image has been examined.

The size of the template remains constant once defined, but the size of the hand appearing in
a frame image could vary dynamically with viewing depth. To address this, it is necessary
for the image scanning task to do comparisons at multiple scales. Either the template or the
captured image can be scaled for this purpose. Which one is scaled does not affect the overall
computation complexity. Algorithm 1, which assumes that the captured frame image is scaled
to multiple levels, illustrates an abstracted image scanning task.

Algorithm 1 shows that the image scanning task fulfills a group of comparisons between
sub-windows of the captured frame image and the template. Because size of the template
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Algorithm 1 An abstracted image scanning task

Input:
frame image: F.
template: T.
scanning translation steps: Xstep, Ystep.
scanning start/stop scales: Sstart, Sstop.
scanning scale step: Sstep.

Output:
set of template matches: M.

1: M ← Φ

2: S ← Sstart

3: while S < Sstop do
4: Scale F at S
5: X ← 0
6: Y ← 0
7: W ← width of F at scale S
8: H ← height of F at scale S
9: while X < W do

10: while Y < H do
11: Compare sub-window of F starting at (X, Y) with T
12: if there is a match then
13: Add the match into M
14: end if
15: Y ← Y + Ystep

16: end while
17: X ← X + Xstep

18: end while
19: S ← S + Sstep

20: end whilereturn M

is an invariant, processing load of each comparison (line 11 in Algorithm 1) is a constant.
If this group of comparisons could be distributed evenly over multiple computing nodes, the
image scanning task would be gracefully parallelized. In the next sections the two partitioning
strategy candidates, by-region and by-scale, are discussed. The by-region strategy divides a
frame image into multiple sub-regions, and assigns the processing of each sub-region to a
computing node. The by-scale strategy assigns the processing of the whole frame image to
computing nodes, but each of these nodes only handles certain scale levels.

5.3.2 The by-region choice

Figure 3 illustrates the principle of the by-region task partitioning strategy. Blocks of
identical color indicate that they are processed by the same cluster node. With this strategy,
a given cluster node is always assigned to process a fixed portion of the whole frame
image, and processes this portion at all scales levels. For example, assuming that the
frame image is captured at 640 × 480 resolution, and node A is assigned to process a
sub-region with the corner coordinates to be [0, 0, 320, 240] (coordinates are in the form of
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Fig. 3. Illustration of the by-region task partitioning strategy.

[Xle f t, Xright, Ytop, Ybottom]) for the scanning scale of 1. When the scanning scale becomes 0.5,
the frame image is reduced to 320 × 240, and the sub-region to which node A is assigned
changes accordingly to [0, 0, 160, 120].

One advantage of the by-region strategy is straightforward load balancing: as long as the
sub-regions assigned to different cluster nodes are of same size, workload distribution will
be theoretically even. However, this strategy is subject to the drawback of high processing
overhead. To illustrate this, consider the situation where the hand appears in the image area
that crosses two sub-regions. If the two sub-regions are disjoint, the appearance of the hand
will be missed by the image scanning task, causing reduced detection and identification rates.
Thus it is necessary for the sub-regions to overlap with each other to make sure that sub-region
borders are properly taken care of. The size of the overlapped area is solely determined by
the size of the template. In Equation 2, the quantitative measure Roverhead is defined as the
overhead ratio. Roverhead is calculated as the ratio between the size of the sub-region that a
cluster node actually has to process versus the sub-region size that is assigned to it2. Table 1
shows how the overhead ratio values grow at several representative scanning scales.

Roverhead =
(Wsubregion × S + Wtemplate)(Hsubregion × S + Htemplate)

(Wsubregion × S)× (Hsubregion × S)
(2)

5.3.3 The by-scale choice

Figure 4 illustrates the principle of the by-scale task partitioning strategy. The same legends
for Figure 3 are used here. With this strategy, all cluster nodes are assigned to process the
whole frame image, but each with a different range of scanning scales. For instance, for an

2 For simplicity reasons, boundary conditions are not discussed for all equations and algorithms listed in
this section.
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Scanning Scale Overhead Ratio
0.2 211%
0.3 170%
0.4 151%
0.5 140%
0.6 133%
0.7 128%
0.8 124%
0.9 121%
1 119%

Table 1. Overhead Ratio vs. Scales for By-region Strategy
(Wsubregion = 320, Hsubregion = 240, Wtemplate = 25, Htemplate = 25)

Fig. 4. Illustration of the by-scale task partitioning strategy.

image frame of 640 × 480 resolution, node A is assigned to process the scale levels within the
range of 1-0.8. Node B is assigned to process the scale levels within the range of 0.7-0.5, and
so on. The advantage of the by-scale strategy is that no processing overhead is introduced
by sub-region overlapping, because each cluster node processes the whole image frame.
However, there are unbalanced workloads at each image scale. When the image scanning
task is performed at high scales, there are more sub-windows to compare. Consequently, the
number of template comparisons is large. Similarly this number is small when the image
scanning task is performed at a low scale. Because each template comparison takes the
same amount of processing time, cluster nodes with different assigned scale ranges will have
different workloads. Equation 3 presents the number of template comparisons needed at a
given scanning scale S. With this equation, Table 2 shows that the number of comparisons
needed increases at roughly the second order of the scanning scale. It is clear in the table that
the highest number of comparisons (at scale 1.0) can be a magnitude higher than the lowest
value (at scale 0.2).
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Scanning Scale Number of Comparisons
0.2 1219
0.3 3312
0.4 6430
0.5 10571
0.6 15736
0.7 21926
0.8 29138
0.9 37376
1 46638

Table 2. Number of Template Comparisons vs. Scales for By-scale Strategy
(W f rame = 640, H f rame = 480, Wtemplate = 25, Htemplate = 25, Xstep = 3, Ystep = 2)

Ncomparison =
(W f rame × S − Wtemplate)

Xstep
×

(H f rame × S − Htemplate)

Ystep
(3)

5.3.4 The final hybrid approach

Based on the previous discussions, it can be asserted that using either by-region or by-scale
strategy alone will not be sufficient to achieve effective partitioning for the image scanning
task. The by-region strategy creates high overhead for each single cluster node, and lowers
the overall performance of parallel processing. On the other hand, the by-scale strategy
overly engages the cluster nodes which scan at large scale levels, at the same time underly
utilizes the cluster nodes which scan at small scale levels. The result is that parallel processing
performance as a whole is affected.

We propose a hybrid approach that uses both by-region and by-scale task partitioning. The
basic idea is to take advantage of the better load balancing inherent in by-region strategy,
and lower the computation overhead, as much as possible, by exploiting the characteristics of
by-scale strategy. More specifically, this approach works as follows:

• The captured image frame is distributed to all cluster nodes at the same level. Each cluster
node is assigned to process the whole frame image at a single scale level, or within a certain
scale level range.

• Scanning tasks at small scale levels, which are less computationally demanding, are
grouped and assigned to a single cluster node. In this way the light workloads are
aggregated to avoid under-utilized cluster nodes.

• A cluster node which has been assigned to scan at a large scale level further partitions its
workload using the by-region strategy, and assigns the processing of sub-regions to next
level cluster nodes.

• If the workload of scanning at a scale level is comparable to either aggregated small
scanning scale levels or partitioned large scanning scales, it is assigned to a single cluster
node.

• The partitioning process is repeated recursively until an optimized overall system
performance is achieved.

Implementing this hybrid approach requires two additional components. The first component
is a data structure that is capable of managing the cluster nodes involved in the image
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scanning task with a layered architecture, because the hybrid approach partitions workload
at multiple levels. Therefore, a data structure called a scanning tree is designed to handle this
need. The second is a load balancing algorithm based on the scanning tree data structure.
This algorithm is responsible for fine tuning three configuration tasks in the hybrid approach:
workload grouping for scanning at small scale levels, workload partitioning for scanning at
large scale levels, and the determination of scale levels that need neither grouping nor further
partitioning. Section 5.5 introduces the scanning tree and Section 5.6 the load balancing
algorithm.

5.4 Node management and load balancing

Designing of the hybrid task partitioning strategy lays out the foundation for a concrete
implementation. One part of the implementation is the formation of the underlying system,
i.e. management of the cluster nodes. The other part of the implementation is the synergistic
scheme, of which the the load balancing algorithm is a main component.

5.5 The scanning tree

In our solution the scanning tree data structure is designed to manage the cluster nodes for
the image scanning task. Figure 5 gives a graphical presentation of this data structure. The
scanning tree can have one or more levels. Every node of the tree represents a cluster node
and is indexed with a unique key, which is the node’s IP address. Each edge of the scanning
tree maps to a dulplex network link between the two connected nodes.

A node of the scanning tree has two data attributes: scan_region and scale_range. The
scan_region attribute is a quadruple [Xle f t, Xright, Ytop, Ybottom] that specifies the unscaled
sub-region coordinates to be scanned in the frame image. The scale_range attribute is a triple
[Sstart, Sstep, Sstop] that denotes the start, step and stop of scanning scales performed by the
node on its scan_region. To make these descriptions more intuitive, two examples are given
below, assuming that the frame image is of resolution 640 × 480:

• Node A has the index "10.0.8.120" and the data attributes {scan_region: [0, 0, 640, 480],
scale_range [1.0, 0, 1.0]}. This is a cluster node with an IP address 10.0.8.120 which scans
the whole frame image, at the single scale value of 1.0.

• Node B has the index "10.0.8.121" and the data attributes {scan_region: [0, 0, 320, 240],
scale_range [0.5, 0.1, 0.8]}. This is a cluster node with an IP address 10.0.8.121 which scans
the upper left quarter portion of the frame image, at four scales 0.5, 0.6, 0.7 and 0.8.

Each node of the scanning tree does three jobs: distributing the frame image to its children
(with the leaf nodes being exceptions); scanning the specified sub-region at the specified
scale_range; and reporting to its parent (with the head node being an exception) any template
matches found by the subtree headed by itself. Under this mechanism, starting from the head
node, a frame image is passed to all the nodes of the scanning tree in a top-down fashion.
In a reverse flow fashion, template match results are gathered in a bottom-up manner and
eventually converge at the head node.

The workload of a scanning tree node is determined by its data attributes. These data
attributes can be manually planned based on the principles described in section 5.3.4, or
constructed by an automated process as described in the next section.
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Fig. 5. The scanning tree.

5.6 Load balancing algorithm

Algorithm 2 automates the planning work for:

• Construction of the scanning tree: given a desired speedup Pdesire, this algorithm
constructs a scanning tree Tscan, the number of nodes in the scanning tree Nnodes, and an
estimated best-effort speedup Pest to match Pdesire.

• Load balancing across the scanning tree nodes: this algorithm distributes workload
across scanning tree nodes as evenly as possible, using the hybrid task partitioning
strategy.

• Estimation of the communication costs: this algorithm outputs the estimations for two
communication costs: the cost at the head node Chead and the cost across the scanning tree
Coverall. The unit of these costs is number of frame image copies transmitted.

Following the pseudo-code for Algorithm 2 below, the algorithm works as follows. It
first calculates the number of template comparisons at each of the scanning scale values,
and sums these numbers to get the total number of template comparisons needed for the
image scanning task (lines 8-13). The template comparison numbers are then normalized as
percentages of the totalled number. Besides the percentages array, an integral percentages
array is also constructed, for each scanning scale value(lines 15-19). The classification of
low, middle and high scanning scales is based on the desired speedup. According to the
value of desired speedup, line 21 finds the value below which are treated as low scanning
scales. Subsequently, line 22 finds the value beyond which are treated as high scanning scales.
The values in-between fall into the category of middle scan scales. Once is classification
is completed, the rest of the algorithm handles the processing for each class of scan scales
respectively. All scanning scales in the low class are grouped to form a scan scale range. The
first scanning scale in the middle class is handled by the head node. And the rest of each
middle scanning scales is handled by a single node. For the processing of high scan scales, the
by-region strategy is first applied and the algorithm is used recursively to construct a sub-tree
for each high scanning scale (lines 34-36). Upon the creation of each tree node its workload
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is defined, through the scan_region and scale_range attributes. When the algorithm finishes,
the image scanning task has been partitioned to nodes across the constructed scanning tree.

Algorithm 2 Scanning tree construction and load balancing

Input:
desired speedup: Pdesire.
width and height of the image frame: W f rame, H f rame.
width and height of the template: Wtemplate, Htemplate.
scanning translation steps: Xstep, Ystep.
scanning start/stop scales: Sstart, Sstop.
scanning scale step: Sstep.

Output:
scanning tree: Tscan.
number of nodes in the scanning tree: Nnodes.
estimated speedup: Pest.
estimated communication cost at head node: Chead.
estimated communication cost across scanning tree: Coverall.

1: Tscan ← φ

2: Nnodes ← 0
3: Pest ← 0
4: Chead ← 0
5: Coverall ← 0
6:
7: Populate Array_Scales with scale values from Sstart to Sstop at interval Sstep, record the size

of Array_Scales as Len
8: Zeros Array_Ncomparison of size Len
9: Ntotal ← 0

10: for (i = 1 to Len) do
11: Calculate Array_Ncomparison[i] using Equation 3, with the parameters Array_Scales[i],

W f rame, H f rame, Wtemplate, Htemplate, Xstep, Ystep

12: Ntotal ← Ntotal + Array_Ncomparison[i]
13: end for
14:
15: Zeros Array_Pecentage, Array_Grouped_Pecentage of size Len
16: for (i = 1 to Len) do
17: Array_Pecentage[i] = Array_Ncomparison[i]/Ntotal

18: Array_Grouped_Pecentage[i] = Σ(Array_Pecentage[1 : i])
19: end for
20:

5.7 Display wall integration

A gesture interface is implemented using the OpenCV computer vision library, with
KLT feature-based template comparison. The implementation uses parallel frame image.
A baseline implementation that does not use the scalable computing techniques is also
implemented for evaluation purposes. The gesture interface is then integrated with an
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Algorithm 2 Scanning tree construction and load balancing (continued)

21: Find the highest index Igroup that satisfies Array_Grouped_Pecentage[Igroup] ≤ 1/P
22: Find the lowest index Isplit that satisfies Array_Pecentage[Isplit] ≥ to 1/P
23:
24: Create Nodehead with scan region to be [0,0,W f rame,H f rame] and scanning scale value of

Array_Scales[Igroup + 1]
25: Add Nodehead to Tscan as head node
26:
27: for (imiddle = (Igroup + 2) to (Isplit − 1)) do
28: Create a node Nodemiddle with scan region to be [0,0,W f rame,H f rame] and scanning scale

value of Array_Scales[imiddle]. Add Nodemiddle to Tscan as a child of the head node
29: end for
30:
31: Create a node Nodegroup with scan region to be [0,0,W f rame,H f rame] and scanning range of

[Array_Scales[1], Sstep, Array_Scales[Igroup]], add Nodegroup to Tscan as a child of the head
node

32: Pest ← 1/Array_Grouped_Pecentage[Igroup]
33:
34: for (isplit = Isplit to Len) do
35: Use the by-region strategy to partition the processing at Array_Scales[isplit] into a

sub-tree, add this subtree as a child to the head node of Tscan

36: end for
37:
38: Nnodes ← total number of nodes in Tscan

39: Chead ← number of children of the head node in Tscan

40: Coverall ← total number of edges in Tscan

return Tscan, Nnodes, Pest, Chead, Coverall

ultra-high-resolution tiled display wall. The wall has 55 LCD screen tiles, and is driven by
a 32-node cluster. Each node in the cluster has a 64bit architecture with two 2GHz AMD
processors and 4GB RAM. Nodes are interconnected with gigabit network interfaces. An open
source high performance graphics streaming middleware SAGE (Jeong et al., 2006) is used by
the display wall for frame rendering and UI management.

Hardware integration is performed as follows. The head node of the computer cluster is
connected to a Dragonfly camera (Pointgrey Research Inc). The Dragonfly captures frame
image at 640 × 480 resolution, 30 Hz rate and 8-bit gray scale. All nodes in the computer
cluster participate visualization, coordinated by SAGE. A subset of them are used for the
gesture interface under the management of a scanning tree. Regardless of the number of nodes
in the scanning tree, it always uses the cluster head node as its head node. Communications
among the scanning tree nodes are handled by the open source library QUANTA (He et al.,
2003).

On the software integration side, the gesture interface runs as a standalone application,
independent of the SAGE middleware. Interprocess communication using socket connection
is setup between the gesture interface and SAGE. Whenever a user gesture is identified, the
interface sends an interaction command to SAGE. SAGE then performs corresponding 2D
window manipulation operations based on the interaction command. With this collaboration
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Fig. 6. Estimated vs. Actual Speedup Values.

the user can move, resize and close application windows displayed on the wall using
free-hand gestures, as shown in Figure 2.

5.8 Evaluation results

A set of experiments are conducted with the gesture interface to evaluate the scalable
computing techniques. These experiments measure three groups of metrics: speedup values
under different scanning tree configurations, workload balance across nodes in the scanning
tree, as well as performance impacts to the graphics streaming.

5.8.1 Speedup

Using the desired speedup values of 2.0, 3.0, 4.0, 6.0 and 9.0, algorithm 2 constructs five
scanning trees. The node numbers in these trees are 3, 4, 8, 12 and 16 respectively. The
estimated speedup values are 2.1, 3.06, 4.49, 6.63 and 9.25.

The times taken for frame image scanning during the detection and identification stages are
profiled in the gesture interface. Same profiling are performed in the baseline implementation.
Speedup values are obtained by calculating the ratio of averaged baseline processing times for
image scanning over the counterpart in parallelized processing. Figure 6 shows the actual
speedup values measured for the five scanning tree configurations described above. The
measured speedup values are very close to the estimations for the 3-, 4- and 8-node scanning
trees (difference is within 20%). For 12- and 16-node scanning trees the discrepancies are
relatively large. This is mainly due to the increased communication cost during parallel
processing. Communication costs are not taken into account in Algorithm 2. This fact leads to
estimation errors.

5.8.2 Load balancing

Figure 7 illustrates the workload distribution estimated by the load balancing algorithm and
the actual measured numbers, over a an 8-node scanning tree. Note the difference in units
used by the top and bottom plots of figure 7. The estimated numbers are represented as
the percentages of processing amount at all nodes against the processing amount of baseline
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Fig. 7. Estimated and actual workload distributions across a 8-node scanning tree. Note that
the units used by top and bottom plots are different.

implementation. In the mean time, the actual workload values are measured as average CPU
load recorded at each of the nodes. Although the numbers in the top and bottom plots are not
directly comparable, it can be seen that the actual workload distribution roughly follows the
estimated outcome, with the exception at the head node. The larger readings at the head node
is because that CPU load is measured as a whole for the gesture interface. Besides the work of
image scanning, the head node is also in charge of video capturing, whose CPU usage is not
easily separated when doing application-level profiling.

5.8.3 Performance impacts

Because the gesture interface shares the same computing resources with the SAGE
middleware, its impact on the graphics streaming performance of SAGE is of interest. This
experiment is conducted by running the OpenGL "Atlantis" application over SAGE, with the
application window covering 20 display tiles. The profiling tools that come with SAGE is used
to measure its display bandwidth and display frame rate. The display bandwidth reflects
SAGE data throughput, which is calculated as the product of number of frames streamed
in unit time and the data size of each frame. The display frame rate indicates the update rate
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Fig. 8. Display bandwidths of the SAGE middleware, with and without the gesture interface
running.

Fig. 9. Frame Rates of the SAGE middleware, with and without the gesture interface running.

SAGE could maintain across the display wall. Two conditions are tested, i.e. with and without
the gesture interface running. For the "with gesture interface running" condition, a 12-node
scanning tree is used for parallel processing. The nodes of the scanning tree belong to a subset
of the nodes that drive the 20 LCD tiles where "Atlantis" is displayed.

Figure 8 shows the side-by-side comparison results of SAGE display bandwidth under two
conditions. Without gesture interface in place, the display bandwidth is 485.54 ± 59.74Mbps.
While with gesture interface running, the display bandwidth is 430.77 ± 49.84Mbps. Display
bandwidth drops by 11% when the gesture interface is active. Similar results on display frame
rates can be seen in figure 9. Without the gesture interface active the frame rate is 69.21 ± 5.26.
With gesture interface active, frame rate becomes 61.03 ± 6.44. The frame rate decrease is
about 12%. Considering the gain of a five-fold speedup for gesture detection and recognition,
the performance impacts to graphics streaming are relatively insignificant.
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5.9 Results discussion

This section explores the techniques to utilize the computing power of cluster-driven large
displays to alleviate the performance needs for vision-based gesture interaction. It makes
three contributions: 1) an analysis of the task partitioning choices, which leads to the
proposition of a hybrid strategy, 2) the scanning tree data structure together with the load
balancing algorithm, and 3) implementation and evaluation of the integration with a real
system. Experimental results show that the proposed techniques are effective and exhibits
promising speedup, estimation accuracy and performance impact metrics. To our best
knowledge, this section is the first to address scalable gesture interaction for large display
systems.

The solution presented can be applied to a broader range of computer vision interfaces
beyond gesture-based systems, such as silhouette tracking. Being at the application-level,
it is also feasible to be stacked on programming environment-level parallelization techniques
and achieve further performance gains.

Presently communication factors, such as latency, overhead and bandwidth are not explicitly
addressed in system modeling. As can be seen in section 5.8, this limitation can cause
considerable estimation inaccuracy when data distribution is intensive. One extension could
be the addition of several communication parameters in the LogP model (Culler et al., 1993)
into the solution design. We leave it as a future work.

6. Conclusions and discussions

In this chapter we presented our work to enhance mobile AR system performance with a
novel computing paradigm, named Cloud-Mobile Convergence (CMC). The design principle
and philosophy of CMC is introduced, and several sample scenarios to put this paradigm into
practical use are discussed. We also described in detail a real life application which adopts
CMC paradigm. As a meta computing method, CMC exhibits potentials to be used in a wide
range of mobile AR systems.

It should be pointed out that the research of using CMC for AR applications is still in its
growing age. Solutions to some interesting problems remain largely unexplored. One of
these problems is how to discover the cloud-based resources and configure the collaboration
relationship between the mobile device and its cloud environment in an automated fashion.
Up to now we always assumed that the mobile device had obtained information about
its environment before conducting computation using CMC paradigm. We also assumed
that the cloud-based resources were ready to be utilized as soon as requested by the
mobile device. Both assumptions were simplified and might not be true under real world
circumstances. For this, some well-established discovery and auto-configuration protocols,
software implementations and standards may be integrated into a CMC application.
Examples of such protocols, implementations and standards include Apple Inc’s Bonjour
(Apple, 2005), UPnP Forum’s UPnP (UPnP, 2011), and Qualcomm Inc’s AllJoyn (Qualcomm,
2011), to name just a few.

Another problem is inter-operability across heterogenous systems. When mobile device
is collaborating with its cloud environment, they need to work out a solution to address
possible heterogeneities at the levels of operating system, application programming interface,
data format, and many others. To deal with the OS and API discrepancies, inter-process
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communication methods such as RPC (Remote Procedure Call) may be useful. While data
format differences need to be solved by techniques like interpretation middleware and
application gateway. The importance of unification and standardization has been realized
by the community, but to be able to get some real progresses there are still long roads to go.

In a broader sense, CMC paradigm belongs to the field of collaboration computing, and people
had split views on collaborative computing. User experience had long been a controversial
topic in the debates. Proponents argued that the performance gains collaborative computing
brought to the table helped to achieve better user satisfaction. While the opponents believed
that the discontinuity in service quality actually hampered user experience and so that
collaborative computing would not be preferred by the mass users. With all these opinions
said, there haven’t been decisive and convincing evidences for either side found in the
literature. To concretely evaluate the users’ preference of CMC paradigm, extensive user
study and human factors experiments should be conducted. We leave this as a potential future
direction of the follow-up work.

Optimization using hybrid approaches, involving the CMC paradigm and methods discussed
in section 2 would also be an interesting direction to explore. What if we reduce the
computing problem complexity on the mobile device to get coarse tracking results, and refine
it with the reminder of the computing task done outside of the device? What if we unify
the parameter tuning both internal and external of the device, and make the cloud-based
resources scheduling part of the parameter tuning process? Such hybrid approaches might
very likely open new avenues to the performance improvement challenges. We will keep
polishing the CMC paradigm to reflect the new findings and improvements.
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