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1. Introduction 

The exact mechanisms of pulmonary arterial remodeling that lead to the onset and 
progression of pulmonary arterial hypertension (PAH) are still largely unclear. However, 
many disease-predisposing factors and/or contributing factors have been identified, 
including inflammation, endothelial cell dysfunction, aberrant vascular wall cell 
proliferation and mutations in the bone morphogenetic protein receptor type II (BMPRII) gene 
(Humbert et al., 2004; Mandegar et al., 2004; Chapman et al., 2008; Rabinovitch, 2008; 
Hassoun et al., 2009; Morrell et al., 2009). During the last few years, the serotoninergic 
system and voltage-gated potassium (Kv) channels have attracted special attention and 
substantial evidence now supports a close relationship between them in the 
physiopathology of PAH. 

2. The serotoninergic system in the pathogenesis of PAH 

Serotonin (5-hydroxytryptamine or 5-HT) and its transporter (SERT or 5-HTT) have long 

been suspected of playing important roles in the pathogenesis of idiopathic PAH and have, 

for several reasons, been tightly linked to its etiology. 5-HT is an endogenous vasoactive 

indolamine found mainly in enterochromaffin tissue, brain and blood platelets. It promotes 

pulmonary arterial smooth muscle cell (PA-SMC) proliferation, pulmonary arterial 

vasoconstriction and local microthrombosis. Plasma 5-HT levels are elevated in patients 

with PAH and remain high even after lung transplantation, indicating that this condition is 

not secondary to the disease (Herve et al., 1995). 5-HTT belongs to a large family of integral 

membrane proteins and is responsible for 5-HT uptake (e.g., by platelets, endothelial and 

vascular SMCs). Analysis of distal pulmonary arteries of patients with PAH and their 

cultured PA-SMCs indicates that 5-HTT is overexpressed and that the level of expression 

correlates with PAH severity (Eddahibi et al., 2001; Eddahibi et al., 2002; Marcos et al., 2004; 

Marcos et al., 2005). Tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT 

biosynthesis, is also expressed at abnormally high levels in pulmonary endothelial cells 

from patients with idiopathic PAH, and therefore raises 5-HT levels locally (Eddahibi et al., 

2006). There is evidence that alterations in platelet 5-HT storage and/or increased platelet 
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consumption by the lung may trigger the development of PAH (Herve et al., 1990; Herve et 

al., 1995; Breuer et al., 1996; Eddahibi et al., 2000b; Kereveur et al., 2000; Morecroft et al., 2005). 

Furthermore, serotoninergic appetite suppressant drugs have been associated with an 

increased risk of developing PAH (Douglas et al., 1981; Gurtner, 1985; Loogen et al., 1985; 

Brenot et al., 1993; Abenhaim et al., 1996; Souza et al., 2008). Additionally, studies on animal 

models of pulmonary hypertension consolidate all these observations obtained from human 

subjects. Plasma 5-HT levels are elevated not only in rodents treated with the anorectic 

agent dexfenfluramine (Eddahibi et al., 1998), but also in the progression of monocrotaline- 

and chronic hypoxia-induced pulmonary hypertension. The chronic infusion of exogenous 

5-HT via osmotic pumps can potentiate the development of PH in rats exposed to chronic 

hypoxia (Eddahibi et al., 1997). A bone morphogenetic protein type II receptor (BMPR-II) 

deficiency increases susceptibility to PH induced by 5-HT in mice (Long et al., 2006). In the 

fawn-hooded rat, a strain with a genetic deficit in platelet 5-HT storage that causes elevated 

plasma 5-HT concentrations, PH develops when the animals are exposed to mild hypoxia 

but not in control rats (Sato et al., 1992). An abnormally high level of 5-HTT in the lungs was 

reported for fawn-hooded rats (Sato et al., 1992; Morecroft et al., 2005). Furthermore, rodents 

engineered to constitutively express angiopoietin 1 in the lung develop PH. This effect was 

found to be directly related to the elevated production and secretion of 5-HT by stimulated 

pulmonary endothelial cells (Sullivan et al., 2003). It has also been shown in the 

monocrotaline model that 5-HTT expression levels increased prior to the onset of PH, which 

strongly supports a role for 5-HTT overexpression in disease development (Guignabert et al., 

2005). Treatment with selective serotonin reuptake inhibitors (e.g. fluoxetine) abrogates the 

disease in chronically hypoxic mice and rats with monocrotaline-induced PH (Li et al., ; 

Wang et al., ; Marcos et al., 2003; Guignabert et al., 2005; Guignabert et al., 2009; Zhai et al., 

2009; Zhu et al., 2009). Furthermore, mice carrying null mutations at the 5-HTT locus are 

protected from developing PH induced by prolonged hypoxia (Eddahibi et al., 2000a). 

Similarly, hypoxia-induced PH in mice lacking the tph1 gene, which exhibit marked 

reductions in 5-HT synthesis rates and contents in their peripheral organs, was less severe 

than in wild-type mice (Izikki et al., 2007).  

More recently, direct evidence that elevated levels of 5-HTT gene expression can promote 
pulmonary vascular remodeling and spontaneous PH was obtained with the creation of two 
different types of transgenic mice: (1) SM22 5-HTT+ mice that selectively express the human 
5-HTT gene in smooth muscle at levels close to that found in human idiopathic PAH; and (2) 
SERT+ mice that ubiquitously express high levels of the human 5-HTT gene from a yeast 
artificial chromosome (YAC) construct. SM22 5-HTT+ mice undergo pulmonary vascular 
remodeling, develop PH and exhibit marked increases in right ventricular systolic pressures 
(RVSPs), right ventricular hypertrophy (RVH), and muscularization of pulmonary arterioles 
(Figure 1). One major point is that PH in these mice developed without any alterations in 5-
HT bioavailibility, and therefore occurred as a sole consequence of the increased 5-HTT 
protein levels in SMCs. Compared to wild-type mice, SM22 5-HTT+ mice exhibited 
increases of three- to four-fold in lung 5-HTT mRNA & protein, together with increased 
lung 5-HT uptake activity. However, there were no changes in platelet 5-HTT activity or 
blood 5-HT levels. PH worsened as the SM22 5-HTT+ mice grew older (Guignabert et al., 
2006). Consistent with these observations, female SERT+ mice housed in normoxic 
conditions developed a three-fold increase in RVSP values compared to those of their wild-
type controls (MacLean et al., 2004).   
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Fig. 1. Development of pulmonary hypertension and vascular remodeling in  
SM22 5-HTT+ mice versus wild-type mice at 20 and 55 weeks of age under normoxic 
conditions. Right ventricular systolic pressure and representative pictures of in situ cell 
proliferation in muscularized vessels, shown by proliferating cell nuclear antigen (PCNA) 
immunohistochemistry.  
Scale bar = 50 µm.  

Of the fourteen distinct 5-HT receptors, the 5-HT-2A, -2B, and -1B receptors are particularly 
relevant to the pathogenesis of PAH. High levels of 5-HT-1B, -2A, and -2B receptor 
immunoreactivity were reported in remodeled pulmonary arteries from patients with 
various forms of pulmonary hypertension, but only the 5-HTT was found to be 
overexpressed in pulmonary artery smooth muscle cells (Marcos et al., 2005). Several lines of 
evidence support the notion that functional interactions exist between some of these 5-HT 
receptors and 5-HTT, and thus have encouraged studies to better understand these complex 
relationships (Lawrie et al., 2005; Launay et al., 2006). Antagonism of the 5-HT-2A receptor 
inhibits not only monocrotaline-induced pulmonary ypertension in mice (Hironaka et al., 
2003) but also the 5-HT-induced pulmonary vasoconstriction in vessels from normoxic and 
hypoxic rats (Morecroft et al., 2005; Cogolludo et al., 2006). However, the 5HT-2A receptor 
antagonist ketanserin is not specific for pulmonary circulation, and systemic effects have 
limited its use in PAH (Frishman et al., 1995). 5-HT-2B knockout mice are resistant to 
hypoxia-induced pulmonary hypertension and administration of the specific 5-HT-2B 
receptor antagonist RS-127445 prevented an increase in pulmonary arterial pressure in mice 
challenged with hypoxia (Launay et al., 2002). Furthermore, the 5-HT-2B receptor may 
control 5-HT plasma levels in vivo (Callebert et al., 2006), and its functional loss may 
predispose humans to fenfluramine-associated PAH (Blanpain et al., 2003). A very recent 
study showed that terguride, a potent 5-HT-2A/5-HT-2B receptor antagonist, inhibits the 
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proliferative effects of 5-HT on PA-SMCs and prevents the development and progression of 
monocrotaline-induced PH in rats (Dumitrascu et al.). The 5-HT-1B receptor mediates 5-HT-
induced constriction in human pulmonary arteries (Morecroft et al., 1999), and has been 
shown to be involved in the development of PH in rodents exposed to chronic hypoxia 
(Keegan et al., 2001). Recently, Morecroft et al. have reported that co-inhibition of the 5-HT-
1B receptor and 5-HTT with a combined 5-HT-1B receptor/5-HTT antagonist (LY393558) is 
effective at preventing and reversing experimental PH in animal models and 5-HT-induced 
proliferation in PA-SMCs derived from idiopathic PAH patients. 

3. Expression and activity of the Kv1.5 channel in the pathogenesis of PAH  

Potassium ion (K+) channels play a crucial role in the immediate and long-term regulation of 
vascular smooth muscle function. They are integral membrane proteins that allow the selective 
passage of K+ across biological membranes. Their activity determines and regulates cell 
membrane potential, which in turn, regulates the open state probability of voltage-gated 
calcium ion (Ca2+) channels, Ca2+ influx, and intracellular Ca2+ levels. The increase in 
cytoplasmic free Ca2+ concentration in SMCs is an important trigger for cell contraction but 
also a stimulus for pulmonary SMC proliferation. Among the different types of K+ channels, 
Kv channels are expressed at high levels in most vascular SMCs and are regarded as a major 
determinant of vascular tone and resting membrane potential (Post et al., 1995; Yuan, 1995; 
Evans et al., 1996; Ko et al., 2008). There are four major families of Kv channels, Kv1.x to Kv4.x, 
with two to eight members in each family. Differential distribution of Kv channels exists in 
several types of SMCs and this contributes to the large functional diversity that has been noted 
for native Kv currents in different myocytes (Archer et al., 1996; Coppock & Tamkun, 2001). 
Although Kv1.2, Kv1.5, Kv2.1, Kv3.1b and Kv9.3 play important roles in the hypoxia-inhibited 
K+ current found in PA-SMCs, much attention has been attracted by the Kv1.5 channel 
(Archer et al., 1993; Archer et al., 1996; Patel et al., 1997; Archer et al., 1998; Osipenko et al., 2000; 
Archer et al., 2001; Coppock et al., 2001; Coppock & Tamkun, 2001; Archer & Michelakis, 2002; 
Archer et al., 2004a; Guignabert et al., 2009). In addition to hypoxia, endothelin-1, thromboxane 
A2, 5-HT, and anorectic drugs have been shown to inhibit Kv currents in PA-SMCs (Weir et al., 
1996; Archer et al., 1998; Cogolludo et al., 2003; Cogolludo et al., 2006). Kv1.5 is widely 
represented in the cardiovascular system (Overturf et al., 1994). In the human heart, the Kv1.5 
channel is expressed predominantly in the atrial myocardium and is responsible for the ultra-
rapid component of the delayed rectifier K+ current, IKur (Fedida et al., 1993; Wang et al., 1993; 
Gaborit et al., 2007). A familial form of atrial fibrillation has been attributed to a loss-of-
function mutation in the Kv1.5 gene (Olson et al., 2006). It is also expressed in the human 
ventricle where it possibly contributes to the K+ current through formation of hetero-
multimeric K+ channels with other Kv-alpha subunits (Mays et al., 1995). In the human lung, 
Kv1.5 was shown to be expressed in SMCs, endothelial cells, macrophages, and dendritic cells. 
Importantly, the expression levels of Kv1.5 channel proteins are higher in distal pulmonary 
arteries than in proximal pulmonary arteries, thus making its involvement in PAH disease an 
attractive possibility (Archer et al., 2004b).  

Low levels of Kv1.5 gene expression and channel activity are hallmarks of human and 
experimental PH, including the chronic-hypoxia and monocrotaline models (Yuan et al., 
1998a; Yuan et al., 1998b; Reeve et al., 2001; McMurtry et al., 2004; McMurtry et al., 2005; 
Bonnet et al., 2006; Guignabert et al., 2006; Young et al., 2006; Remillard et al., 2007; Archer et 
al., 2008; Guignabert et al., 2009). However, the underlying mechanism of Kv1.5 in PH 
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pathology remains unclear even though there has been significant progress made in 
understanding how the expression of its gene is regulated. A variety of transcriptional 

factors, such as HIF-1 (Bonnet et al., 2006), c-Jun (Yu et al., 2001), a signal-transducing 
transcription factor of the AP-1 family, and nuclear factor of activated T cells (NFAT) 
(Guignabert et al., 2009) are involved in Kv1.5 gene regulation. Several single nucleotide 
polymorphisms (SNPs) in the Kv1.5 gene of idiopathic PAH patients have been reported, 
and these SNPs may correlate with altered Kv1.5 gene expression or protein function in PA-
SMCs (Remillard et al., 2007). Restoring Kv1.5 gene expression to normal levels in rats 
reduces PH induced by chronic hypoxia and restores hypoxic pulmonary vasoconstriction 
(Pozeg et al., 2003). Taken together, all these observations strongly support the hypothesis 
that Kv1.5 channel dysfunction and gene down-regulation represent predisposing factors 
that may operate in conjunction with other factors and/or genetic defects. 

4. Connections between serotonin transporter signaling and Kv1.5 channel 
expression 

During the last few years, direct evidence for a molecular interplay between 5-HTT 
signaling and Kv1.5 expression/activity has emerged. Exogenous 5-HT has been shown to 
reduce Kv1.5 mRNA levels in cultured human PA-SMCs, an effect totally abolished by a 
selective 5-HTT antagonist fluoxetine (Guignabert et al., 2006). In normal rat PA-SMCs and 
in Ltk— cells stably transfected with the human Kv1.5 gene, Kv currents were inhibited by 
5-HT via activation of the 5-HT-2A receptor (Cogolludo et al., 2006). Compared to wild-type 
mice, SM22 5-HTT+ mice exhibited a marked decrease in the levels of the Kv1.5 channel 
protein in the lung (Figure 2), but no changes in the levels of expression in the lung were 
detected for endothelin-1, Tie2 receptor, prostacyclin synthase, or members of the bone 
morphogenetic protein (BMP) pathway (BMP-RII, BMP-RIA, BMP-RIB, BMP-2, and BMP-4). 
Furthermore, SM22 5-HTT+ mice show depressed hypoxic pulmonary vasoconstriction and 
greater severity to hypoxia- or monocrotaline-induced PH (Guignabert et al., 2006). In 
contrast, 5-HTT knockout mice exhibit a potentiation of acute hypoxic hypoxic pulmonary 
vasoconstriction (Eddahibi et al., 2000a).  

SM22 5-HTT+Wild-type

 

Fig. 2. Kv1.5 expression is lower in the lung tissues of SM22 5-HTT+ mice than  
in the lungs of wild-type mice.  
A representative immunohistochemistry slide shows strong Kv1.5 staining in the SMCs of 
distal pulmonary arteries from wild-type mice and weak staining in the arterial SMCs of 
SM22 5-HTT+ mice.  
Scale bar= 50 µm. 
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A recent study has provided the first evidence that 5-HT, via 5-HTT, decreases Kv1.5 
expression by inhibiting nuclear NFATc2 translocation in vitro & in vivo (Guignabert et al., 
2009). In the first part of this study, chronic dichloroacetate administration (an inducer of 
Kv1.5 expression, apoptosis, and depolarization of mitochondrial membranes) vs. saline 
limited the progression of pulmonary vascular remodeling and PH in SM22 5-HTT+ mice by 
progressively and markedly reducing hemodynamic values, right ventricular hypertrophy 
and the pulmonary vessel remodeling. Furthermore, oral fluoxetine (a selective 5-HTT 
antagonist) therapy totally reversed the established PH in these mice. Interestingly, the 
authors found that Kv1.5 expression progressively normalized in the lungs of SM22 5-HTT+ 
mice treated with either dichloroacetate or fluoxetine, which contrasted with the persistently 
low levels of Kv1.5 expression detected in control SM22 5-HTT+ mice treated with vehicle 
(Figure 3). 

Kv1.5

Vehicle Fluox DCA

SM22 5-HTT+

┚-actin

Wild-type

Vehicle Fluox DCA

 

Fig. 3. Changes in Kv1.5 expression in the lungs of SM22 5-HTT+ and wild-type  
mice treated for 21 days with dichloroacetate (DCA; 80 mg/kg/day) or fluoxetine  
(Fluox; 10 mg/kg/day) or vehicle (saline).   
Representative western blots of Kv1.5 and ┚-actin proteins in SM22 5-HTT+ and wild-type 
mice treated with an active drug or vehicle.   

Due to the finding that dichloroacetate upregulated Kv1.5 expression by an NFAT-

dependent mechanism (Bonnet et al., 2007b) and to the demonstrated interrelationships 

between 5-HT signaling, Ca2+/calcineurin signaling activation, and cardiac muscle cell 

hypertrophy (Bush et al., 2004), the hypothesis that NFAT may be a major molecular link 

between 5-HTT signalling and Kv1.5 expression/activity was tested. Consistent with this 

theory, 5-HT treatment of human PA-SMCs in vitro induced significant nuclear translocation 

of NFATc2, which led to a subsequent and significant decrease in Kv1.5 protein expression 

(Figure 4). NFATc2 nuclear translocation was greater and Kv1.5 protein expression was 

significantly lower in PA-SMCs from idiopathic PAH patients than in control PA-SMCs 

under basal conditions. In addition, dichloroacetate, 11R-VIVIT (a selective inhibitor of 

NFAT translocation), cycloporine A (an indirect inhibitor of NFAT activation) and 

fluoxetine markedly inhibited the elevated nuclear NFATc2 translocation and normalized 

the low Kv1.5 levels in PA-SMCs from idiopathic PAH patients (Guignabert et al., 2009).  

In addition, Guignabert et al. also clearly showed by [3H]-thymidine incorporation that 
dichloroacetate (5 x 10-4 M), 11R-VIVIT (4 x 10-6 M), cycloporine A (10-6 M) and fluoxetine 
(10-6 M) markedly inhibited the growth of PA-SMCs from idiopathic PAH patients and the 
growth of normal PA-SMCs treated with the highest dose of 5-HT (10-6 M). All these in vitro 
findings confirm and extend previous evidence obtained by Bonnet et al. (Bonnet et al., 
2007b) and clearly demonstrated that NFAT serves as a link between 5-HTT activation and 
Kv1.5 downregulation. 
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Fig. 4. Representative micrographs showing immunoreactivity for the active form of  
NFAT in cultured PA-SMCs isolated from patients with idiopathic PAH (IPAH PA-SMCs) 
and normal subjects (Control PA-SMCs) treated with serotonin (10-6 M) or vehicle 
(phosphate buffered saline or PBS) with or without one of the following: PBS, fluoxetine  
(10-6 M), or dichloroacetate (5 x 10-4 M).  
Scale bar= 20 µm. 

Furthermore, an abnormal level of activated NFAT was found in the lungs of SM22 5-HTT+ 
mice, which gradually decreased over time with oral dichloroacetate and fluoxetine therapy. 
To further study the importance of NFAT activation and its downstream effects on disease 
progression, separate experiments were performed in SM22 5-HTT+ and wild-type mice 
with an indirect inhibitor of NFAT, the calcineurin inhibitor: cyclosporine A (1 mg/kg/day, 
per os, daily for three weeks). Cyclosporine A treatment reduced the pulmonary levels of 
active NFAT and increased Kv1.5 protein levels in SM22 5-HTT+ mice, but yielded no 
beneficial effects on pulmonary hemodynamics or arterial structures. In contrast, a similar 
cyclosporine A treatment for two weeks partially reversed monocrotaline-induced PH in 
rats (Bonnet et al., 2007b). Several possible explanations have been proposed for this 
discrepancy. First, NFAT regulates many cytokines known to be central in the pathogenesis 
of PAH (Macian, 2005), and inflammation is an important component of PAH in the 
monocrotaline rat model but not in SM22 5-HTT+ mice. Second, normalization of Kv1.5 
expression in vitro neither completely inhibited PA-SMC proliferation induced by 5-HT nor 
completely abolished the differences between idiopathic PAH and control PA-SMCs. 
These observations suggest that inhibition of NFAT activation alone was not sufficient to 
counteract all the effects induced by 5-HT via its transporter in SM22 5-HTT+ mice, which 
exhibit constant and sustained 5-HTT activation in SMCs. Such activation induces cellular 
proliferation by activating several other intracellular signal transduction pathways 
(Figure 5), including: tyrosine phosphorylation of GTPase-activating protein (Lee et al., 
1997), rapid formation of superoxide (O); and activation of Rho/Rho kinase (ROCK) (Liu 
et al., 2004; Guilluy et al., 2009), extracellular signal-regulated kinase 1 (ERK1)/ERK2,  
and mitogen-activated protein (MAP) kinase (Lee et al., 1998; Lee et al., 2001). Intracellular 
accumulation of 5-HT has also been found to interact with other intracellular  
signal transduction pathways including the transcription factor GATA-4 (Suzuki et al., 
2003; Lawrie et al., 2005), the platelet-derived growth factor receptor (PDGF-R) (Ren et al., ; 
Liu et al., 2007), and the serine/threonine protein kinase, Akt (Liu & Fanburg, 2006).  
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Fig. 5. Diagram of the link between 5-HTT activation and Kv1.5 downregulation.  
Intracellular accumulation of 5-HT induces arterial SMC proliferation via activation of 
several intracellular signal transduction pathways, including reactive oxygen species  
(ROS) production and activation of Rho-kinase (ROCK), which lead to phosphorylation  
and nuclear translocation of extracellular-regulated kinase 1 (ERK1)/2 and to 
dephosphorylation and nuclear translocation of NFATc2. NFATc2 remains in the  
cytoplasm when phosphorylated. Following intracellular accumulation of 5-HT or 
activation by calcium (Ca2+), NFAT is dephosphorylated by the phosphatase calcineurin. 
Once in the nucleus, NFATc2 can regulate gene expression in coordination with ERK, 
leading to Kv1.5 downregulation and changes in the balance between proliferation and 
apoptosis.  

In contrast to cyclosporine A, dichloroacetate elicits a wide spectrum of beneficial effects 
able to ameliorate dysfunctions related to abnormal NFAT activation, production of reactive 
oxygen species, fragmentation and/or hyperpolarization of the mitochondrial reticulum, 
and changes in the apoptosis/proliferation ratio (Bonnet et al., 2007a; Archer et al., 2008; 
Michelakis et al., 2008). In addition, dichloroacetate treatment led to rapid and marked 
decreases in anti-apoptotic factor B-Cell Lymphoma 2 (BCL2) expression and in the 
BCL2/Bax ratio compared to vehicle, which suggests that down-regulation of BCL2 by 
dichloroacetate might be an important mechanism in the reversal of pulmonary vascular 
remodeling in SM22 5-HTT+ mice and chronic hypoxia- or monocrotaline-induced 
pulmonary hypertension.  
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In addition to the effects of intracellular accumulation of 5-HT, activation of HIF-1 and c-
Jun are two other major drivers of Kv1.5 down-regulation (Yu et al., 2001; Bonnet et al., 
2006). c-Jun is a nuclear protein that serves as a nuclear signal transduction intermediate in 
cell growth and differentiation. Overexpression of c-Jun downregulates expression of Kv1.5 
and upregulates expression of the ┚-subunit (Kvß2) in PA-SMCs (Yu et al., 2001). Thus, c-Jun 
modulates Kv current, influences the resting membrane potential and affects the SMC 

proliferation. Abnormal activation of HIF-1 has been reported in the PA-SMCs of patients 

with idiopathic PAH and in those from fawn-hooded rats. Inhibition of HIF-1 restores 
Kv1.5 expression and normalizes Kv current in experimental PH (Bonnet et al., 2006). The 
presence of an evolutionarily conserved and functional consensus NFAT binding site in the 

HIF-1 promoter at position 728 bp suggests that NFAT and HIF-1, either individually or 
via cooperative effects, are also two key players in Kv1.5 down-regulation (Walczak-
Drzewiecka et al., 2008). In addition to the serotoninergic system, other NFAT activators 
have been identified that include the transcription factor signal transducer and activator of 
transcription 3 (STAT3), peroxisome proliferator-activated receptor ┛ (PPAR┛), Pim1, 
vasoactive intestinal peptide (VIP) and miR-204 (Courboulin et al., ; Paulin et al., ; Bao et al., 
2008; Said, 2008).  

5. Conclusion 

In summary, multiple downstream signaling pathways are activated following 5-HTT 
activation and a better understanding of this complex network of interactions will be crucial 
for developing methods to limit its potential pathogenic role. Recent evidence has 
demonstrated that 5-HTT activation and Kv1.5 downregulation are connected via a NFAT-
dependent mechanism (Guignabert et al., 2009). Although chronic dichloroacetate, 
cyclosporine A or fluoxetine administration returned the Kv1.5 level to normal in SM22 5-
HTT+ mice, only dichloroacetate and fluoxetine treatments substantially diminished 
pulmonary artery pressure, right ventricular hypertrophy, and pulmonary arterial 
muscularization in this experimental model. These findings suggest that inhibition of NFAT 
alone with cyclosporine A is not sufficient to counteract all the effects induced by 5-HT via 
its transporter. Thus, pharmacological inhibition of the upstream components of the 
serotoninergic pathway or the use of dichloroacetate with pleiotropic effects are very 
attractive as therapeutic strategies for treating pulmonary hypertension. 
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practice (such as pulmonary arterial hypertension associated with systemic sclerosis), and lastly, they address

special considerations regarding management of pulmonary hypertension in certain clinical scenarios such as

pulmonary hypertension in the critically ill.
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