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Spatial Sampling Design and Soil Science

Gunter Spöck
University of Klagenfurt

Austria

Spatial statistics is the science of the analysis of geo-referenced data and loosely speaking
may be divided into the three sub-areas analysis of point processes, analysis of areal data and
geostatistics. Point processes naturally arise for example in geophysics, when the locations
of earthquakes are noticed, in epidemiology, where new illness cases of certain epidemies are
mapped geographically or in biology, where cell centers of a certain tissue are mapped under
the microscope. Areal data are data that are attached to areas like number of illness cases
in certain medical districts, percent of grassland in a certain county or number of votes in
certain political districts. The topic of this article is but geostatistics, the science of continuous
stochastic processes or so-called random fields that are defined over some region in 2- or
3-dimensional geographic space X or in space-time. A random field {Y(x) : x ∈ X} is a
set of random variables or so-called regionalized variables Y(x) that are attached to every
location x ∈ X. The probability law of the random field is uniquelly determined by its
so-called projective family, the set of all finite dimensional distributions of any finite set of
Y(x) obeying symmetrie and consistency with marginal distributions although we will see
next that geostatistics most often deals only with the first and second order characteristics
of random fields, the trend or mean function m(x) = E(Y(x)) and the covariance function
C(x, y) = Cov(Y(x), Y(y)). Most often a linear trend function m(x) = f(x)T β, where f(x)
is a fixed vector-valued function and β is a regression parameter vector to be estimated,
is sufficient for modelling purposes. For x ∈ ℜ2, f(x) could be for example a vector of
polynomials in the coordinates x = (x1, x2). The covariance function C(., .) must be positive
semidefinite, meaning that it must give any linear combination of Y(x1), Y(x2), . . . , Y(xn)
positive variance. Most often an additional assumption of second-order stationarity must
be met, meaning that C(x, x + h) = C(h) is dependent only on lag h and not on the locations
x and x + h themselves. The next stronger assumption is the assumption of isotropy, meaning
C(x, x + h) = C(||h||2), where ||h||2 is the Euclidean length of h. Both the assumption of
second order stationarity and of isotropy are met in order to make the covariance function
estimable from only single realized variables or data y(x1), y(x2), . . . , y(xn). The task of
geostatistics is to produce a prediction map of all y(x0), x0 ∈ X based on the available data
y(x1), y(x2), . . . , y(xn) and to report on the accuracy of these predictions. The best known
methodology for this task of interpolation or map drawing is kriging, also known as best
linear unbiased prediction. The so-called universal kriging predictor is dependent on both
the data y = (y(x1), y(x2), . . . , y(xn))T, the covariance matrix K of the corresponding random
variables and the covariance vector c0 between these random variables and the random
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variable Y(x0) to be predicted. It can be written

Ŷ(x0) = f(x0)
T β̂ + cT

0 K−1(y − Fβ̂), (1)

where

β̂ = (FTK−1F)−1FTK−1y (2)

is the generalized least squares estimate of the regression parameter vector β and F is the
design matrix corresponding to f(.) and the locations x1, x2, . . . , xn . The mean squared error
(MSEP) of this unbiased predictor is given by

E(Y(x0)− Ŷ(x0))
2 = σ2(x0) = C(0)− cT

0 K−1c0 + g(x0)
T(FTK−1F)−1g(x0), (3)

where

g(x0) = (f(x0)− FTK−1c0). (4)

Obviously, the mean squared error σ2(x0) is dependent on the arrangement of the sampling
locations x1, x2, . . . , xn via the covariance matrix K, the covariance vector c0 and the design
matrix F.
Like with any statistical prediction method one aim of the statistician in kriging is to make best
use of the available data, maybe under certain budget constraints or constraints on the number
of locations that can be sampled. Thus, the aim is to get as good predictions as possible for
the complete area of investigation X. One possibility to formalize this aim is to try to select
the sampling locations x1, x2, . . . , xn in such a way that the sum of all kriging MSEP’s

∫

X
σ2(x0)dx0 (5)

becomes a minimum over the area of investigation X. Notably, this is a very complicated
optimization problem and becomes still more complicated by the fact that the covariance
matrix K enters the kriging MSEP in its inverse form K−1. It has been tried to solve this
sampling design problem besides other criteria that also measure the accuracy of kriging
predictions in a number of recent research papers. The aim of the next section is to discuss
some of these papers.
In soil science especially the remediation of contaminated waste soils is of importance. Not
only the area of contamination must be best detected but the contamination concentrations
must be optimally predicted. Most often then soil with contamination level above a certain
threshold must be remediated. Sampling design for contamination detection in soil science
most often works in three phases:

1. The area of contaminated soil must be detected: Here most often samples on a coarse
regular rectangular grid are taken to detect the contaminated area.

2. The spatial variability or the covariance function must be best estimated: Here the design
from stage 1.) is updated by some nearby locations in order to get also some good estimates
of the nugget effect and the small scale variability (the appearance of the covariance
function near the origin).

3. Contamination concentrations must be best predicted and their uncertainties be
documented.
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Spatial Sampling Design and Soil Science 3

This work especially deals with phase 2.) and phase 3.). We consider as design criterion for
3.) first the integrated kriging variance averaged over the area of contamination. Next as a
combined design criterion for 2.) and 3.) the averaged expected lengths of predictive intervals
are considered. Finally it is shown how these design criteria can be generalized to spatial
variables having skewed distributions. In this context a criterion for spatial sampling design
with Box-Cox transformed spatial variables is proposed.
Mathematically speaking we will approximate the investigated spatial random field by means
of a large regression model consisting of cosine-sine Bessel surface harmonics with random
amplitudes (Sections 3, 4). This approximating regression model is a direct result of the
polar spectral representation theorem of isotropic random fields (Section 3). We show that
kriging prediction in the original random field model is equivalent to trend prediction in
this approximating Bayesian linear regression model (Section 4). Thus, standard convex
experimental design theory for Bayesian linear regression may be used to find spatial
sampling designs. Based on this theory we propose two algorithms for the calculation of
exact designs (Section 7.3):

• An algorithm for removing redundant design locations.

• An algorithm for adding sampling locations to an existing network.

In Section 5 we generalize our approach to the case that the covariance function is estimated by
restricted maximumum likelihood (REML) and thus is uncertain. The result is that the actual
predictive intervals are wider than when not taking into account this uncertainty. The Smith
and Zhu design criterion adjusts to this uncertainty by considering the average of the expected
lengths of predictive intervals as a design criterion. Section 6 again is a generalization,
because here we assume the data distribution to be skewed and to be transformable to a
Gaussian distribution by means of a Box-Cox transformation. Once again the average of the
expected lengths of predictive intervals is considered as a design criterion. The proposed
methodologies are illustrated by a true data example from soil science (Section 8). Finally, one
from the author freely available MATLAB and Octave toolbox is described which can perform
all the tasks of spatial sampling design and spatial interpolation (Section 7).

2. A review on spatial sampling design

The importance of (optimal) spatial sampling design considerations for environmental
applications and soil science has been demonstrated in quite a few papers and
monographs (Brus and de Gruijter, 1997; Brus and Heuvelink, 2007; Caeiro et al., 2003;
Cox Jr., 1999; Delmelle and Goovaerts, 2009; Diggle and Lophaven, 2006; Dobbie et al., 2008;
Groenigen et al., 1999; Hengl et al., 2003; Lark, 2002; US-EPA, 2002). The papers on
spatial sampling design may be divided into several categories of which some are
overlapping. First of all we may differentiate between design criteria for spatial
prediction and for estimation of the covariance function and between combined criteria
for both desires at once. Works falling into the category of criteria for prediction are
(Brus and Heuvelink, 2007; Fedorov and Flanagan, 1997; Müller and Pazman, 1998; 1999;
Müller, 2005; Pazman and Müller, 2001). Criteria for the estimation of the covariance function
are considered by (Lark, 2002; Müller and Zimmerman, 1999; Zimmerman and Homer, 1991).
Combined criteria we can find in the article (Zhu and Stein, 2006), who condsider the
minimization of the average expected length of predictive intervals. Further papers falling
into this category of combined criteria are Bayesian articles specifying a priori distributions
over covariance functions like (Brown et al., 1994); Diggle and Lophaven, 2006; Fuentes et al.,
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2007; Müller et al., 2004). Actually (Brown et al., 1994)) and (Fuentes et al., 2007) consider the
covariance function to be non-stationary and deal with an entropy based design criterion
according to which the determinant of the covariance matrix between locations to be added
to the design must be maximized. Both make use of simulated annealing algorithms to find
optimal designs obeying their criteria.
At this stage we are at a second distinguishing feature of optimal design algorithms. We can
distinguish beween stochastic search algorithms like simulated annealing (Aarts and Korst,
1989) or evolutionary genetic algorithms and deterministic algorithms for optimizing the
investigated design criteria. With the exception of the works of (Fedorov and Flanagan,
1997; Müller and Pazman, 1998; 1999; Müller, 2005; Pazman and Müller, 2001; Spöck and Pilz,
2010) almost all algorithms for spatial sampling design optimization use stochastic search
algorithms for the finding of optimal configurations of sampling locations x1, x2, . . . , xn .
The term spatial simulated annealing (SSA) finds its first manifestation in the work of
(Groenigen et al., 1999). (Trujillo-Ventura and Ellis, 1991) consider multiobjective sampling
design optimization.
Available free software for spatial sampling design optimization is quite rare. Up to the
knowledge of the author there are only 6 sampling design toolboxes freely available including
an own one: (Gramacy, 2007) has implemented sampling design for treed Gaussian random
fields in the R-package tgp. In treed Gaussian random fields the area X of investigation is
partitioned by means of classification trees into rectangular sub-areas with sides parallel to
the coordinate axes. This software is especially useful for the design of computer simulation
experiments, where parameters guiding the computer simulation output are identified as
spatial coordinates. Another software especially useful for computer simulation experiments
and sequential design is the DAKOTA package (http://dakota.sandia.gov). Further
papers falling into the category of computer simulation experiments are (Chen et al., 2006;
Gramacy and Lee, 2010; Kleijnen et van Beers, 2004; Lim et al., 2002; Mitchell and Morris,
1992; Morris et al., 1993; Schonlau, 1997). Software freely available upon request for
research purposes and monitoring network optimization is (Le and Zidek, 2009). This
software implements the entropy based design criterion mentioned above. (Gebhardt, 2003)
implements a branch and bound algorithm for designing with the criterion (5). (Baume et al. ,
2011) compare different greedy algorithms for spatial design. Maybe this small list of software
for spatial sampling design is not complete and hopefully more software can be obtained from
the different authors of research papers upon request. Since for the practioneer there is a
strong need for spatial sampling design and almost no software is freely available this was an
impetus for the author of this chapter to program a toolbox for spatial sampling design. The
spatDesign Matlab toolbox of the author is freely available online at

• http://wwwu.uni-klu.ac.at/guspoeck/spatDesignMatlab.zip

An Octave version not implementing as many design criteria as the Matlab toolbox is available
at

• http://wwwu.uni-klu.ac.at/guspoeck/spatDesignOctave.zip

3. The spatial mixed linear model

This section starts our own approach to spatial sampling design. No stochastic search
algorithms like simulated annealing to optimize the design criterion are needed in this
approach because we make use of the mathematical structure of the investigated design
criteria.
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We consider a mean square continuous (m.s.c.) and isotropic random field {Y(x) : x ∈ X ⊆
ℜ2} such that

Y(x) = f(x)T β + ε(x), Eε(x) = 0, (6)

where f(x) is a known vector of regression functions, β ∈ Rr a vector of unknown regression
parameters and

Cov(Y(x), Y(y)) = C(||x − y||); x, y ∈ X. (7)

Then, according to (Yaglom, 1987), the covariance function can be represented in the form

C(t) =
∫ ∞

0
J0(tω)dG(ω), t ≥ 0, (8)

where J0(.) is the Bessel function of the first kind and order 0, t = ||x − y|| is the Euclidean
distance between x and y, and G(.) is the so-called (polar) spectral distribution function
associated with C(.). As such G(.) is positive, monotonically increasing and bounded from
above. On the other hand, knowing C(.) its spectral distribution can be obtained from the
inversion formula

G(ω+) + G(ω−)

2
=

∫ ∞

0
J1(tω)ωC(t)dt, (9)

where G(ω+) andG(ω−) denote the right- and left-hand side limits at ω and J1 denotes the
Bessel function of first kind and order 1. Approximating G(.) by means of a step function
with positive jumps a2

i = G(ωi+1) − G(ωi) at preselected points ωi, i = 0, 1, , . . . , n − 1,
and changing to polar coordinates (t, ϕ) = (radius, angle) the polar spectral representation
theorem for m.s.c. isotropic random fields tells us that the error process may be approximated
as

ε(t, ϕ) ≈
∞

∑
m=0

{cos(mϕ)
n

∑
i=1

Jm(ωit)Um,i}+
∞

∑
m=1

{sin(mϕ)
n

∑
i=1

Jm(ωit)Vm,i}, (10)

where all the random variables Um,i and Vm,i are uncorrelated, have mean zero, and their

variances are var(Um,i) = var(Vm,i) = dma2
i ; and dm = 1 for m = 0 and dm = 2 for m ≥ 1.

By truncating the above series at a sufficiently large m = M, we get an approximation of our
random field in form of a mixed linear model

Y(x) ≈ f(x)T β + g(x)Tα + ε0(x) (11)

From above it becomes clear that the components of the additional regression vector g(·) are
made up of the following radial basis functions (cosine-sine-Bessel-harmonics)

gm,i(t, ϕ) = cos(mϕ)Jm(ωit); (12)

m = 0, . . . , M; i = 1, . . . , n

gm,i(t, ϕ) = sin((m − M)ϕ)Jm−M(ωit);

m = M + 1, . . . , 2M; i = 1, . . . , n.
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4. Classical Bayesian experimental design problem

Starting from our spatial mixed linear model (11) we may gain further flexibility with a
Bayesian approach incorporating prior knowledge on the trend. To this we assume that the
regression parameter vector β is random with

E(β) = μ ∈ Rr, Cov(β) = Φ. (13)

This is exactly in the spirit of (Omre, 1987) who introduced Bayesian kriging this way. He
used physical process knowledge to arrive at “qualified guesses” for the first and second order
moments, μ and Φ. On the other hand, the state of prior ignorance or non-informativity can
be modelled by setting μ = 0 and letting Φ

−1 tend to the matrix of zeroes, thus passing the
“Bayesian bridge” to universal kriging, see (Omre and Halvorsen, 1989).
Now, combining (11) and (13), we arrive at the Bayesian spatial linear model (BSLM)

Y(x) = h(x)Tγ + ε0(x), (14)

where

h(x) =

(

f(x)
g(x)

)

, γ =

(

β
α

)

, Eγ =

(

μ
0

)

=: γ0, Cov(γ) =

(

Φ 0
0 A

)

=: Γ.

Here ε0(x) is white-noise with variance σ2
0 and A denotes the covariance matrix of α, resulting

after the polar spectral approximation of the random field. (Spöck and Pilz, 2010) demonstrate
that Bayesian linear trend estimation in the above BSLM actually approximates Bayesian
linear kriging in the original model abitrarily closely. The same is true for the total mean
squared error (TMSEP) of the trend prediction and the TMSEP of Bayesian kriging.
Thus taking the TMSEP of the trend prediction in the approximating model as a substitute for
the Bayes kriging TMSEP we arrive at the following classical experimental design problem for
so-called I-optimality:

∫

X
h(x0)

T(HT(dn)H(dn) + σ2
0 Γ

−1)−1h(x0)dx0 → min
dn

. (15)

Here dn = {x1, x2, . . . , xn} collects either the design points to be added to the monitoring
network or in the case of reducing the network the design points remaining in the monitoring
network. H(dn) expresses the dependence of the design matrix H = (h(xi)

T)i=1,2,...,n on the
design points in the set dn .
At this point we advise the reader not familiar with Bayesian experimental design theory to
read the Appendix of (Spöck and Pilz, 2010). The key point in this theory is that the above
so-called concrete design problem seemingly showing no mathematical structure may be
expanded to a so-called continuous design problem that has the nice feature to be a convex
optimization problem. Thus, the whole apparatus of convex optimization theory is available
to approximately solve the above design problem for I-optimality. In particular, directional
derivatives may be calculated and optimal continuous designs may be found by steepest
descent algorithms. Continuous designs are just probability measures ξ on X and may be
rounded to exact designs dn. Defining the so-called continuous Bayesian information matrix

MB(ξ) =
∫

X
h(x)h(x)Tξ(dx) +

σ2
0

n
Γ
−1 (16)
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and

U =
∫

X
h(x0)h(x0)

Tdx0, (17)

it may be shown that the set of all such information matrices is convex and compact and that
the extended design functional

Ψ(MB(ξ)) = tr(UMB(ξ)
−1) (18)

is convex and continuous in MB(ξ). The above design functional Ψ(.) thus attains its
minimum at a design ξ∗ ∈ Ξ, where Ξ is the set of all probability measures defined on the
compact design region X, see (Pilz, 1991). The closeness of exact designs dn to the optimal
continuous design ξ∗ may be judged by means of a well-known efficiency formula, see
Appendix of (Spöck and Pilz, 2010).

5. The Smith and Zhu design criterion

In real world applications the isotropic covariance function Cθ(t) is always uncertain and
estimated. The kriging predictor used is then based on this estimated covariance function
Cθ̂(t). Thus, the kriging predictor is always a plug-in predictor and the reported (plug-in)
kriging variance underestimates the true variance of this plug-in predictor.
(Smith and Zhu, 2004) consider spatial sampling design by means of minimizing the average
of the expected lengths of 1 − α predictive intervals:

∫

X
E(length of predictive interval at x0)dx0. (19)

Their predictors of the α/2 and 1 − α/2 quantiles of the predictive distributions are selected
in such a way that the corresponding predictive intervals have coverage probability bias 0.
The predictors of the mentioned quantiles are essentially the plug-in kriging predictors based
on restricted maximum likelihood (REML) estimation of the covariance function plus/minus
a scaled plug-in kriging standard error term that is corrected to take account of REML
estimation. Based on Laplace approximation they show that this design criterion up to order
O(n−2), where n is the number of data, is equivalent to:

∫

X
[σ2

θ (x0) + tr(κ−1
θ {

∂λθ(x0)

∂θT
}TKθ

∂λθ(x0)

∂θT
) + z2

1−α/2{
∂σθ(x0)

∂θ
}Tκ−1

θ

∂σθ(x0)

∂θ
]dx0 (20)

→ Min
dn={x1,...,xn}

Here

κθ,i,j = tr(Wθ
∂Kθ

∂θi
Wθ

∂Kθ

∂θj
) (21)

is the Fisher information matrix for REML,

Wθ = K−1
θ − K−1

θ F(FTK−1
θ F)−1FTK−1

θ , (22)

z1−α/2 is the 1 − α/2-quantile of the standard normal distribution, σ2
θ (x0) is the universal

kriging variance at x0 and λθ(x0) is the universal kriging weights vector for prediction at x0.
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This design criterion takes both prediction accuracy and covariance uncertainty into account.
Sections 3 and 4 have demonstrated that by using the BSLM (14) as approximation to the true
isotropic random field the I-optimality design criterion can be completely expressed in terms
of the Bayesian information matrix

MB = HTH + σ2
0 Γ

−1. (23)

Going from this information matrix to its continuous version

MB(ξ) =
∫

X
h(x)h(x)Tξ(dx) +

σ2
0

n
Γ
−1, (24)

where ξ is a probability measure on the design space X, the extended design functional

Ψ(MB(ξ)) = tr(UMB(ξ)
−1) (25)

becomes continuous and convex on the compact and convex set of all such information
matrices MB(ξ). This was the reason why classical convex experimental design algorithms
could be used to find optimal spatial sampling designs minimizing the criterion (18).
In (Spöck et al., 2011) it is shown that also the Smith and Zhu design criterion has some
favourable properties, so that classical convex experimental design theory can be applied to
this design criterion, too:

• Expression (20) can be expressed completely in terms of the Bayesian information matrix
MB.

• The design functional is continuous on the convex and compact set of all MB(ξ) and
has some advantageous properties according to which classical experimental design
algorithms may be used in order to find spatial sampling designs.

Assuming the BSLM (14) the covariance function actually is parametrized in the diagonal
matrix A and the nugget variance σ2

0 . Since the Smith and Zhu design criterion assumes
the covariance parameters to be estimated by restricted maximum likelihood we actually
estimate this diagonal matrix A and σ2

0 by this methodology. The a priori covariance matrix
Φ = cov(β) must be given almost infinite diagonal values because the (Smith and Zhu,
2004) approach assumes the trend parameter vector β to be estimated by generalized least
squares and Φ → ∞ bridges the gap from Bayesian linear to generalized least squares trend
estimation. The a priori mean μ = E(β) can be set to 0 then.
According to the polar spectral representation (10) several values in the diagonal matrix A are
identical:

A = diag({dma2
i }m=0,...,M;i=1,...,n;k=1,2), (26)

where the definitions of dm and a2
i and the indexing derive from the polar spectral

representation (10). For restricted maximum likelihood estimation of A we have two
possibilities:

• We can leave the ai’s unspecified: This approach is almost nonparametric because a lot of
ai’s and corresponding frequencies wi are needed to get the isotropic random field properly
approximated and corresponds to a semiparametric estimation of the spectral distribution
function via a step function.

264 Principles, Application and Assessment in Soil Science

www.intechopen.com



Spatial Sampling Design and Soil Science 9

• We can specify a parametric model for the a2
i ’s: The polar spectral density function for an

isotropic random field over ℜ2 possesing for example an exponential covariance function

B(h) = Cexp(− 3h
α ) is given by

g(w) =
C 3

α w

(( 3
α )

2 + w2)3/2
. (27)

The polar spectral density function is defined just as the first derivative of the polar spectral
distribution function G(w). A possible parametrization for the a2

i ’s then is

a2
i =

g(wi) + g(wi−1)

2
(wi − wi−1), i = 1, 2, . . . , n, (28)

where 0 = w0 < w1 < . . . , wn are fixed frequencies.

For the optimization of the Smith and Zhu design criterion we make use of the same exchange
design algorithms as described in Section 7.3 . We must only replace Ψ(MB(ξ)) by the Smith
an Zhu design functional given in (Spöck et al., 2011).

6. Spatial sampling design for trans-Gaussian kriging

In trans-Gaussian kriging the originally positive valued data Z(xi), i = 1, 2, . . . , n are
transformed to Gaussianity by means of the Box-Cox transformation

gλ(z) =

{

zλ−1
λ : λ 	= 0

log(z) : λ = 0
. (29)

Let Z = (Z(x1), Z(x2), . . . , Z(xn))
T be the vector of original data and

Y = (gλ(Z(x1)), gλ(Z(x2)), . . . , gλ(Z(xn)))
T (30)

be the vector of transformed data. The predictive density for trans-Gaussian kriging at a
location x0 then may be written:

Φ(gλ(z); ŶOK(x0), σ2
OK(x0)) ∗ zλ−1, (31)

where Φ(.; ŶOK(x0), σ2
OK(x0)) is the Gaussian density with mean the ordinary kriging

predictor ŶOK(x0) at xo and based on the transformed variables Y, and variance the ordinary
kriging variance σ2

OK(x0). zλ−1 is the Jacobian of the Box-Cox transformation.
There is a nice relationship between the α-quantiles zα of the predictive density (31) and
the Gaussian density Φ(.; ŶOK(x0), σ2

OK(x0)) which makes spatial sampling design an easy
task: It can be shown that the transformed α-quantiles gλ(zα) are actually equivalent to the
α-quantiles yα of the Gaussian density Φ(.; ŶBK(x0), σ2(x0)) that is truncated at 0 and where
we only take the positive interval [0, ∞) for calculating these yα-quantiles.
For spatial sampling design we can consider again the average expected length of 1 −
α-predictive intervals. Once we have calculated the Gaussian density Φ(.; ŶOK(x0), σ2

OK(x0)),
truncated it at 0, and have determined its α/2- and 1 − α/2-quantiles yα/2 and y1−α/2 the
corresponding quantiles zα/2 and z1−α/2 can be calculated easily by means of applying the
inverse Box-Cox transformation to yα/2 and y1−α/2. In order to make the expected length of
predictive intervals also dependent on REML-estimation of the covariance function, we can

265Spatial Sampling Design and Soil Science
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consider instead of the Gaussian density Φ(.; ŶOK(x0), σ2
OK(x0)) that unique Gaussian density

Φ̂ whose 0.025- and 0.975-quantiles are given by the (Smith and Zhu, 2004) 95% predictive
interval

ŶOK(x0) ±

1.96 σθ(x0){1 +
1

2σ2
θ (x0)

[tr(κ−1
θ {

∂λθ(x0)

∂θT
}TKθ

∂λθ(x0)

∂θT
) +

1.962 {
∂σθ(x0)

∂θ
}Tκ−1

θ

∂σθ(x0)

∂θ
]}. (32)

Last but not least to get expected predictive intervals we must replace in the statistic t(Y) =
ŶOK(x0) every variable Y(xi) for which we do not have data by its ordinary kriging predictor
based on the available data. Furthermore, we note that in the above approach we have not
taken into account the fact that the transformation parameter λ itself is estimated too, i.e. by
maximum likelihood, and then is plugged-into the ordinary kriging predictor. A future paper
will take account of also this additional uncertainty.

7. The spatDesign toolbox

The spatial sampling design and geostatistics toolbox spatDesign has been developed since
2003. It can be run in both MATLAB and Octave and can be downloaded from:

• http://wwwu.uni-klu.ac.at/guspoeck/spatDesignMatlab.zip

• http://wwwu.uni-klu.ac.at/guspoeck/spatDesignOctave.zip

The toolbox underlies the GNU Public Licence Version 3 or higher and thus is freely available.
In MATLAB (www.mathworks.com) the toolbox is fully functional but assumes that also
the MATLAB Optimization and Statistics toolboxes are installed. In Octave functions like
weighted-least-squares that make in MATLAB use of the Optimization Toolbox and especially
of the function FMINCON do not work. But in near future also an Octave workaround
for the function FMINCON will become available from the author. The spatial sampling
design functions corresponding to the Smith and Zhu design criterion need on a standard
PC a lot of computation time. For this reason this part of the toolbox has been parallelized
to work with NVIDIA GPU’s and the freely available MATLAB parallelization package
GPUmat (www.gp-you.org). If you have a CUDA (www.nvidia.com) compatible graphics
card installed then this will be automatically detected and the parallelized algorithms for the
Smith and Zhu design criterion will be used. Unfortunately, almost no efforts have been
undertaken to date to parallelize also Octave, so the Smith and Zhu part of the Octave toolbox
will not work unless you have a lot of time to wait for the results in the unparallelized version.
Wolfgang Nowak from the Institute of Hydraulic Engineering (IWS), University of Stuttgart,
has added his FFT-Kriging Toolbox to the software package. This is really fast MATLAB
and Octave code for Bayesian linear kriging with external drift and works in both 2- and
3-dimensional Euclidean space. The original kriging code of the spatDesign toolbox is not
so fast as this code and implements only 2D interpolation. The reason is that the original
code works with local kriging neighborhoods and as a consequence for every new prediction
an often high dimensional covariance matrix K between given local observations must be
inverted.
The spatDesign Toolbox provides code for all three areas of geostatistics,

• covariance estimation and variography
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• spatial interpolation and kriging

• spatial sampling design and planning of monitoring networks.

But the largest emphasis of the toolbox surely is on spatial sampling design and the planning
of monitoring networks.

7.1 Covariance estimation and variography software

For covariance estimation and variography the empirical semivariogram estimator of
(Matheron, 1962)

γ̂(h) =
1

2|N(h)| ∑
(i,j)∈N(h)

(Y(xi)− Y(xj))
2, (33)

where

N(h) =

{

{(i, j) : xi − xj ≈ h} : stationarity

{(i, j) : ||xi − xj||2 ≈ h} : isotropy
(34)

is implemented in both forms the isotropic one and the general stationary one.
The corresponding MATLAB and Octave functions are EMPVARIOGRAM.m and
EMPVARIOGRAMANISO.m.
Having calculated the empirical semivariogram a theoretical semivariogram model can be
fitted to the empirical semivariogram by means of weighted-least-squares. As theoretical
semivariogram model a nested model or convex combination of an exponential and a
Gaussian semivariogram model with different ranges and nugget is implemented. The
corresponding MATLAB and Octave functions are WEIGHTEDLEASTSQUARES.m for the
isotropic case and WEIGHTEDLEASTSQUARESANISO.m for the geometrically anisotropic
case.
The toolbox implements also transformed-Gaussian kriging. For this reason a maximum
likelihood estimation procedure has been implemented that estimates both the Box-Cox
transformation parameter λ and the eventually geometrically anisotropic covariance function
at once by means of a profile likelihood approach. Iteratively any kind of parameters are fixed
and the likelihood function is maximized in the rest of the parameters until convergence. This
function is quite slow since the likelihood function is iteratively maximized either in λ, the
covariance parameters or the anisotropy parameters. The function performing these tasks is
called ESTIMATE_TRANSFO_COV_ML.m.
In the up to here mentioned functions for covariance estimation the trend of the random field
is assumed to be constant. For the case that the trend is of the form

m(x) = f(x)T β (35)

it must be eleminated before the covariance function or the semivariogram can be estimated.
For this case the function CALCULATE_RESIDUALS_TREND_COVARIANCE.m has been
implemented. Starting with a least squares estimate of β and the corresponding residuals
iteratively empirical semivariograms of residuals, corresponding weighted least squares fits
to the empirical semivariogram, generalized least squares estimates of β and again residuals
and semivariograms.....are calculated until convergence.
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7.2 Spatial interpolation and kriging software

As simplest interpolation routine Voronoi interpolation is implemented in the function
VORONOIPOLYGONALINTERPOLATIONONGRID.m. Ungauged locations are given
the same value as the closest datum location. Besides Voronoi interpolation also Bayesian
linear kriging with external drift and transformed-Gaussian kriging based on the Box-Cox
transformation are implemented.
The corresponding functions are named KRIGELINEARBAYESONGRID.m and
TRANSGAUSSIANKRIGINGONGRID.m. The output of the first function are the Bayesian
kriging predictions and corresponding TMSEPs on a grid. The output of the second function
are the skew predictive distributions from transformed-Gaussian kriging on a grid. Because
the complete predictive distributions are calculated several statistics may be derived from
them: The function VISUALIZEPOSTQUANTILE.m allows to calculate and visualize several
quantiles of the predictive distributions as well as the means, medians and modal values
of these distributions. The function VISUALIZEPROBGREATER.m allows to calculate
maps that give the probabilities that certain thresholds are exceeded. Finally the functions
CROSSVALIDATION.m and VISUALIZECROSSVALIDATION.m calculate crossvalidation
statistics like mean absolute errors, percents of actual data below the quantiles of the
predictive distribution and percent actual data above threshold vs. expected percent data
above threshold.

7.3 Spatial sampling design software

spatDesign implements three design criteria for Bayesian linear kriging, where the first two
are criteria for prediction only with the covariance function assumed to be certain. The
third criterion is the (Smith and Zhu, 2004) criterion taking also account of the fact that the
covariance function is estimated. Concerning trans-Gaussian kriging also the Smith and Zhu
design criterion is implemented. The actual version of the toolbox is spatDesign V.2.2.0.
The implemented criteria for prediction only are:

• I-optimality:

Ψ(MB(dn)) = tr(UMB(dn)
−1) → min

dn

(36)

U =
m

∑
i,j=1

h(xi,j)h(xi,j)
T; (37)

where the integral in (17) has been replaced by the sum over a fine grid of locations xi,j ∈ X.

• D-optimality:

Ψ(MB(dn)) = |(HT(dn)H(dn) + σ2
0 Γ

−1)−1| → min
dn

(38)

The Smith and Zhu design criterion can be expressed according to Section 6 also as

Ψ(MB(dn)) → min
dn

, (39)

although because of place restrictions we cannot give this expression in detail here. The
interested reader is referred to (Spöck et al., 2011).
The basic algorithm for calculating spatial sampling designs is an exchange algorithm from
experimental design theory for calculating exact designs and going back to (Fedorov, 1972).
Contrary to the construction of optimal discrete designs, here we cannot prove convergence
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of the exact designs to the functional value Ψ(d∗) of an optimal exact design d∗; we can
only guarantee stepwise improvement of a given exact starting design, i.e. the sequence
of functional values Ψ(dn,s) decreases monotonically with increasing iteration index s. The
algorithm is an exchange algorithm improving n-point designs and starting from an initial
design.

7.3.1 Exchange algorithm

Step 1. Use some initial design dn,1 = {x1,1, . . . , xn,1} ∈ Xn of size n.
Step 2. Beginning with s = 1 form the design dn+1,s = dn,s + (xn+1,s) by adding the point

xn+1,s = arg min
x∈X

Ψ(MB(dn,s + (x)))

to dn,s.

Then form d
j
n,s = dn+1,s − (xj,s), j = 1, 2, . . . , n + 1 and delete that point xj∗ ,s from dn+1,s for

which

Ψ(MB(d
j∗

n,s)) = min
j∈{1,...,n+1}

Ψ(MB(d
j
n,s))).

Step 3. Repeat Step 2 until the point to be deleted is equivalent to the point to be added.

For the design functional (18) Step 2 is determined as follows:

xn+1,s = arg max
x∈X

h(x)TMB(dn,s)−1UMB(dn,s)−1h(x)

n + h(x)TMB(dn,s)−1h(x)

j∗ = arg min
1≤j≤n+1

h(xj,s)
TQB(dn+1,s)h(xj,s)

n + 1 − h(xj,s)TMB(dn+1,s)−1h(xj,s)
,

where

QB(dn+1,s) = MB(dn+1,s)
−1UMB(dn+1,s)

−1.

For the Smith and Zhu design criterion no such simplification exists and the complete design
functional Ψ(.) must be recalculated in every step.

7.3.2 Generation of an initial design

The initial design is a one-point design which minimizes the design functional among all
designs of size n = 1. Note that such a design exists since the Bayesian information matrix is
positive definite even for designs of size n = 1.

Step 1. Choose x1 ∈ X such that
x1 = arg minx∈X Ψ(MB((x))), and set d1 = (x1).
Step 2. Beginning with i = 1, find xi+1 such that xi+1 = arg minx∈X Ψ(MB(di + (x))) and
form di+1 = di + (xi+1). Continue with i replaced by i + 1 until i + 1 = n.
Step 3. If i + 1 = n then stop and take
dn,1 = {x1, . . . , xn} as an initial design.
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7.3.3 Combination of the algorithms 7.3.1 and 7.3.2

It is a good idea to combine the initial design algorithm 7.3.2 and the exchange algorithm
7.3.1 in the following way:

Step 1. Start with the initial design algorithm and find a design with one first design
point.
Step 2. Having found a design with m ≥ 1 design points apply the exchange algorithm to this
design to improve it.
Step 3. Add to the design from Step 2 one further design point by means of the initial design
algorithm to get m + 1 design points.
Step 4. Go back to Step 2 and iterate Step 2 and Step 3 until you have found n desired design
points.

7.3.4 Reduction of experimental designs

Often it is desired to reduce a given experimental design d = {x1, x2, . . . , xn} to one including
only m < n design points from d:

Step 1. Delete that design point xj∗ from d for which
xj∗ = arg minxj∈v Ψ(MB(d − (xj))), and set
d := d − (xj∗ ).
Step 2. Iterate Step 1 until the design d contains only m design points.

Also this algorithm may be combined with an improvement step similar to the exchange
algorithm 7.3.1. In algorithm 7.3.1 merely the calculation of xn+1,s has to be replaced by

xn+1,s = arg min
x∈d−dn,s

Ψ(MB(dn,s + (x))),

where d is the inital design that has to be reduced. This improved algorithm has the advantage
that design points once deleted can reenter the design in the exchange step.

7.3.5 Inverse of the information matrix

The calculation of exact designs requires in every step the calculation of the inverses of the
information matrices MB(dn,s) or MB(dn+1,s). In the next Sections we will see that these
information matrices can have a quite high dimension of about 3000 × 3000. So, how can
one invert such large matrices in affordable time? There is computationally no need to
make explicit use of numerical matrix inversion algorithms, when one considers the update
formulas (13.26) and (13.28) in (Pilz, 1991):

MB(dn,s + (x))−1 =
n + 1

n
{MB(dn,s)

−1 −
MB(dn,s)−1h(x)h(x)TMB(dn,s)−1

n + h(x)TMB(dn,s)−1h(x)
},

MB(d
j
n,s)

−1 =
n

n + 1
{MB(dn+1,s)

−1 +
MB(dn+1,s)

−1h(xj,s)h(xj,s)
TMB(dn+1,s)

−1

n + 1 − h(xj,s)TMB(dn+1,s)−1h(xj,s)
}

Obviously only matrix- and vector multiplications are needed in these update formulae.
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7.3.6 Computation

The I-optimality and D-optimality criteria have the additional advantage that the
optimizations in algorithms 7.3.1 - 7.3.4 can be computationally further simplified. What is
more, the averaging over the design area X corresponding to eq. (17) has to be done only
once before actual sampling design by means of computing the matrix U. The Smith and
Zhu design criterion and the design criterion for trans-Gaussian kriging no longer have this
advantage and the averaging over the design area X corresponding to eq. (20) and (32) must
be done whenever Ψ(MB(d)) is calculated. Both eq. (17) and (20) have been simplified
by means of replacing the integrals by discrete sums over a fine grid of locations xi,j ∈ X.
Also the calculation of the minima in algorithms 7.3.1 - 7.3.4 has been simplified by means of
searching for the minimum over a fine grid of locations. When the minimum is found over the
discrete grid we further iterate with a line search algorithm with this minimum as a starting
value to the actual global minimum. For all that, the averaging for calculating the integral
in the Smith and Zhu design criterion and the design criterion for trans-Gaussian kriging is
computationally too intensive to be calculated on a standard PC.
Recently CUDA technology (www.nvidia.com) has been developed for NVIDIA graphic
cards. This allows to make use of the parallel performance of these graphic cards and to
put intensive floating point operations to these GPU’s. Thus, we have invested in such a
graphics card and now do the averaging operations correponding to expression (20) and (32)
in parallel on a multiprocessor NVIDIA GTX 580 GPU. To this, we have installed GPUmat
(www.gp-you.org) a free software for MATLAB (www.mathworks.com) that automatically
can thread operations to the NVIDIA GPU. The usage of this software is quite easy. We just
have to specify MATLAB objects that we want to calculate on the GPU as GPUdouble or
GPUsingle. Performance is immense. Processing on the NVIDIA GTX 580 is between 100 to
200 times faster than on a standard Pentium 8 Core 3.06 Ghz CPU.

7.3.7 Basic sampling design functions

The basic spatial sampling design functions are:

• OPTIMALLY_DELETE_N_LOCATIONS_FROM_POOLDELETE.m

• OPTIMALLY_ADD_N_LOCATIONS_FROM_POOLCOMPLETE.m

• OPTIMALLY_ADD_N_LOCATIONS_FROM_POOLADD.m

• OPTIMALLY_IMPROVE_POOLDELETE_FROM_POOLCOMPLETE.m

• OPTIMALLY_IMPROVE_POOLDELETE_FROM_POOLADD.m

The names of these functions are self-explanatory: “Pooldelete” is the discrete pool of
locations that are allowed to be deleted from the design. “Poolcomplete” is the complete
compact area of investigation X of points allowed to be added to the design. “Pooladd” is the
discrete pool of locations that are allowed to be added to the design. “Improve” means the
exchange algorithm, where locations from “Pooldelete” may either be exchanged to locations
from “Poolcomplete” or from “Pooladd” and the total number of sampling locations remains
constant.

8. An example session

The purpose of this section is to demonstrate some capabilities of the spatDesign toolbox. The
most important Matlab function calls related to sampling design for trans-Gaussian kriging
are given. The data set considered is the so-called Gomel data set. It comprises 591 sampling
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Fig. 1. Left: The 119 sampling locations of the Gomel data set. Right: The histogram of the
Cs137 concentrations.

locations in the region of Gomel, Belarus, where ten years after the Chernobyl accident the
concentration of Cs137 in soil has been measured. For demonstration purposes we do not
use the full data set but only every fifth location, so that we have to deal with only 119 data.
The following Matlab code plots the data locations and calculates a histogram of the Cs137
concentrations (see Fig. 1.).

• x=Gomel.x(1:5:end);

• y=Gomel.y(1:5:end);

• z=Gomel.zaver(1:5:end);

• figure()

• plot(x,y,’o’)

• hold on

• plot(polyBoxGomeliso.x,polyBoxGomeliso.y)

• figure()

• hist(z)

In Fig. 1. we see that there are obviously areas in the design region that look very empty
having no sampling locations. To the East the sampling grid is more dense than to the
West. From the histogram of Fig. 1. it becomes obvious that the distribution of Cs137 is
very skewed to the right. Thus, this data set is very suitable for testing the trans-Gaussian
kriging spatial sampling design routines of the spatDesign toolbox. In Fig. 2. a Voronoi
polygonal interpolation of the Cs137 concentrations is given. There are obviously 3 regions
having very high Cs137 concentration, but the rest of the Gomel region has average to low
concentrations. The 3 regions having high concentrations are regions that had heavy rainfall
during the Chernobyl accident so that the radioactive cloud was washed out into the soil there.

• grid=generategrid2(-100,200,-50,250,150,150,polyBoxGomeliso);

• prediction=voronoipolygonalinterpolationongrid(x,y,z,grid);

• a=reshape(prediction.prediction,150,150);
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Fig. 2. Left: Voronoi interpolation of the Cs137 values. Right: Histogram of the Box-Cox
transformed Cs137 concentrations.

• figure()

• imagesc(a(end:-1:1,:))

• colorbar

Next, let us estimate the Box-Cox transformation parameter lambda0 and an exponential
isotropic covariance function for the corresponding Gaussian random field. delta0 comprises
the parameters of this estimated exponential covariance function.

• options=optimset(’LargeScale’,’on’,’MaxFunEvals’,200,’TolFun’,1e-3,’MaxIter’,100);

• [lambda0,delta0]=estimate_transfo_cov_ml(x,y,z,0,[1,0;0,1],[0,2.4,80,0,0],0:15:150,10,
-20,20,0.01,1,[1,1,1,0,0],0,0.001,0.001,options);

The estimated parameters are lambda0=0.1919 and delta0=[0.1644, 3.3601, 149.3302]=[nugget,
sill, range]. To check whether lambda0 truely transforms the Cs137 concentrations to
Gaussianity we calculate the histogram of the transformed data (Fig. 2.). . As a next step
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Fig. 3. Left: Polar spectral distribution function and its approximation (grey). Right: True
covariance function (black) and its worst approximation (grey).

we calculate the polar spectral distribution function (Fig. 3.).

• plotspectraldist(0:0.01:1.5,delta0);
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Obviously this spectral distribution function almost attains its maximum of 3.36 at w0 = 1.5.
We now select the frequencies wi, i = 1, 2, . . . , n , calculate an approximation to the spectral
distribution function via a step function (the steps are the a2

i ) and check whether with this
selected approximation to the spectral distribution function the original covariance function
becomes well approximated (Fig. 3.).

• load wscaled

• w=wscaled*1.5;

• [w,deltastep]=expstep(w,delta0(3),delta0(2));

• approxspectraldist(w,deltastep)

• plotcovarianceapprox(w,45,deltastep,delta0,-100:3:200,250,-100,-100,200,-50,250);

Fig. 4. Left: 10 locations added to design (circles) and their multiplicities. Right: 20 locations
added to design (circles) and their multiplicities.

A look at the approximating covariance function in Fig. 3. shows that at the origin the
difference between the true covariance function and the approximating covariance function
is 0.17. This is small scale variation that the approximating covariance function does not
take into account. Later in spatial sampling design we will add this value of 0.17 to the
nugget effect 0.1644 of the true covariance function. Thus, 0.17+0.1644 is the variance of the
uncorrelated error process ǫ0(x.) in our BSLM (14).
We now have everything that we need in order to do spatial sampling design for
trans-Gaussian kriging. We consider to add 20 additional sampling locations from the
complete design region X to the available grid of 119 sampling locations (see Fig. 4.).

• [xadd,yadd,zadd,avglengthpredint]=optimally_add_n_locations_from_poolcomplete(
{}, % no external drift
[], % no need to specify the matrix U
x,y,z, % the Gomel data
0.17+delta0(1), % the variance of the uncorrelated error process ǫ0(x)
[1000000, 0, 0; 0, 0.0000001, 0; 0, 0, 0.0000001], % the a priori variance of the constant trend
must be given almost infinite variance, no linear drift
w, % the frequencies of the Bessel harmonics
45, % the largest angular frequency
deltastep, % the a2

i
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delta0, % the parameters of the exponential covariance function
lambda0, % the Box-Cox transformation parameter
20, % we want to add 20 samples
-100,200,-50,250, % the size of the design region
100, % maximally iterate 100 times in the exchangement step
polyBoxGomeliso, % the polygonal design region
17,17, % discretization in x an y when considering new samples
’z’ % we apply the (Smith and Zhu, 2004) design criterion to trans-Gaussian kriging
);

Fig. 5. shows the expected lenghts of the 95% predictive intervals for the optimal 10 points and
20 points design, respectively. Fig. 6. plots the decrease of the average of the expected lenghts
of the 95% predictive intervals when adding up to 20 design locations. The calculation of
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Fig. 5. Left: Expected lengths of 95% predictive intervals. 10 locations added to design.
Right: Expected lengths of 95% predictive intervals. 20 locations added to design.
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Fig. 6. Average of the expected lengths of 95% predictive intervals.

the optimal 20 point design takes on an Intel i7 8 Core CPU and a NVIDIA 580 GPU with
1.6 Gb RAM 2 weeks. Similar calculations for the simpler design functional (36) take without
NVIDIA Cuda support 2 days. From Fig. 4. it is obvious that the first design locations are
added to the margin of areas that look empty. In order to get also the covariance function
(especially close to its origin) well estimated design locations are selected close to existing
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locations or they are selected with multiplicities greater than 1. There is a fundamental
difference between designing for Gaussian random fields and our designs for trans-Gaussian
kriging. Contrary to the designs for Gaussian random fields designs for trans-Gaussian
kriging are dependent also on the data by means of the ordinary kriging predictor in eq. (32).

9. Conclusions

Our approach to spatial sampling design is motivated by the fact that up to date most
sampling design implementations use stochastic search algorithms like simulated annealing.
The approach to spatial sampling design proposed in this Chapter makes use of the
mathematical structure of the investigated design functionals. Based on the polar spectral
approximation of the isotropic random field we are able to use classical experimental design
theory for the calculation of spatial sampling designs. One only missing link for the Smith and
Zhu design criterion and for the design criterion of trans-Gaussian kriging is the fact that up to
date we were not able to show convexity properties of the corresponding design functionals.
This is surely a topic for future resarch. The data example giving radioactivity measurements
in soil shows that trans-Gaussian kriging and sampling design for it are relevant also to soil
science.
A topic for future research is to extend the proposed approach also to non-stationary random
fields. Some work towards this direction has already been done in (Spöck, 2008). The
approach discussed therein locally maintains isotropy but globally is non-stationary and is
also based on the approximation of a so-called locally isotropic random field by means of a
cosine-sine-Bessel surface-harmonics regression model with random amplitudes.
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