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1. Introduction 

Central nervous system (CNS) HIV-1 infection can lead to encephalitis (HIVE), which 

compromises brain function and presents clinically as HIV-associated dementia [HAD, 

(Navia et al., 1986; Price et al., 1988; Wiley and Achim, 1994; Brew et al., 1995; Grant, 2008; 

Letendre et al., 2008; Price and Spudich, 2008)], the most serious form of HIV-associated 

neurocognitive disorders [HAND, (Grant, 2008; Letendre et al., 2008)]. HAND is associated 

with various cognitive, behavioral and motor dysfunctions [for details refer (Ances and 

Ellis, 2007; Grant, 2008)]. Although initiation of combined antiretroviral therapy (cART) has 

been linked to cognitive improvement and decreased incidence of HAD (Brodt et al., 1997; 

Sacktor et al., 1999; Foley et al., 2008), the yearly incidence rates for milder forms of HAND 

are still as high as 10-25% (Woods et al., 2009), and the prevalence of HAD is on the rise due 

to longer life expectancy of HIV-1-infected individuals (Lindl et al., 2010). 

The neuroinflammatory cascade associated with HAND, beginning with the infiltration of 

HIV-1-infected macrophages and immune activated microglial cells, likely reaches the 

endpoint of neurodegeneration via glial activation and changes in glial inflammatory 

responses (Kaul and Lipton, 2006). Reactive astrogliosis, the recruitment to and proliferation 

of astroglial cells at injury sites, is commonly observed during HIVE (Gonzales and Davis, 

1988; Persidsky et al., 1996; Ridet et al., 1997; Wu and Schwartz, 1998; Petito et al., 1999). 

Astrocytes are the most abundant cell type in the CNS; and yet, their specific roles continue 

to be unraveled. Thus, characterization of molecules/pathways involving the activated 

astrocytes during HIVE and HAND, is of high interest.  

CD38 expression on peripheral T lymphocytes is a marker for disease progression in HIV-1-

infected patients (Savarino et al., 2000; Vigano et al., 2000; Kolber, 2008; Sinclair et al., 2008). 

CD38 is a 45-kD ectoenzyme involved in the synthesis of potent calcium- (Ca2+) mobilizing 

agents, cyclic ADP ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate 

(NAADP+) (Heidemann et al., 2005b; Banerjee et al., 2008). CD38 expression has been 

detected both in neurons and astrocytes in the cerebral cortex (Mizuguchi et al., 1995; 

Yamada et al., 1997), while it is primarily expressed by astrocytes in culture (Pawlikowska et 

al., 1996). Our group has shown that CD38 is one of the most upregulated molecules in IL-

1-activated astroglial cells in vitro and is also expressed by astrocytes in HIVE brain tissues 
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(Kou et al., 2009). However, very little is known about the role of CD38 in HAND. In this 

review, we will explore the possible mechanistic links between, astrocyte-CD38 

upregulation, Ca2+ homeostasis and HIV-1 neuropathogenesis.  

2. Neuroinflammation during HIVE and astrocytes 

HIV-1 enters the brain early, after systemic infection of circulating T cells and macrophages, 

by crossing the blood brain barrier [BBB (Bell et al., 1998; Bell, 2004)]. Neurons are rarely 

infected by the virus (Price et al., 1988; Kaul et al., 2001; Ellis et al., 2007), thus most neuronal 

damage is due to indirect toxicity mediated by activated astrocytes and virus-infected 

and/or activated mononuclear phagocytes (MP, macrophage/microglia). However, viral 

proteins like HIV-1 Tat and gp120 released by infected MP may show direct neurotoxicity 

(Mauermann et al., 2008; Li et al., 2009). Pro-inflammatory cytokines such as tumor necrosis 

factor (TNF)-, interleukin (IL)-1 and IL-6, have been implicated in HIV-1 

neuropathogenesis (Dickson et al., 1991; Sebire et al., 1993; Gendelman and Tardieu, 1994; 

Persidsky et al., 1999). Indeed, IL-1 production is one of the first responses observed upon 

activation of immune cells including MP (Pellegrini et al., 1996). This suggests that immune 

cell activation during peripheral HIV-1 infection may provide soluble IL-1 that penetrates 

the BBB (Vitkovic et al., 2000a; Vitkovic et al., 2000b). Brain tissue and cerebrospinal fluid 

from HIVE patients (Gallo et al., 1991; Tyor et al., 1993; Vitkovic et al., 1995; Boven et al., 

1999), as well as brain tissue from simian immunodeficiency virus infected rhesus monkeys 

(Lane et al., 1996), demonstrated elevated IL-1 levels. Various studies have shown links 

between IL-1 and astrocyte activation during HIVE (Blumberg et al., 1994; Kaul and 

Lipton, 2006; Peng et al., 2006). IL-1 is also known to stimulate release of neurotoxic 

molecules like reactive oxygen species and inducible nitric oxide synthase by astrocytes 

(Jana et al., 2005; Sharma et al., 2007). Our previous work showed IL-1-mediated astrocyte 

Fas ligand expression and subsequent caspase activation in surrounding neurons in vitro 

(Deshpande et al., 2005). We have also shown the effects of IL-1 and HIV-1 gp120, leading 

to CD38 upregulation in primary astrocyte cultures (Banerjee et al., 2008) and increased 

CD38 mRNA and protein expression in HIVE brain (Kou et al., 2009). IL-1-activated 

astrocytes are known to release cytokines like IL-6 and chemokines like CCL2, CXCL8 and 

RANTES (Lee and Aarhus, 1993; Zhao and Brinton, 2004; Sharma et al., 2007). Our work 

showed that CD38 is a partial regulator of chemokine and cytokine signaling by IL-1-

activated astrocytes, thus affecting the inflammatory milieu during HIVE (Kou et al., 2009). 

IL-1 has also been shown to mediate activation of mitogen activated protein kinases 

(MAPKs) in primary astrocyte cultures (Parker et al., 2002; Zhao et al., 2004). MAPKs belong 

to a family of serine threonine kinases [for details refer (Davis, 1995; Chang and Karin, 

2001)]. These kinases are involved in inflammation, cell proliferation and differentiation in 

astrocytes (Rajan and McKay, 1998; Hua et al., 2002; Morita et al., 2003). It is also well 

established, that the prolonged activation of MAPKs and nuclear factor (NF)-B may 

mediate inflammatory conditions during HIVE (Yi et al., 2004; Kaul and Lipton, 2006). Our 

studies have shown direct involvement of MAPK and NF-B in the regulation of CD38 

expression and signaling in primary astrocytes, thus indicating that CD38 may be a major 

molecule in astrocyte-mediated inflammatory signaling in HIVE brain (Mamik et al., In 

Press). 
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3. Calcium in glial biological functions and HAND 

Astrocytes can sense, respond to, and modulate neuronal activity (Cotrina and Nedergaard, 
2005; Heidemann et al., 2005a). They provide crucial support for neurons and the other CNS 
cells through diverse functions, ranging from the production of neurotrophic factors to the 
elimination of neurotoxins (Ransom et al., 2003). Their ability to respond vigorously to 
diverse neural insults is commonly referred to as reactive astrogliosis, astrocytosis or 
astrocyte activation (Eng and Ghirnikar, 1994). Astrogliosis is associated with HAND and 
also observed in HIV-1 gp120 transgenic mice (Kaul et al., 2001). Since astrocytes are not 
electrically excitable, they sense changes in the microenvironment through receptors on 
their plasma membranes. Activation of these transmembrane receptors or ion channels and 
intracellular endoplasmic reticulum (ER) receptors, as well as mitochondrial Na+/Ca2+ 
exchangers, increases intracellular calcium concentration ([Ca2+]i) [for details review (Cotrina 
and Nedergaard, 2005; Reyes and Parpura, 2009)]. Depending on the amplitude, spatial 
resolution and duration of Ca2+ response, genes are up or downregulated (Berridge et al., 
2003). Change in free [Ca2+]i also results in secretion of glutamate and other neuro-active 
compounds (peptides, eicosanoids, neurotrophins) into the microenvironment. These 
substances modulate the activity of juxtaposed neurons and other astrocytes (Cotrina and 
Nedergaard, 2005). In addition, Ca2+ waves are also used for long-distance communication 

between astrocytes via gap junction proteins, which in turn can be modulated by IL-1 (John 
et al., 1999). 
After a physiological task is completed, the cytosolic Ca2+ levels return to normal by 

extrusion of Ca2+ either via Na+/Ca2+ exchangers or plasma membrane Ca2+-ATPases (Rojas 

et al., 2004; Rojas et al., 2007), while Ca2+ mobilized from internal stores return to normal via 

sarco/ER Ca2+-ATPase (Bers, 2002; Wang et al., 2006; Liu et al., 2007). Some recent reports 

show that mitochondrial Ca2+ uniporter may also act as a sink to trap off the excess [Ca2+]i 

(Reyes and Parpura, 2008, 2009). Thus, the physiological levels of free [Ca2+]i are tightly 

controlled. However, Ca2+ overload triggered by excessive influx through plasma 

membrane voltage and receptor-operated channels, by metabotropic receptors or Ca2+ 

released from intracellular pools, may lead to HIV-1-induced neurotoxicity (Nath and 

Geiger, 1998; Holden et al., 1999). Mobilization of intracellular Ca2+ pools is an important 

modulator of apoptosis in various cells, including T cells, ventricular myocytes, and 

cerebellar granule cells (Khan et al., 1996; Jayaraman and Marks, 1997; Lin and Leonard, 

1997; Felzen et al., 1998; Herbein et al., 1998). Furthermore, it has been associated with HIV-1 

gp120-induced neuronal cell death in vitro (Meucci et al., 1998). 

4. CD38 function and Ca
2+

 homeostasis 

It has been suggested that there is more than one substrate for the enzymatic activity of 

CD38, including nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine 

dinucleotide phosphate (NADP) in astrocytes (Berthelier et al., 1998; Deaglio et al., 2001; 

Antonelli and Ferrannini, 2004; De Flora et al., 2004; Heidemann et al., 2005a). The CD38-

catalyzed cleavage of the nicotinamide-ribose bond eventually leads to the production of 

cADPR (Berthelier et al., 1998). Despite the fact that CD38 is a very inefficient cyclase 

because ADPR produced by hydrolysis of cADPR is the major end product (Lee and 

Aarhus, 1993), it has been demonstrated that this small amount of cADPR is still biologically 

relevant (Partida-Sanchez et al., 2003).  
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NADP+, the major alternate substrate to NAD+, leads to the formation of NAADP+ by 
CD38 primarily in acidic conditions (Heidemann et al., 2005b). While some recent reports 
have shown that hydrolysis of NAD+ to adenosine may increase [Ca2+]i in astrocytes 
(Doengi et al., 2008; Okuda et al., 2010), both cADPR and NAADP+ are potent Ca2+ 
mobilizing metabolites (Lee, 2001; Antonelli and Ferrannini, 2004; De Flora et al., 2004; 
Heidemann et al., 2005a). These secondary messengers generated by CD38 lead to 
intracellular Ca2+ release by various mechanisms. NAADP+ has been shown to mobilize 
Ca2+ from inositol 1,4,5 trisphosphate (IP3) receptors (IP3R) in astrocytes (Heidemann et al., 
2005b), ryanodine (Ry) receptors (RyR) in T cells (Dammermann and Guse, 2005; Steen et al., 
2007), or from other uncharacterized intracellular Ca2+ stores (Mandi and Bak, 2008). 
However, cADPR is primarily involved in release of intracellular Ca2+ through RyRs in 
various cell types including myocytes, fibroblasts, smooth muscle cells, T cells, neuronal 
cells and astrocytes (Bruzzone et al., 2003; Partida-Sanchez et al., 2003; Kunerth et al., 2004; 
Hashii et al., 2005; Fliegert et al., 2007; Jude et al., 2008). cADPR can also be involved in the 
extracellular Ca2+ influx in T cells and neuroblastoma-derived neuronal cells (Partida-
Sanchez et al., 2001; Amina et al., 2010). These evidences suggest that CD38 is a primary 
regulator of Ca2+ signaling in various cell types, including astrocytes.  

5. Astrocyte glutamate production vs. glutamate uptake in HAND 

Astrocytes are known to regulate glutamate homeostasis in CNS [for details review 
(Hamilton and Attwell, 2010)]. In the HIV-1-infected brain, multiple factors may impair 
astrocyte regulation of Ca2+ and glutamate levels. Gendelman and co-workers first reported 

high levels of arachidonic acid and cytokines such as TNF- and IL-1, in HIVE brain tissue 
(Gendelman et al., 1994), which likely lead to reduced glutamate uptake and increased Ca+2-
mediated release of glutamate by astrocytes (Parpura et al., 1994; Bezzi et al., 1998). It has 
also been shown that HIV-1 gp120 may indirectly contribute to impaired astrocyte-
glutamate uptake in vitro (Schneider-Schaulies et al., 1992; Benos et al., 1994). Thus, in 
addition to glutamate release, dysreguation of [Ca+2]i in astrocytes may also contribute to 
HIV neuropathogenesis through impaired glutamate uptake. Impaired glutamate uptake 
can lead to further increases in the extracellular glutamate levels. Enhanced glutamate levels 
in turn activate N-methyl-D-aspartic acid (NMDA) receptors causing increased levels of 
intracellular Ca2+ in neurons as shown both in cultured neurons and acute brain slices (Kaul 
et al., 2001), and can eventually lead to neuronal apoptosis or necrosis. Excess glutamate 
may also lead to lipid peroxidation and eventually affect both astrocyte and neuronal 
viability (Visalli et al., 2007). 
Under normal physiological conditions, astrocytes selectively regulate extracellular levels of 
glutamate to maintain homeostasis in the neuronal microenvironment mainly through 
glutamate transporters (Rothstein et al., 1996). Previous work on primary human astrocytes 
has shown downregulation of excitatory amino acid transporter 2 (EAAT2) upon activation 
of astrocytes with HIV-1 gp120, leading to reduction in glutamate uptake (Wang et al., 
2003). Glutamate transporter activity and inhibition of glutamate uptake can also be 

mediated by MAPKs and NF-B in astrocytes (Abe and Saito, 2001; Jayakumar et al., 2006). 
Our laboratory showed that CD38 expression and function in astrocytes, is primarily 

regulated by NF-B and MAPKs (Mamik et al., In Press). Thus, it is relevant to propose that 
CD38 levels may affect astrocyte-mediated glutamate homeostasis during 
neuroinflammatory conditions.  
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Both RyR and IP3R blockers can reduce excess glutamate release by astrocytes (Hua et al., 
2004; Reyes and Parpura, 2009). This suggests that perhaps both IP3R and RyR may be 
involved in the increase in [Ca2+]i, an event that plays a major role in glutamate release. We 
have previously reported CD38-cADPR-mediated increase in [Ca2+]i in activated astrocytes. 
Our data suggests that elevated CD38 level leads to production of excess cADPR, which 
may eventually result in higher Ca2+ in activated astrocytes during HIVE (Banerjee et al., 
2008). As previously reported by De Flora’s group, this rise in [Ca2+]i by CD38 may lead to 
increased release of glutamate by astrocytes (Verderio et al., 2001). Studies by Bezzi and co-
workers showed that cultured astrocytes may trigger [Ca2+]i-dependent release of  
 

 

 

Fig. 1. Schematic representation of CD38-mediated astrocyte-neuron interactions. In HIVE, 
virus-infected macrophages cross the blood-brain barrier and initiate inflammatory 
processes in the brain including microglial activation. Activated macrophages and microglia 
produce IL-1β, which along with viral protein HIV-1 gp120 leads to activation of astrocytes. 
Inflammatory responses of activated astrocytes may include upregulation of molecules 
detrimental to neural homeostasis. One of these pathways includes CD38 upregulation, 
which produces Ca2+-mobilizing metabolites like NAD+. NAD+ upon release through 
Connexin 43 (Cx 43) hemichannels is hydrolyzed and transported back into the cell as 
cADPR by membrane bound CD38. cADPR and NAADP+ may regulate release of [Ca2+]i. 
Astrocyte-mediated release of glutamate and other inflammatory mediators (IL-6 and 
CXCL8) into the synapse may ultimately lead to excitotoxic neuronal injury. 
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glutamate, which may lead to NMDA receptor-mediated increased Ca+2 levels in neurons 
(Bezzi et al., 1998). The above evidences suggest that the initial release of glutamate due to 
increase in [Ca+2]i by astrocytes, may be influencing the prolonged higher Ca2+ levels in 
neurons during HAND. Taken together, CD38/cADPR-mediated rise of [Ca2+]i in activated 
astrocytes (Banerjee et al., 2008) may contribute to increased extracellular glutamate levels, 
resulting in neuronal excitotoxicity during HAND. 

6. Conclusion 

6.1 Role of astrocyte-CD38 in HAND: Possible mechanisms 

Astrocytes are capable of generating complex changes in [Ca2+]i, allowing them to 
communicate with each other and with neighboring neuronal cells. The CD38/cADPR 
system is involved in regulating [Ca2+]i homeostasis in astrocytes (Banerjee et al., 2008). A 
paracrine model of interaction has been suggested, involving NAADP+ and cADPR, leading 
to glutamate-release by astrocytes, affecting neurons (Verderio et al., 2001; De Flora et al., 
2004). Our previous data demonstrate that in HIV-1 CNS disease, astrocytes express 
elevated levels of CD38 (Kou et al., 2009), thus activating these paracrine pathways. The 
possible connections between HIV-1 infection, neuroinflammation and astrocyte activation, 
which result in CD38 upregulation and dysregulation of Ca2+/glutamate homeostasis and 
culminate in neuronal injury (Fig. 1). 
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