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1Changzhou University, Changzhou  

2Tsinghua University, Beijing  
 PR China 

1. Introduction 

The field of nonlinear optics has been developing for a few decades as a promising field 

with important applications in the domain of optoelectronics and photonics. Materials that 

exhibit nonlinear optical (NLO) behavior are useful because they allow manipulation of the 

fundamental properties of laser light beams, and are hence of great technological 

importance in areas such as photonic switching, optical computing and other optical data 

processing systems (Perry et al., 1994, 1996; Shirk et al., 2000). NLO activity was first found 

in inorganic crystals (Zyss, 1994), such as LiNbO3, but the choice of these materials is rather 

limited. Also, most of them have either low NLO responses or important drawbacks for 

processing into thin films and being incorporated into micro-optoelectronic devices. By the 

mid-1980s, organic materials emerged as important targets of choice for nonlinear optical 

applications because they exhibit large and fast nonlinearities and are, in general, easy to 

process and integrate into optical devices. Moreover, organic compounds offer the 

advantage of tailorability: a fine-tuning of the NLO properties can be achieved by rational 

modification of the chemical structure. Finally, they are ideal to achieve the ultimate goal of 

device miniaturization by going into the molecular level. 

Large optical nonlinearities in organic molecules usually arise from highly delocalized -

electron systems. During the last two decades, phthalocyanines (Pcs) have been intensively 

investigated for their third-order NLO properties both in solutions and as thin films because 

of their extensively delocalized two dimensional 18-electron system (Ho, 1987; Shirk, 1989; 

Kambara, 1996; Ma, 2003; Zhou, 2004; He, 2007). They also exhibit other additional 

advantages, namely, exceptional stability, versatility, and processability features. The 

architectural flexibility of phthalocyanines is well exemplified by the large number of 

metallic complexes described in the literature, as well as by the huge variety of substituents 

that can be attached to the phthalocyanine core. Furthermore, some of the four isoindole 

units can be formally replaced by other heterocyclic moieties, giving rise to different 

phthalocyanine analogues. All these chemical variations can alter the electronic structure of 

the macrocyclic core, and therefore, they allow the fine-tuning of the nonlinear response. 

Aside from their practical interest, Pc-related molecules present very attractive features 
for fundamental NLO studies. Since the unsubstituted and many substituted compounds 
are planar (2D, two dimensional), they offer the possibility of investigating of the role of 
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dimensionality on the NLO response. Moreover, by introducing peripheral substituents or 
by adding axial substituents, one may obtain three-dimensional (3D) structures with 
pyramidal shape and examine the effect of a third-dimension on the NLO response. 

Owing to the extended  system, it is well-known that these Pc-related compounds exhibit 
a high aggregation tendency, and the aggregates usually display outstanding nonlinear 
optical properties. In order to improve the nonlinear optical properties of materials, the 
third-order optical nonlinearities of novel phthalocyanines and related compounds 
continue attracting attention. 
This chapter arises from the need to compile the important advances obtained in the field of 
the NLO properties of phthalocyanines and analogues. Far from giving an exhaustive 
description of all the work that have been done in this area. We will focus on the third-order 
optical nonlinearities of some novel phthalocyanines and related compounds which were 
studied by our group using femtosecond degenerate four-wave mixing (DFWM) technique 
or picosecond Z-scan method. 

2. Theory of nonlinear optics 

Nonlinear optics is a material phenomenon in which intense light induces a nonlinear 

response in a medium, and in return the medium modifies the optical fields in a nonlinear 

way. In fact, all media are nonlinear to a certain degree of an applied optical field. The effect 

of a light wave on a material is usually described through the induced electrical polarization 

P. At lower irradiation intensities, one can assume that this polarization is a linear function 

of the applied electric field E, 

                                     P = · E                                   (1) 

where is the linear susceptibility. However, when the material is subjected to an intense 

applied electric field (a laser light), one must take into account the deviation of P from a 

linear dependence on E. Then the nonlinear polarization can be expressed by 

                          P = (1) · E + (2) · EE + (3) · EEE + …                       (2) 

where (2) and (3) the quadratic (first-order) and cubic (second-order) susceptibilities, 

respectively. These two parameters determine the magnitude of the second- and third-order 

nonlinear optical responses. At the molecular level, a similar equation can be written for the 

microscopic polarization P induced in an atom or a molecule, 

                             P =  · E +  · EE +  · EEE + …                         (3) 

with the coefficients , , and  being the linear polarizability, the first (quadratic) 

hyperpolarizability, and the second (cubic) hyperpolarizability, respectively. The 

corresponding susceptibilities and hyperpolarizabilities are second rank (ij(1) or ij), third 

rank (ijk(2) or ijk), and fourth rank (ijkl(3) or ijkl) tensors, respectively. In general, 

geometrical symmetries may reduce the number of independent nonzero components. 

The odd rank tensor (2) is zero in centrosymmetric media whereas the even rank tensor 

(3) does not have any symmetry restrictions and can take place in any materials. (n) is 

frequency dependent and, as a result, resonant and non-resonant parameters differ 

significantly depending upon the measurement frequencies. The macroscopic third-order 
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susceptibility (3) is directly related to the microscopic averaged hyperpolarizability  

(–4;1,2,3) through local field correction factors f(i) at the frequencies of the applied 

electric fields through the relation, 

 (3)(– ; , , ) ( ) ( ) ( ) ( ) (– ; , , )    4 1 2 3 4 1 2 3 4 1 2 3Nf f f f               (4) 

where is the output frequency,  1,  2 and  3 are the input ones, relating with each other 

by the expression 12 3; N is the number of molecules per volume unit which 
can be obtained from the product of mass density D and Avogadro’s constant A, divided by 

the molar mass M, i.e., N = A × D/M; f(i) is the local field factor at irradiation frequency i. 
The local field factor at optical frequencies for a pure liquid can be estimated by the 
expression derived by Lorentz 

                                 f(i) = [n(i)2 + 2)]/3                             (5) 

where n(i) is the linear refractive index for a liquid at frequencyi. The local field is the 

actual electric field acting on the microscopic species in the material. It should be 

emphasized that Lorentz’s local field factor is an approximation since it considers the 

species to occupy a spherical cavity in the material and the local environment of the species 

is treated as a continuum. Also note that the indices of refraction used in the local field 

approximations for optical frequencies are generally assumed to be independent of the 

applied electric field. 

3. Measurement of third-order NLO properties 

The initial stages in the development of novel third-order NLO materials are the synthesis 

of molecules with large  value and their incorporation into materials with substantial (3) 
coefficient. Although many additional factors must be considered for practical device 
applications (e.g., thermal and photochemical stability, processability, etc.) the NLO 
properties of molecules and molecular materials can be adequately described here by 

reference to values of  and (3). Each of two parameters can be measured by using various 
experimental techniques. In most such measurements, the effects of resonance must 

always be considered;  and (3) are all wavelength dependent, being strongly resonance 
enhanced whenever the fundamental or harmonic frequencies are close to an electronic 
excitation. Although large NLO responses are required, any significant absorption of light 
is obviously highly undesirable for most application of NLO materials. This aspect has led 
to the use of expression “transparency/efficiency trade-off” when discussing the merit of 
such materials. 

For studies of cubic NLO properties, values of  and (3) are usually obtained from third-
harmonic generation (THG) (Hermann et al., 1973) or degenerate four-wave mixing 
(DFWM) (Linder et al., 1982). The electric-field induced second-harmonic generation 

(EFISHG) technique may also be used to determine . THG studies simply involve 
measurement of the light produced at the third harmonic (TH), but are often complicated 
by the fact that many NLO materials absorb strongly in the TH region, even when using 
a 1907 nm fundamental which gives a TH at 636 nm. THG occurs almost instantaneously 
through purely electronic interactions that do not depend on the population of the 
excited state. The disadvantage of the THG technique is that dynamic nonlinearities are 
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not probed and no information on the time response of the optical nonlinearity can be 
given. 
DFWM is a convenient method for measuring both electronic and dynamic nonlinearities. It 

involves three laser beams of the same frequency interacting in a materials to produce a 

forth degenerate beam, the intensity of which allows determination of (3). DFWM may 

hence circumvent the effects of resonance, but has the additional aspect that vibrational and 

orientational mechanisms can contribute substantially to the observed optical nonlinearity. 

In contrast, only the electronic hyperpolarizability is fast enough to be probed by THG 

measurements. Hence, THG-derived  values are generally considerably smaller than those 

determined via DFWM, and are more useful for deriving structure activity correlations 

(SACs) for the purely electronic part of , i.e., the only part of interest for potential practical 

applications. Polarization and time-dependent DFWM measurements can be used to 

distinguish the electronic (parametric) part of  from other (nonparametric) components, but 

several experimental subtleties must be considered if this is to be achieved reliably. It is 

important to remember that (3) values which are most often determined for solution will 

always be concentration dependent. 

Another experimental method that has become popular for characterization of cubic NLO 

materials is the relatively simple, but highly sensitive Z-scan technique which measures the 

phase change induced in a single laser beam on propagation through a material (Sheik-

Bahae et al., 1989, 1990). The sample is moved along the propagation path (z) of a focused 

Gaussian beam whilst its transmittance is measured through a finite aperture in the far filed, 

and the sign and magnitude of the nonlinear refractive index n2 are deduced from the 

resulting transmittance curve (Z-scan). If the value of n2 is positive, then the material has a 

tendency to shrink a laser pulse and is termed “self-focusing” (SF), whilst a negative n2 

characterized “self-defocusing” (SDF) behaviour. Although the ultrafast, electronic n2 arises 

from the real part of (3), published n2 values often include, and indeed may be dominated 

by, nonparametric (thermal) contributions. In cases where nonlinear refraction is 

accompanied by nonlinear absorption, the nonlinear absorption coefficient 2 can be 

determined by performing a second Z-scan with the aperture removed. Effective (3) and  
values can also be determined via this method, but must be interpreted with great care in 

term of their actual origins which may be largely thermal effects. 

Ultrafast, time-resolved optical Kerr effect (OKE) measurements (which involve another 

type of four-wave mixing process) may also be occasionally be used to determine (3) and  
values. The OKE is the optically-induced birefringence caused by a nonlinear phase shift. 
There are various mechanisms (electronic deformation, molecular reorientation, molecular 
libration, molecular redistribution, electrostriction, thermal change) that are responsible for 
the change of nonlinear refractive index in the OKE and each mechanism has different 
strengths and response times. In OKE, a strong beam is used as a pump beam and a weak 
beam is used as a probe beam. The intensity of the probe beam transmitted through a Kerr 
cell is measured as a function of the delay time between pump and probe. 

In each of the THG, DFWM, Z-scan and OKE techniques,  is derived from the measured (3) 

values by using the solute number density of the solution. In a few cases, (3) values have 

also been determined by using Stark spectroscopy. It should be remembered that 

comparisons of (3) or  values obtained using different techniques with different 

experimental conditions are generally of little utility. 
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4. Novel phthalocyanines and analogues with third-order NLO properties 

The third-order NLO properties of phthalocyanines and its analogues have been 
extensively investigated since 1990, and this area has been reviewed (Torre et al., 2004). 
The discussion here will be limited to selected highlights of our studies and more recent 
developments. 

4.1 Novel phthalocyanines 

The electronic structure of phthalocyanine molecules can be tailored by either metal 
substitution at the central binding site or by altering the peripheral and axial 
functionalities, thus affording great versatility in controlling their electro-physical 
properties. Incorporation of a metal atom in the center of the macrocycle results in two 
types of charge-transfer transitions: metal-to-ligand and ligand-to-metal. The molecular 
hyperpolarizability could be enhanced by the metal-ligand bonding through the transfer 
of the electron density between the metal atom and the conjugated ligand systems. 
Furthermore, peripheral substituents could also influence the nonlinearity through 

intermolecular interactions. Therefore, the third-order NLO susceptibility(3) could vary 
by several orders of magnitude through chemical modification of the macrocycle structure 
(Nalwa et al., 1993, 1999; He et al., 2007).  

4.1.1 Diarylethene-phthalocyanine dyads 

In general, the absorption spectra of monomeric phthalocyanines are dominated by two 

intense bands, a Soret band in the near ultraviolet region (at around 350 nm) and a Q band 

in the visible region (at around 670 nm), with a molar extinction coefficient in the range of 

105 M-1 cm-1. When electron-donating alkoxy/aryloxy groups are introduced at the 

periphery closest to the phthalocyanine ring, a large bathochromic shift occurs in the Q 

band. These large red-shifted phthalocyanines are very soluble in common organic solvents 

and can be easily be prepared thickness-controlled thin films for practical applications to 

photonic devices. However, little attention has been paid to the third-order nonlinear 

properties of these molecules. Herein, we report the third-order nonlinear optical properties 

of aryloxy substituted novel diarylethene-phthalocyanine dyads 1-4 (the structures are 

shown in Figure 1) measured by femtosecond DFWM technique at 800 nm under off-

resonant condition (Li et al., 2007). 

Figure 2 shows the temporal response of the DFWM signal as a function of the probe delay 

in the diarylethene-phthalocyanine dyads 1-4. The DFWM signal of each sample is well-

fitted by a Gaussian function (solid curve), and the half-width of fitting curve is similar to 

the autocorrelated pulse duration. All the signal profiles almost exhibit symmetry about the 

maximum signal (the zero time delay), which indicate that the responses time of the third-

order optical nonlinearities are shorter than the experimental time resolution (50 fs). Such 

instantaneous response means that the Kerr effect (electronic component) from the 

distortion of the large -conjugated electron charge distribution of diarylethene-

phthalocyanine dyad molecules is main reason for generating the DFWM signal. 

The evaluated values of (3)  and nonlinear refractive index for the diarylethene-
phthalocyanine dyads 1-4 in DMF solution are summarized in Table 1. Among the samples, 

diarylethene-phthalocyanine dyad 4 possesses the highest e value of 1.12 × 10-30 esu. It was 
found that the second-order hyperpolarizability values of the diarylethene-phthalocyanine 
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Fig. 1. Structures of diarylethene-phthalocyanine dyads 1-4 
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Fig. 2. Temporal profiles of DFWM signal of the diarylethene-phthalocyanine dyads 1-4  

dyads 1-4 are 2-3 times larger than that of tetra-aryloxy substituted metal-free 

phthalocyanine. This enhancement of mainly comes from the d valence orbital 
contribution of central metal atoms (Zn and Cu) of the diarylethene-phthalocyanine 

dyads. Furthermore, it is observed that the  values of the copper substituted 
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diarylethene-phthalocyanine dyads (Cu-DE-Pcs) are larger than those of the zinc 
substituted diarylethene-phthalocyanine dyads (Zn-DE-Pcs). This behavior can explain 
from the electronic structures of the upper occupied and lower vacant molecular orbitals 
for the ground states of metal substituted phthalocyanines (MPcs). In the case of Zn-DE-
Pcs with completely filled d-shell, we can suppose that the probability for the charge 
transfer mechanism is very less. The 3d subshell of Zn-DE-Pcs is filled and deep enough 
to form rather pure molecular orbitals. The Zn-DE-Pcs exhibit a large gap between the 
HOMO and LUMO. In the case of Cu-DE-Pcs, the unfilled d valence orbital can be split 

into serials level due to the interaction between the d electrons and -conjugation 
electrons of Pc ring, this result will lower the transition energy in low-lying d orbital-
ligand or d-d transition. The existence of excited state with low transition energy will 
enhance the nonlinear optical susceptibilities of the material. The unfilled d orbit of Cu 
atoms will couple with the conjugated electrons of Pc ring leading to the extension of 
conjugated systems. As a result, the Cu-DE-Pcs with larger conjugated systems will show 

larger optical nonlinearities than the Zn-DE-Pcs. Moreover, the  value of the methyl 
substituted diarylethene-phthalocyanine dyad 3/4 is larger than that of the relative 
chlorine substituted diarylethene-phthalocyanine dyad 1/2. This is probably attributed to 
electron-pushing effect of the methyl group of the diarylethene-phthalocyanine dyad 3 
and 4, which leads to large polarization of molecules. 
 

Sample ×10-14 esu) ×10-31 esu) n2×10-13 esu)

1 4.50 7.60 8.33 

2 5.05 8.53 9.35 

3 4.92 8.32 9.12 

4 6.62 11.2 12.3 

Table 1. Evaluated values of (3)  and nonlinear refractive index for the diarylethene-
phthalocyanine dyads 1-4 in DMF solution 

4.1.2 Azobenzene-phthalocyanine dyads 

In 2008, we reported the photo-responsive J-aggregation behavior of a novel -aryloxy-
substituted zinc phthalocyanine (azobenzene substituted zinc phthalocyanine, hereafter, 
abbreviated as azo-ZnPc dyad) and its third-order optical nonlinearity (Chen et al., 2008). 
The azo-ZnPc dyad was synthesized through a rather facile route as shown in Scheme 1. The 
third-order optical nonlinearities of the photo responsive J-aggregates of the azo-ZnPc dyad 
(before and after irradiation conditions) were measured using a Z-scan technique at 532 nm 
with pulse duration of 25 ps.  

In our previous studies, it was found that -aryloxy-substituted Zinc phthalocyanine 

could form J-type self-aggregate in noncoordinating solvents through the complementary 

coordination of the peripheral oxygen atom of one phthalocyanine to the central Zn2+ in 

another phthalocyanine (Zhang et al., 2007a, 2007b). Moreover, the -aryloxy-substituted 

Zinc phthalocyanine formed J-aggregate showed another characteristic, that is the 

addition of methanol could break the J-aggregate, as a consequence, typical Q-band 

restored. 
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Scheme 1. Synthesis route of a novel -aryloxy-substituted zinc phthalocyanine 

The studied azo-ZnPc dyad shows same absorption behaviors as that of the reported -
aryloxy-substituted Zinc phthalocyanine. Figure 4 shows the spectra change of initial and 
UV-illuminated solutions of azo-ZnPc in chloroform with the addition of methanol. As 
methanol was titrated, the absorption at 740 nm of both of the solutions decreased 
gradually and finally disappeared completely with the increase in the absorption at 698 
nm. The unusual red-shifted peak at 740 nm can be attributed to the formation of J-
aggregates. For azo-ZnPc, there is a stronger tendency to form J-aggregate when the 
azobenzene units is in the cis-conformation, and the irradiation of UV light will cause 
enhancement of J-aggregation. 
 

 

Fig. 3. Absorption spectral changes of azo-ZnPc (a: before UV light irradiation; b: after UV 
light irradiation for 3 min, c = 1.19 × 10-5 M) in chloroform . 

The open aperture curves (Figure 4) of Z-scan measurement exhibit the normalized valleys, 
indicating the presence of reverse saturable absorption with a positive coefficient . And the 
normalized transmission for the closed aperture of Z-scan measurement is shown in Figure 
5. The large valley-to-peak configurations of closed aperture curves suggest that the 
refractive index changes are negative, exhibiting a strong defocusing effect. 
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Fig. 4. Normalized transmission without aperture at 532 nm (open aperture) as a function of 
distance along the lens axis. The filled triangles and open squares are measured data for 
before irradiation and after irradiation of azo-phthalocyanine, respectively. Each point 
corresponds to the average of 5 pulses. The solid line is the theoretical fit. 
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Fig. 5. Normalized transmission for the closed aperture of Z-scan measurement 

The nonlinear absorption coefficient (, m/W), the nonlinear refraction coefficient (n2, 

m2/W), the third-order nonlinear susceptibility ((3), esu) and the molecular second 

hyperpolarizability (, esu) are calculated and listed in Table 2. It is found that the studied 

azo-phthalocyanine dyad shows large second-order molecular hyperpolarizabilities which 

are of the order of 10-30 esu both before and after irradiation conditions. The value of  of 
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before irradiation is 1.25 times larger than that of after irradiation condition. This 

enhancement may be attributed to the increase of J-aggregation degree of azo-ZnPc dyad 

after UV light irradiation.  

 

Sample Before irradiation After irradiation 

n2 / × 10-19 m2 W-1 4.26 5.30 

 / × 10-9 m W-1 1.48 4.03 

(3) / × 10-13 esu 2.26 2.82 

 / × 10-30 esu 3.87 4.82 

Table 2. Values of The nonlinear absorption coefficient, the nonlinear refraction coefficient, 
the third-order nonlinear susceptibility and the molecular second hyperpolarizability of 
Azo-ZnPc dyad. 

4.1.3 Azobenzene-containing water soluble unsymmetrical phthalocyanines 

In 2009, we reported the photoswitching of the third-order nonlinear optical properties of 
unsymmetrical azobenzene-containing metal phthalocyanines (structures are shown in 
Figure 6) based on reversible host-guest interacions (Chen, 2009). 
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Fig. 6. Structures of unsymmetrical azobenzene-containing metal phthalocyanines 

It has been well established that azobenzene could reversibly assemble with -cyclodextrin 
through host-guest interaction under suitable external photo-stimuli, and this phenomenon 
has been exploited as the basis of some molecular shuttles and motors (Breslow & Dong, 
1998; Dugave & Demange, 2003). However, their applications in phthalocyanine chemistry 
have rarely been studied yet. We believe that this reversible host-guest interaction can be 
used to modulate the NLO properties of phthalocyanines if the phthalocyanines were 
judicious designed. Therefore, we prepared for the first time two azobenzene containing 
water soluble unsymmetrical metal phthalocyanines. Their reversible host-guest interaction 

with -cyclodextrin in aqueous media and the resulting effects on the NLO properties of 
such molecules were also investigated. Scheme 2 shows the structures and the synthesis of 
target azobenzene containing water soluble unsymmetrical zinc (II) and copper (II) 
phthalocyanines (abbreviated as Zn-Pc7 and Cu-Pc7, respectively) and their inclusion 

complexes with -cyclodextrin (Zn-Pc8, Cu-Pc8) 
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Scheme 2. Synthesis of target azobenzene containing water soluble unsymmetrical zinc (II) 

and copper (II) phthalocyanines and their inclusion complexes with -cyclodextrin (Zn-Pc8, 
Cu-Pc8) 

Z-scan studies show that each azobenzene containing water soluble unsymmetrical 
phthalocyanine consists of an electro donating phenylazophenoxy group (D) and six 

electron withdrawing carboxyl (A) forming a D--A alignment along the x axis. As a result 
of such unique chemical structure, all the samples showed very large molecular cubic 
hyperpolarizabilities which are of the order 10-30 esu. The Azobenzene moieties of these 

compounds could reversibly associate with -CD to form inclusion complexes through host-
guest interaction in aqueous media upon alternating illumination of UV and visible light, 
resulting apparent influences to the third-order NLO properties of these phthalocyanines. 

www.intechopen.com



 
Laser Systems for Applications 

 

264 

This influence is especially striking for the phthalocyanine whose central metal atom is 

Cu2+. The molecular cubic hyperpolarizability  of its inclusion complex with -CD is 2.10 

 10-30 esu. When the inclusion complex disassociated under the illumination of 365 nm 

light, the  value was 4.2  10-30 esu, which is an 100% increase. Taking account of the 
large molecular cubic hyperpolarizabilities of these compounds, our endeavors toward 
ideal third-order NLO photoswitching systems is very promising, with sufficient room for 
improvement. This work suggested that reversibly control either the chemical structure or 
the molecular packing arrangement of excellent third-order NLO materials is an attractive 
strategy for constructing ideal third-order NLO photoswitching systems. Moreover, the 
present study emphasized the reversible host-guest interaction between azobenzene and 

-CD on the packing style of phthalocyanines, which may provide new insights to the 
host-guest chemistry.  

4.1.4 Novel copper phthalocyanine-ferrocene dyad  

González-Cabello (González-Cabello et al., 2003) reported that the interplanar distance 
between the two ciclopentadiynyl rings combined with the rigid, stereochemically well 

defined,-conjugated linkers between the ferrocene and the Pc-subunits provide an excellent 
situation for the cofacial stacking of the Pc macrocycles, thus allowing potential NLO-
favorable through space interactions between the individual Pc subunits. Moreover, the 
combination of an electron acceptor moiety such as phthalocyanine and electron donor unit 
such as ferrocene may give rise to intramolecular charge transfer that may enhance the 
nonlinear optical response. Herein, third-order nonlinear optical property of a novel copper 
phthalocyanine-ferrocene dyad (the structure is shown in Figure 7) measured by femtosecond 
degenerate four–wave mixing technique under off-resonant condition (Bin et al., 2008). 
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Fig. 7. Structure of novel copper phthalocyanine-ferrocene dyad 

The DFWM measurement shows that the second-order molecular hyperpolarizability of this 
compound was measured to be 1.74 × 10-30 esu, and its response time was also obtained and 
no more than 50 fs. This large and ultrafast third-order optical nonlinear response is mainly 
enhanced by the formation of intramolecular charge-transfer which can enhance the 

delocalized movements of the large-electrons in the molecules. 
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4.1.5 Novel thiophene-bearing phthalocyanines  

Recently, we have measured the third-order nonlinear optical properties of two thiophene-
bearing phthalocyanines (Ni-TPc and Cu-TPc, their structures are shown in Figure 8) using 
Z-scan technique at 532 nm (Chen et al., 2011). Both Ni-TPc and Cu-TPc were found to show 
large molecular cubic hyperpolarizabilities whose values are of the order of 10−30 esu. The 

value of Cu-TPc is 1.5 times larger than that of Ni-TPc, mainly as a result of their notably 
different nonlinear absorptions. Most notably, the nonlinear absorption and the nonlinear 
refraction contribute almost equally to their molecular cubic hyperpolarizabilities, while for 
our previous studied Pcs, the nonlinear refraction always plays an absolutely predominant 
role. It is assumed that the incorporation of thiophene rings into phthalocyanines could 
notably increase the multi-photo absorption cross-section of Pc. 
 

 

Fig. 8. Chemical structures of two thiophene-bearing phthalocyanines, Ni-TPc and Cu-TPc 

4.2 Novel phthalocyanine related compounds 

Phthalocyanines are special organic systems in a way that they offer tremendous 
opportunities in tailoring their photophysical and optical properties over a wide range 
either by substituting different metal atoms into the central binding site or by altering the 
peripheral and axial functionalities. It is possible to incorporate a variety of peripheral 
substituents around the phthalocyanines core as well as replace some of the isoindole units 
by other heterocyclic moieties, giving rise to different phthalocyanine analogues. For 
example, in the previous studie (Liu et al., 1999), it was shown that the phthalocyanine may 
lose a bridging nitrogen atom when complexed with phosphorus which was proved to be a 
phthalocyanine analogue−dihydroxy phosphorus (V) tetrabenzotriazacorrole (TBC). 

4.2.1 Dihydroxy phosphorus (V) tetrabenzotriazacorroles  

Due to its special three-dimensional -electron structure and features which are different 
from phthalocyanines, the TBC macrocycle should have a potential application in 
photonic devices. However, to our knowledge, there is no report on third-order optical 
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nonlinearity of dihydroxy phosphorus (V) tetrabenzotriazacorrole. Herein, we report the 
third-order nonlinear optical properties of a series phthalocyanine analogues, non-
sulfonated {P(OH)2TBC}, sulfonated {P(OH)2TBCSn} and isopropoxyl substituted 
{P(OH)2TBC(OiPr)4} dihydroxy phosphorus (V) tetrabenzotriazacorroles (the structures 
are shown in Figure 9) measured by femtosecond (50 fs) degenerate four–wave mixing 
technique (Huang et al., 2008). 
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Fig. 9. Structural formulae of (a) P(OH)2TBC and P(OH)2TBC(OiPr)4 ; (b) P(OH)2TBCSn. 

The evaluated values of(3) and for these phthalocyanine analogues are summarized in 

Table 3 together with the visible absorption maxima (max) and nonlinear refractive index in 

DMF solutions. The  of samples show high values as large as 10-31 esu, and the highest 

value of 2.26 × 10-31 esu for the P(OH)2TBC(OiPr)4 was observed, which is almost two times 

larger than that of phthalocyanine analogue P(OH)2TBC. This is probably due to the 

isopropoxyl group is attached to the benzene rings of the phthalocyanine analogue 

P(OH)2TBC(OiPr)4, and isopropoxyl group is a electron-donating group which leads to large 

polarization of molecules. Considering molecular structure of invested phthalocyanine 

analogues, two hydroxyl moieties complexed with central phosphorus of molecule in axial 

direction, and form a three-dimensional configuration, which can enhance third-order 

optical nonlinearity of molecule. Moreover, their response times are also obtained and no 

more than 50 fs, which are commonly accepted to the contribution from the transient motion 

of the conjugate electron distribution. 

 

Sample max (nm) (3) (×10-14esu) 
  

(×10-14esu) 
n2(×10-14esu)

P(OH)2TBC 655 4.40 1.21 8.15 

P(OH)2TBCSn 657 4.27 1.11 7.98 

P(OH)2TBC(OiPr)4 677 4.91 2.26 9.01 

Table 3. The evaluated values of (3), , and n2 for the dihydroxy phosphorus (V) 

tetrabenzotriazacorroles together with the visible absorption maxima (max) in DMF 
solution. 

P(OH)2TBC        R=H 

P(OH)2TBC(O
i
Pr)4  R=O

i
Pr 

P(OH)2TBCSn 
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4.2.2 Rare earth polymeric phthalocyanines  
In 2008, we (Zhao et al., 2008) have synthesized three novel tri-dimensional phthalocyanine 
polymers with lanthanum (LaPPc), gadolinium (GdPPc) and ytterbium (YbPPc) as centric 
atoms from a tetranuclear phthalonitrile (the structures and synthesis route of rare earth 
polymeric phthalocyanines are shown in Scheme 3).  And third-order optical nonlinearities of 
these compounds in DMF solution were measured by a picosecond Z-sacn technique at 532 nm. 
 

 

Scheme 3. Structures and synthesis route of rare earth polymeric phthalocyanines 

Based on the Z-scan measurements, it is found that these phthalocyanine polymers show 
large third-order nonlinear susceptibilities which are of the order of 10-12 esu. Both the 
nonlinear absorption β and nonlinear refraction n2 decreases with the order of 
LaPPc>GdPPc>YbPPc. For all the compounds, the values of Re(3) are one order of 
magnitude larger than those of Im(3), which determine the magnitude of third-order 
nonlinear susceptibilities (3). This indicated that the nonlinear refraction is predominant 
mechanism for the nonlinear optical response of three phthalocyanine polymers.  
Furthermore, Researchers (Manas et al., 1997) have described the effect of intermacrocycle 
interactions on the second hyperpolarizabilities of phthalocyanine dimer and trimer. It was 
considered that stack form of phthalocyanine can induce molecular electronic interaction 
between neighbouring phthalocyanine rings and induce charge transfer between them. As 
shown in Figure 10, the cage structure of phthalocyanine polymer presents more 
possibilities of electronic interaction and distortion of electron cloud in three dimensions at 
intermolecular scale. This would elevate the spatial polarizability of molecular and induces 
large nonlinear coefficient. However, the trimer or binuclear phthalocyanine could only 
offer this intermolecular possibility from two dimensions. 
 

 

Fig. 10. Calculated molecular electronic distribution of binuclear, trimer and polymer of 
phthalocyanine. 
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5. Conclusions 

Major advances have been made in the design and synthesis of the novel phthalocyanines 
and related compounds for third-order optical nonlinearity. They provide useful examples 
to illustrate the new features of the NLO response of the phthalocyanines and related 
compounds. This review summarizes our results recently obtained on the correlation 
between molecular structure and NLO response and offers some strategies for rendering 
new systems with improved NLO properties.  

Owing to the extended  system, it is well-known that these Pc-related compounds exhibit a 
high aggregation tendency, and the aggregates usually display outstanding nonlinear 
optical properties. Moreover, by introducing peripheral substituents or by adding axial 
substituents, one may obtain three-dimensional (3D) structures with pyramidal shape and 
examine the effect of a third-dimension on the NLO response. Some of the four isoindole 
units can be formally replaced by other heterocyclic moieties, giving rise to different 
phthalocyanine analogues. All these chemical variations can alter the electronic structure of 
the macrocyclic core, and therefore, they allow the fine-tuning of the nonlinear response. 
In conclusion, one could say that structural variations explored in phthalocyanines, such as 
metal insertion, introduction of functional groups into the periphery of the macrocycle, 
extension of conjugation, and variation of the main structure of the macrocycle, allow the 
tuning of the nonlinear responses. However, a detailed understanding of the factors 
affecting the nonlinear response is still necessary, and further work should be devoted to 
this objective. 
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