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1. Introduction 

Pulmonary hypertension (PH) is a devastating sequel of a number of diverse systemic 
diseases including cardiopulmonary, autoimmune, inflammatory and myeloproliferative 
diseases, drug toxicity, acquired immunodeficiency syndrome, portal hypertension, sickle 
cell disease and thalassemia etc. Despite major advances in the field, precise mechanism/s 
of PH is not yet fully understood. In experimental models, endothelial dysfunction is 
reported to occur before the onset of PH. Therefore, it is not surprising that the clinical 
diagnosis is often made late during the course of the disease. The major features of PH are 
impaired vascular relaxation, smooth muscle cell hypertrophy and proliferation, narrowing 
of the lumen, elevated pulmonary artery pressure and right ventricular hypertrophy. As the 
disease progresses, neointima formation takes place leading to further narrowing of the 
lumen, worsening of the disease, right heart failure and death.  

Endothelial cells (EC) maintain a balance between vasoconstriction and vasodilatation, and 
between cell proliferation and apoptosis. In addition, they provide barrier function, balance 
pro- and anticoagulation factors of the vessel wall, and participate in immune function. 
Plasmalemmal membrane of the EC have specialized microdomains such as caveolae, rich in 
cholesterol and sphingolipids that serve as a platform for a numerous signaling molecules 
and compartmentalize them for optimum function. Caveolin-1, a major protein constituent 
of caveolae maintains the shape of caveolae and interacts with numerous signaling 
molecules that reside in or recruited to caveolae, and stabilizes them and keeps these 
molecules in an inhibitory conformation. A large number of signaling pathways implicated 
in PH have been shown to interact with endothelial caveolin-1. Therefore, endothelial 
dysfunction including the loss of functional endothelial caveolin-1 induced by injury such as 
inflammation, toxicity, increased shear stress and hypoxia may be the initiating factor in the 
pathogenesis of PH and also contributing to the progression of the disease.  

2. Pulmonary Hypertension  

PH is a rare but a devastating disease with high mortality and morbidity rate. A large 
number of unrelated diseases are known to lead to PH. The current W.H.O. clinical 
classification of PH includes 5 groups: Gr I: Pulmonary arterial hypertension (PAH): This 
group comprises of idiopathic and heritable PAH, PAH secondary to drug toxicity and 
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associated with congenital heart defects, connective tissue diseases, portal hypertension, 
infection, chronic hemolytic anemia, and persistent pulmonary hypertension of the 
newborn. Recently, pulmonary veno-occlusive disease and pulmonary capillary 
hemangiomatosis have been added to this group as a subcategory. Gr II: PH due to left heart 
diseases, Gr III: PH due to lung diseases and hypoxia, Gr IV: Chronic thromboembolic PH, 
and Gr V: PH secondary to other systemic diseases such as sarcoidosis, myeloproliferative 
diseases, metabolic disorders and chronic renal failure on dialysis etc. (Simonneau 2004, 
Hoeper 2009). Regardless of the underlying disease; the major features of PH are endothelial 
dysfunction, impaired vascular relaxation, smooth muscle cell proliferation and impaired 
apoptosis, neointima formation, narrowing of the lumen, elevated pulmonary artery 
pressure and right ventricular hypertrophy, subsequently leading to right heart failure and 
death. Early changes that occur in the vasculature are not clinically apparent. The patients 
usually present with vague symptoms, therefore it is not surprising that the diagnosis is 
often made late. By the time the diagnosis is made, extensive vascular changes have already 
taken place, which makes the treatment a formidable challenge.  

Although major advances have been made, the precise mechanism/s leading to PH is not 
yet fully elucidated. Multiple signaling pathways have been implicated in the pathogenesis 
of PH. Loss of nitric oxide (NO), prostacyclin (PGI2) and resulting impaired vascular 
relaxation is the hallmark of PH. Recent studies have revealed that certain genetic defects in 
humans increase the likelihood of developing PAH. Several members of transforming 
growth factor (TGF) ǃ superfamily have been implicated in the pathogenesis of PAH; the 
most notable example being heterozygous germline mutations in bone morphogenic protein 
receptor type II (BMPRII). This mutation has been noted in approximately 70% of heritable 
PAH and 26% of idiopathic PAH. Importantly, only 20% of people with this mutation 
develop PAH. It has recently been shown that inflammation and serotonin increase 
susceptibility to develop PH in BMPRII+/- mice (Thomson 2000, Machado 2006, Long 2006, 
Song 2008, Mathew 2011b). Altered metabolism of estrogen resulting in low production of 2 
methylestradiol is also thought to be a “second hit” for the development of PAH in females 
with BMPRII mutation (Austin 2009). Thus, environmental, metabolic and/or other genetic 
factors act as a “second hit” in the development of PAH in patients with BMPRII mutations.  

Inflammation plays a significant role in the pathogenesis of clinical and experimental PH. 
PH has been reported in patients suffering from systemic inflammatory, autoimmune 
diseases and human immunodeficiency virus infection (Lespirit 1998, Dorfmüller 2003, 
Mathew 2010). In patients with idiopathic PAH, increased plasma levels of proinflammatory 
cytokines and chemokines such as interleukin (IL)-1, IL-6, fractalkine and monocyte 
chemoattractant protein-1 (MCP-1, currently known as CCL2) have been documented. 

Perivascular inflammatory cells, chiefly macrophages and monocytes, and regulated upon 
activation normal T-cell expressed and secreted (RANTES) have also been reported in the 
lungs of these patients [Tuder 1994, Humbert 1995, Dorfmüller 2002, Balabanian 2002, Itoh 
2006, Sanchez 2007, Mathew 2010). In the monocrotaline (MCT) model, early and 
progressive upregulation of IL-6 mRNA with increased IL-6 bioactivity, progressive loss of 
endothelial caveolin-1 coupled with activation (tyrosine phosphorylation, PY) of signal 
transducer and the activator of transcription (STAT) 3 have been shown to occur before the 
onset of PH; and the rescue of endothelial caveolin-1 inhibits PY-STAT3 activation and 
attenuates PH (Mathew 2007, Huang 2008). These observations not only underscore a role 
for inflammation in the pathogenesis of PH but also show the importance of endothelial cell 
membrane integrity in vascular health.    
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BMPRII is predominantly expressed in endothelial cells (EC). A part of BMPRII has been 
shown to colocalize with caveolin-1 in caveolar microdomain and also in golgi bodies. 
BMPRII signaling is essential for BMP-mediated regulation of vascular smooth muscle cell 
(SMC) growth and differentiation, and it also protects EC from apoptosis (Yu 2008, Teichert-
Kuliszewska 2006). In some cell systems, persistent activation of PY-STAT3 leads to a 
reduction in the BMPRII protein expression, and BMP2 induces apoptosis by inhibiting PY-
STAT3 activation and by down-regulating Bcl-xL, a downstream mediator of PY-STAT3 
(Brock 2009, Kawamura 2000). In addition, the loss of BMPRII in in-vivo and in-vitro studies 
has been shown to increase the production of cytokines such as IL-6, MCP-1 and TGFǃ; and 
exogenous BMP ligand decreases these cytokines. Interestingly, reduction in the expression 
of BMPRII has been reported in patients with idiopathic PAH without BMPRII mutation 
and to a lesser extent in patients with secondary PH (Atkinson 2002, Mathew 2010). 
Furthermore, both MCT and hypoxia models of PH exhibit reduction in the expression of 
BMPRII (Murakami 2010, Reynolds 2009). Since there is a significant interaction and 
crosstalk between the BMP system and IL-6/STAT3 pathway, a reduction in the expression 
of BMPRII may exacerbate inflammatory response in PH.  

3. Endothelial cell function  

Endothelium, a monolayer lining the cardiovascular system, is a critical interface between 
circulating blood on one side, and tissues and organs on the other. EC form a non-
thrombogenic and a selective barrier to circulating macromolecules and other elements. 
Vascular EC subjected to blood flow-induced shear stress transform mechanical stimuli into 
biological signaling. EC are a group of heterogeneous cells adapted to function for the 
underlying organs. They have numerous metabolic functions. Depending on the stimuli 
they are capable of secreting several transducing molecules for participation in vascular tone 
and structure, inflammation, thrombosis, barrier function, cell proliferation and apoptosis. 
The dominance of these various factors, determines whether the effect would be 
cytoprotective or cytotoxic. EC have specialized microdomains on the plasmalemmal 
membrane. Caveolae, a subset of these specialized microdomains are omega shaped 
invaginations (50-100 nm) found on a variety of cells including EC, SMC and epithelial cells. 
Caveolae serve as a platform and compartmentalize a number of signaling molecules that 
reside in or are recruited to caveolae. Caveolae are also involved in transcytosis, endocytosis 
and potocytosis. Three isoforms of caveolin proteins have been identified. Caveolin-1 (22kD) 
is the major scaffolding protein that supports and maintains the structure of caveolae. It 
interacts with numerous transducing molecules that reside in or are recruited to caveolae, 
and it regulates cell proliferation, differentiation and apoptosis via a number of diverse 
signaling pathways. Caveolin-2 requires caveolin-1 for its membrane localization and 
functions as an anti-proliferative molecule. However, unlike caveolin-1, caveolin-2 has no 
effect on vascular tone. Caveolin-3 is a muscle specific protein found predominantly in 
cardiac and skeletal muscle (Razani 2002, Mathew 2011b).   

Caveolin-1 interacts, regulates and stabilizes several proteins including Src family of 
kinases, G-proteins (ǂ subunits), G protein-coupled receptors, H-Ras, PKC, eNOS, integrins 
and growth factor receptors such as VEGF-R, EGF-R. Caveolin-1 exerts negative regulation 
of the target protein within caveolae, through caveolin-1-scaffolding domain (CSD, residue 
82-101). Major ion channels such as Ca2+ -dependent potassium channels and voltage-
dependent K+ channels (Kv1.5), and a number of molecules responsible for Ca2+ handling 
such as inositol triphosphate receptor (IP3R), heterodimeric GTP binding protein, Ca2+ 

www.intechopen.com



 
Pulmonary Hypertension – From Bench Research to Clinical Challenges 

 

6 

ATPase and several transient receptor potential channels localize in caveolae, and interact 
with caveolin-1. Production of vasodilators such as nitric oxide (NO), prostacyclin (PGI2) 
and endothelium-derived hyperpolarizing factor [EDHF] within caveolae are dependent on 
caveolin-1-mediated regulation of Ca2+ entry (Mathew 2011b).  

EC have important cytoplasmic organelles such as Weibel Palade bodies, initially formed in 
trans-golgi network; as these organelles mature they become responsive to secretagogues 
such as thrombin and histamine. Weibel Palade bodies store a number of molecules that are 
necessary for hemostasis, inflammation, vascular proliferation and angiogenesis. These 
molecules including vWF, P-selectin, angiopoietin 2, ET-1 and endothelin converting 
enzyme, IL-8, calcitonin gene-related peptide and osteoprotegerin are readily available for 
the designated function (Metcalf 2008).  

3.1 Vasomotor tone 

3.1.1 Endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate 
(cGMP) pathway  

eNOS/cGMP pathway plays a major role in vascular tone and structure. In addition to 
vasodilatory function, it inhibits cell proliferation, DNA synthesis, platelet aggregation, and 
it modulates inflammatory responses. eNOS is tightly regulated by a variety of intracellular 
processes, post-translational modification and protein-protein interaction with caveolin-1 
and Ca2+/calmodulin. For efficient synthesis, eNOS is associated with golgi bodies, and for 
optimum activation, eNOS is targeted to caveolae. An increase in intracellular Ca2+ induced 
by shear stress and varying oxygen tension activate eNOS (Sessa 1995, Shaul 1996). NO, a 
short lived free radical gas is synthesized by the catalytic activity of eNOS on L-arginine in 
the vascular EC. NO activates the enzyme, soluble guanylate cyclase (sGC) that converts 
guanosine triphosphate (GTP) to cGMP.  

cGMP through its protein kinase (PKG) causes vascular relaxation, inhibits cell proliferation 
and inflammation. It is thought that the extracellular L-arginine and its transport through 
cationic amino acid transporter-1 (CAT-1), localized in the caveolae, are available for eNOS 
activity. L-arginine found in different intracellular compartments may not be readily 
available for eNOS activity. This dependence on extracellular L-arginine for NO production 
has been termed “L-arginine paradox” (McDonald 1997, Zharikov 1998). In addition to 
CAT-1, tetrahydrobiopterin (BH4) and sGC are compartmentalized in caveolae with eNOS 
for optimum activation. BH4 is an essential cofactor required for the activity of eNOS and is 
synthesized from GTP by a rate limiting enzyme, guanosine triphosphate cyclohydrolase 1 
(GTPCH-1). Interestingly, GTPCH-1 also localizes in caveolar microdomain with caveolin-1 
and eNOS. This spatial colocalization with eNOS may ensure NO synthesis (Peterson 2009). 
Caveolin-1 inhibits eNOS through protein-protein interaction, but it also facilitates the 
increase in intracellular Ca2+. HSP90 binds to eNOS away from caveolin-1 in Ca2+-
calmodulin-depedent manner and reduces the inhibitory influence of caveolin-1 to increase 
eNOS activity. Thus, caveolin-1 and eNOS have a dynamic interrelationship (Gratton 2000, 
Mathew 2007).  

3.1.2 Prostacyclin (PGI2)/cyclic adenosine monophosphate (cAMP) pathway 

PGI2, a potent vasodilator produced by EC is formed from arachidonic acid by the 
enzymatic activity of PGI2 synthase, catalyzed by cyclooxygenase 2. PGI2 synthase belongs 
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to a family of G-protein coupled receptors and it colocalizes with endothelial caveolin-1. 
PGI2 binds to the receptor resulting in the stimulation of adenylyl cyclase which catalyzes 
the conversion of ATP to second messenger cAMP. In vascular system, PGI2 via cAMP and 
cAMP-dependent protein kinase (PKA) promotes vascular relaxation, inhibits platelet 
aggregation, inflammation and cell proliferation. In addition, cAMP/PKA pathway 
activates NO production via phosphorylation of eNOS (Stitham 2011, Kawabe 2010, Zhang 
2006). Unlike eNOS, PGI2 synthase remains enzymatically active even when bound to 
caveolin-1. Furthermore, eNOS, PGI2 synthase and vascular endothelial growth factor 
receptor (VEGFR) 2 colocalize with caveolin-1 suggesting a role for caveolin-1 in 
angiogenesis signaling pathways (Spisni 2001).  

3.1.3 Endothelium-derived hyperpolarizing factor (EDHF) 

An elevation of intracellular Ca2+ is essential for EDHF-mediated responses; and the family 

of transient receptor potential cation (TRPC) channels participates in Ca2+ entry. TRPC1 is 

associated with caveolae and a direct interaction with caveolin-1 is necessary for TRPC 

membrane localization, and Ca2+ influx. Ca2+ influx also occurs via TRPV4 channel that 

belongs to a subfamily of TRPC. TRPV4 channel is expressed in a variety of cells including 

EC, and is also linked to caveolin-1. Interestingly, arachidonic acid metabolites 

epoxyeicosatrienoic acids (5, 6-EET and 8, 9-EET) act as direct TRPV4 channel activators in 

EC. Furthermore, genetic deletion of caveolin-1 has been shown to abrogate EDHF-induced 

hyperpolarization by altering Ca2+ entry, thus highlighting the role of caveolin-1 in EDHF 

regulation (Rath 2009, Vriens 2005, Saliez 2008).  

3.2 Barrier function  

Endothelial cytoskeleton maintains barrier integrity, and EC are linked with each other 
through tight junctions (TJ) and adherens junctions (AJ). EC control the passage of blood 
constituents to the underlying tissue. The solutes pass through transcellular or paracellular 
pathway. Transcellular permeability is regulated by signaling pathways responsible for 
endocytosis and vesicular trafficking. Paracellular permeability is the result of opening and 
closing of the endothelial cellular junction; it is governed by a complex arrangement of 
adhesion proteins and related cytoskeleton proteins organized in distinct structures such as 
TJ and AJ. Vascular endothelial (VE)-cadherin plays a critical role in integrating spatial 
signals into cell behavior. VE-cadherin interacts with ǃ-catenin, p120 and plakoglobulin, and 
binds to ǂ-catenin. Association of VE-cadherin with catenins is required for cellular control 
of endothelial permeability and junction stabilization. It is believed that the tyrosine 
phosphorylation of VE-cadherin and other components of AJ results in a weak junction and 
impaired barrier function (Dejana 2008, Mahta 2006).  Furthermore, VE-cadherin is a link 
between AJ and TJ; it upregulates the gene encoding for the protein claudin-5, a TJ adhesive 
protein (Taddei 2008). RhoA is considered crucial for the endothelial contractile machinery. 
Basal activity of RhoA maintains EC junctions, but the induced activity mediates cell 
contraction, AJ destabilization, barrier disruption and increased permeability. Suppression 
of RhoA by the activation of p190RhoGAP (GTPase activating protein) reverses 
permeability. Interestingly, caveolin-1 deficiency impairs AJ integrity and reduces the 
expression of VE-cadherin and ǃ-catenin. In caveolin-1 deficient EC, increased activity of 
eNOS accompanied by reactive oxygen species (ROS) generation leads to nitration; the 
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consequent inactivation of p190RhoGAP-A results in RhoA activation and increased 
permeability. Inhibition of RhoA or eNOS reduces hyper-permeability in caveolin-1-/- mice 
(van Nieuw Amerongen 2007, Siddiqui 2011, Schubert 2002). It has also been shown that 
NO-mediated s-nitrosylation of ǃ-catenin is involved in the VEGF-induced permeability. 
Interestingly, blocking sGC improves high tidal volume ventilator-induced endothelial 
barrier function. These mice with ventilator-induced lung injury exhibit high cGMP and low 
cAMP levels, and treatment with iloprost improves vascular leak (Thibeau 2010, Schmidt 
2008, Birukova 2010). Thus, cGMP and cAMP levels appear to have opposing effects on 
endothelial barrier function.  

Activated protein C (APC), a plasma serine protease that forms a complex with EC protein 
C receptor (EPCR) is a cytoprotective agent functioning as an anticoagulant and 
profibrinolytic factor, and it participates in anti-inflammatory responses. In addition, EPCR 
has been shown to support APC-induced protease-activated receptor (PAR)-1-mediated cell 
signaling. APC via EPCR inhibits RhoA activation, increases Rac1 expression and inhibits 
vascular permeability. In support of this view, recent studies have shown reduced 
expression of EPCR and reciprocal increase in the expression of Rho associated kinase 
(ROCK)1 in a mouse model of ventilation-induced lung injury; and the treatment with APC 
restored the EPCR expression, attenuated ROCK1 expression and inhibited capillary leak 
(Baes 2007, Sen 2011, Finigan 2009). Interestingly, both thrombin and APC activate PAR1 
with opposing effects. APC-induced PAR1 is cytoprotective whereas thrombin-induced 
PAR1 activation stimulates RhoA/ROCK, actin stress fiber formation, and alters the 
integrity of EC layer. Localization of APC-activated PAR1 and EPCR in caveolae is essential 
for the cytoprotective effects, but for thrombin-activated PAR1 caveolar localization is not 
necessary. APC treatment inhibits thrombin-induced activation of ERK1/2, whereas in 
caveolin-1-deficient EC, APC treatment does not prevent thrombin-induced ERK1/2 
activation (Russo 2009, Carlisle-Klusack 2007). These studies underscore the importance of 
EC including endothelial caveolin-1 in maintaining vascular health.   

3.3 Inflammation  

It is well established that inflammation plays a significant role in the pathogenesis of PH. 
Inflammation is an orchestrated process designed to combat injury/infection. The relevance 
of endothelium in controlling and modulating inflammatory responses in general is 
accepted. Under normal conditions, the apoptosis rate in EC is extremely low. Activated EC 
exhibit a reduction in the endothelial surface layer, glycocalyx, and increased rate of 
apoptosis. EC detached from the basement membrane appear in blood circulation. 
Therefore, it is not surprising that increased circulating endothelial cell levels in PH are 
indicative of poor prognosis (Grange 2010, Jones 2005, Smadja 2010). Both NO and ROS are 
implicated in the EC response to inflammation. Increased NO levels compared to ROS 
results in anti-inflammatory response via cGMP pathway, whereas, increased levels of ROS 
and/or the presence of reactive NO species activate proinflammatory transcription factors 
(Grange 2010).  

In response to infection and inflammatory mediators, EC secrete increased amounts of 
Interleukin (IL)-6, and upregulate intracellular adhesion molecule (ICAM) and vascular 
adhesion molecule (VCAM), which spread over the surface of EC. ICAM, VCAM and also P-
selectin released from Weibel Palade bodies allow rapid rolling and adhesion of leukocytes 
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on the EC surface;  and biosynthesized E-selectin maintains this process. Interaction of 
leukocyte platelet endothelial cell adhesion molecule-1 (PECAM-1) and EC PECAM-1 leads 
to transmigration of leukocytes through the inter EC junction and possibly through EC as 
well. Furthermore, stimulation of ICAM leads to VE-cadherin phosphorylation resulting in 
destabilization of AJ, thus further facilitating transmigration of leukocytes (Jirik 1989, 
Grange 2010, Muller 2009, van Buul 2007). IL-6 plays an important role in inflammatory 
response, thus, is critical for the acute phase response. It is believed that IL-6 resolves acute 
phase response and promotes acquired immune responses, which is controlled by 
chemokine-directed leukocyte recruitment but also by efficient activation of leukocyte 
apoptosis. IL-6-driven STAT3 activation is thought to limit the recruitment of neutrophils as 
well as pro-inflammatory cytokine. However, IL-6 also rescues cells from apoptosis via the 
activation of STAT3, and increased expression of anti-apoptotic factors such as Bcl-xL and 
Bcl2 (Jones 2005, Fielding 2008). In addition, the expression of isoforms of ROCK is increased. 
Inhibition of ROCK is thought to impair IL-6-mediated resolution of neutrophils-dependent 
acute inflammation (Mong 2009). Thus, IL-6 can function as an anti-inflammatory or a pro-
inflammatory factor.  

Deregulated IL-6/STAT3 pathway underlies a number of vascular diseases including PH, 
autoimmune diseases and cancer (Mathew 2004, Huang 2008, Hirano 2010, Yu 2009). In 
addition, the loss of caveolin-1 has been reported in theses cases. Caveolin-1 is known to 
inhibit PY-STAT3 activation as well as the expression of Bcl-xL and Bcl2. Caveolin-1 also 
inhibits and degrades inflammatory and pro-neoplastic protein COX2 (Mathew 2004, Huang 
2010, Mathew 2011b, Mathew 2007). Caveolin-1 modulates inflammatory processes via its 
regulatory effect on eNOS, and depending on the cell type and context of the disease, the 
effect can be positive or negative.  

Hemoxygenase (HO)-1, one of the isoenzymes has emerged as an important player in 
cellular defense mechanism. HO-1 catalyzes the metabolism of free heme into equimolar 
ferrous iron, carbon monoxide (CO) and biliverdin. The latter is converted to bilirubin by 
biliverdin reducatse. HO-1 suppresses inflammation by removing pro-inflammatory 
molecule, heme, and by generating CO. CO, biliverdin and bilirubin have cytoprotective 
function. HO-1/CO inhibits pro-inflammatory cytokines such as CCL2 and IL-6, and 
increases the production of IL-10 an anti-inflammatory cytokine. Interestingly, HO-1 and 
biliverdin reducatse are compartmentalized in endothelial caveolae; and similar to eNOS, 
HO-1 activity is inhibited by caveolin-1. CO has been shown also to activate sGC (Durante 
2011, Pae 2009, Liang 2011).  

3.4 Coagulation and thrombosis  

In health, endothelium prevents thrombosis via a number of endothelium-derived inhibitors 
of coagulation such as thrombomodulin, protein S, heparin sulfate proteoglycans and tissue 
plasminogen activator (tPA). In addition, PGI2, NO and CD39 inhibit platelet aggregation. 
Released tPA catalyzes the conversion of plasminogen to plasmin thus, facilitating 
proteolytic degradation of thrombus (Oliver 2005). Activation of coagulation cascade is 
necessary for normal hemostasis. Tissue factor (TF) is a transmembrane glycoprotein that 
initiates coagulation cascade; and thrombin is the key effector enzyme for the clotting 
process. The coagulation cascade is activated to stop the blood loss by forming a clot 
(Shovlin 2010). TF, a member of cytokine superfamily that functions as high affinity receptor 
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and a cofactor for plasma factors VII/VIIa, the initiator of blood coagulation. TF is not 
expressed in EC, but it is rapidly induced by infection and inflammatory cytokines (TNFǂ, 
IL-1ǃ). VEGF, a major stimulator of angiogenesis, is known to upregulate TF expression in 
EC (Mechtcheriakova 1999). Following injury/infection, Weibel Palade bodies fuse with 
endothelial cell membrane and release vWF, P-selectin and IL-8. Interestingly, capillary EC 
lack Weibel Palade bodies but they do express vWF, P-selectin, thus, are capable of 
participating in coagulation process. The inter-activation of vWF multimers with exposed 
subintimal matrix results in adherence to activated platelets and participation in clot 
formation. The release of P-selectin facilitates neutrophil adherence to EC and 
transmigration (Ochoa 2010).   

It is well accepted that there are cross-talks between inflammatory responses and 
thrombosis. Coagulation has been shown to augment inflammatory responses, and 
anticoagulants blunt the coagulation-induced inflammatory responses. Furthermore, PGI2 
and APC inhibit injury-induced Ca2+ flux and NFκB activation, and reduce significantly the 
expression of proinflammatory cytokines such as TNFǂ, IL-6 and IL-8. EPCR augments APC 
by thrombin/thrombomodulin complex; but EPCR is shed from EC by inflammatory 
mediators and thrombin, thus favoring thrombosis (Esmon 2001).     

Under physiological state, circulating platelets are in a quiescent state, and the activation is 
inhibited by endothelium-derived NO and PGI2. Platelets are recruited early to the site of 
inflammation/injury to provide rapid protection from bleeding; however, they contribute 
both to coagulation and inflammation. Platelets form a layer, and vWF plays a critical role in 
the adherence of platelets to the injury site. At the site of adherence, platelets release platelet 
activating factors such as adenosine diphosphate (ADP), thromboxane A2 (TxA2), serotonin, 
collagen and thrombin. Thrombin is the most potent thrombogenic factor. In addition, 
release of ADP and TxA2 from platelets increases the expression of P-selectin and CD40 
ligand (Angeolillo 2010). CD40, the receptor for CD40 ligand, is found on a number of cells 
including EC, macrophages, B-cells and vascular SMC. The interaction between CD40 and 
its ligand causes severe inflammatory responses, matrix degradation and thrombus 
formation; and it has been implicated in the pathogenesis of PH. Platelet-derived member of 
TNF superfamily “lymphotoxin-like inducible protein that competes with glycoprotein D 
for herpes virus entry mediator on T lymphocytes” (LIGHT) levels in serum are increased in 
patients with PAH; interestingly, LIGHT levels are not altered in PH secondary to left heart 
failure. LIGHT increases the expression of TF and plasminogen activator inhibitor (PAI)-1, 
and decreases thrombomodulin levels, thus, making EC pro-thrombogenic (Otterdal 2008).  
PAI-1, a potent endogenous inhibitor of fibrinolysis, is produced by several cells including 
EC. ROS has been shown to have a significant role in cytokine-induced increase in PAI-1 
expression. Increased levels of PAI-1 enhance thrombosis and impair fibrinolysis. Recent 
studies suggest that PAI-1 regulates EC integrity and cell death. Increased levels are thought 
to confer resistance to apoptosis and facilitate cell proliferation (Jaulmes 2009, Balsara 2008, 
Schneider 2008).   

3.5 Angiogenesis  

The formation of new capillaries from a preexisting vessel is called angiogenesis. 
Angiogenesis plays a pivotal role in a numerous physiological and pathological processes 
such as organ development, tissue repair and carcinogenesis. Angiogenesis is controlled by 
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opposing angiogenic and angiostatic factors. Some of the angiogenic factors are VEGFs, 
fibroblast growth factor (FGF)s, angiopoietins, PECAM-1, integrins, and VE-cadherin, and 
the angiostatic factors are angiostatin, endosatstin and thrombospondin (Distler 2003). 
Angiogenic factors such as angiopoietins 1 and 2 (Ang 1 and Ang 2), and VEGF orchestrate 
EC proliferation, migration and new blood vessel formation. These angiogenic factors also 
participate in inflammatory responses and barrier function. VEGFA is a major regulator of 
angiogenic signaling and functions through a tyrosine kinase receptor, VEGFR-2, found on 
the surface of EC. Downstream effector of VEGF-induced angiogenesis is eNOS. Not 
surprisingly, angiogenesis is impaired in eNOS knockout mice and the inhibition of eNOS 
antagonizes VEGF-induced angiogenesis. NO induces the expression of ǂvǃ3 integrin, and 
the synthesis and release of collagen IV (a major component of endothelial basement 
membrane) from EC. Binding of these two molecules leads to the activation of integrin, 
facilitating cell adhesion, migration, cell proliferation and protection of EC from apoptosis 
(Ziche 1997, Wang 2011). vWF modulates angiogenesis via multiple pathways involving 
ǂvǃ3 integrin (a receptor for vWF on EC), VEGFR-2 signaling and Ang2. Inhibition of vWF 
in-vitro has been shown to increase angiogenesis, to increase VEGFR-2-dependent cell 
proliferation and migration associated with reduction in ǂvǃ3 integrin and increased Ang2 
levels (Starke 2011). VE-cadherin not only mediates inter-endothelial cell adhesion but also 
controls VEGF-mediated EC survival and angiogenesis via pathways involving ǃ-catenin, 
PI3 kinase and VEGFR-2. Deficiency of VE-cadherin results in the failure of transmission of 
VEGF-induced survival signaling to Akt kinase and Bcl2, resulting in apoptosis of EC 
(Carmeliet 1999).  

Tie2, an endothelium-specific tyrosine kinase receptor and its ligand Ang1 and Ang2 are 
modulators of vascular development and angiogenesis. Ang1 does not promote EC 
proliferation but supports EC survival, maturation and stabilization of the new vessels 
formed by the activity of VEGF. In addition, Ang1 administration protects adult vasculature 
from leakage and Ang1 over-expressing mice are resistant to VEGF-induced vascular leak 
(Thurston 2000). Although Ang2 has been thought to counteract Ang1 and Tie2 activity, the 
recent studies show that Ang2 in the presence of VEGF supports EC survival and 
angiogenesis. EC death increases when Ang2 is injected with VEGF blocker (Lobov 2002). 
Thus, the presence or the absence of VEGF determines how Ang2 modulates EC survival. 
Recent studies show that both Ang1 and Ang2 have similar agonistic capacity to mediate 
endothelial P-selectin translocation, neutrophils adhesion and inflammatory response. 
Furthermore, both can activate Tie2 receptor on neutrophils (Lemieux 2005).  

Interestingly, caveolin-1 deficient mice exhibit increased microvascular permeability and 
angiogenesis. EC from caveolin-1 null mice show increased tyrosine phosphorylation of 
VEGFR-2 and decreased association with VE-cadherin. The increased permeability and 
angiogenesis in caveolin-1 null cells may also be related to increased eNOS activity (Lin 
2007, Chang 2009). Thus, the loss of inhibitory function of caveolin-1 on VEGFR-2 
phosphorylation coupled with increased eNOS activity may accentuate permeability and 
angiogenesis.    

4. Endothelial injury and pulmonary hypertension  

From the foregoing sections, it is clear that EC orchestrates a complex metabolic machinery 
involving a number of signaling molecules to maintain vascular health. These multiple 
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signaling pathways cross talk at different levels to preserve normal function and cell 
survival. Dysregulation of one signaling pathway has a profound effect on the other 
pathways, resulting in a cascade of events including deregulation of multiple pathways, 
impaired vascular relaxation, and the loss of barrier function, transmigration of neutrophils, 
thrombo-embolic phenomenon, cell proliferation and anti-apoptosis leading to vascular 
diseases including PH. Injurious stimuli such as inflammatory cytokines, increased shear 
stress, drug toxicity, hypoxia and exposure to reactive oxygen species, ventilation-induced 
lung injury lead to the loss of protective function of EC. The end results are an imbalance 
between vasodilatation and vasoconstriction, coagulation and fibrinolysis, and between cell 
proliferation and apoptosis.  

In response to infection, inflammatory mediators or oxidant stress, EC lose barrier function, 

develop coagulation abnormities, secrete increased amounts of IL-6 and RANTES, express 

adhesion molecules and chemokines that promote adhesion and transmigration of 

leukocytes, and activate pro-proliferative and anti-apoptotic pathways. IL-6, a 20-30 kD 

glycoprotein, produced by several types of cells including macrophages, EC, vascular SMC, 

is induced in response to stress. It is a potent, inflammatory cytokine that plays a central role 

in host-defense mechanisms. IL-6 has been shown to induce proliferation of SMCs in a dose 

dependent manner.  Increased levels of IL-6 have been reported in clinical and experimental 

forms of PH. Furthermore, IL-6 is also thought to contribute to PH complicating chronic 

obstructive pulmonary disease. Recent studies show that the increased levels of IL-6 portend 

poor prognosis in patients with PAH (Humbert 1995, Mathew 2010, Soon 2010). During the 

inflammatory response, upregulated IL-6 binds to gp130, a plasma membrane receptor 

complex that colocalizes with caveolin-1, to activate Janus kinase (JAK), a tyrosine kinase 

family member leading to PY-STAT3 activation, a downstream effector of IL-6. The 

downstream signaling molecules of PY-STAT3 such as Bcl-xL, survivin and cyclin D1 are 

implicated in PAH. In addition, pulmonary EC obtained from patients with idiopathic PAH 

show activation of STAT3. Recent studies have shown that caveolin-1 inhibits STAT3 

activation, and the rescue of caveolin-1 not only inhibits PY-STAT3 activation but also 

attenuates MCT-induced PH (Mathew 2010, Huang 2010, Masri 2007, Mathew 2007, Huang 

2008). The initial inflammatory response is an attempt to repair the injury. But as IL-

6/STAT3 pathway becomes deregulated, the results are further EC damage, increased cell 

proliferation and disruption of barrier function leading to vascular remodeling and PH.  

Depending on the type of injury, the major effect on EC is either a progressive loss of cell 
membrane integrity coupled with the loss of endothelial caveolin-1 and other EC proteins, 
or caveolin-1 dysfunction without any protein loss. In either case the end results are 
impaired endothelium-dependent vascular relaxation, medial hypertrophy, narrowing of 
the lumen, elevated pulmonary artery pressure and right ventricular hypertrophy. 

4.1 Endothelial cell disruption 

4.1.1 Loss of endothelial caveolin-1  

Injury such as inflammation, chemical/drug toxicity, ventilation-induced lung injury and 
cyclic shear stress disrupt endothelial membrane integrity. Monocrotaline (MCT), an 
inflammatory model of PH has been extensively studied. Although this model is not exactly 
akin to the human from of PH, nevertheless, it has provided valuable information. In this 
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model, disruption of caveolae, progressive loss of caveolin-1, reciprocal activation of PY-
STAT3 and upregulation of Bcl-xL are observed within 48 hrs of MCT injection, i.e. before 
the onset of PH. Other EC membrane proteins such as PECAM-1 and Tie2 are lost in tandem 
with caveolin-1. At 2 wks post-MCT, with the onset of PH, there is a further loss of proteins 
such as HSP90, Akt, and IκB-ǂ. The eNOS expression is relatively well preserved, but with 
transient eNOS uncoupling as indicated by increased ROS generation. Furthermore, at this 
stage, impaired NO bioavailability, low cGMP and sulfhydryl levels have been observed. By 
3-4 wks post-MCT, there is a significant reduction in the expression of eNOS protein, and 
ROS generation returns to normal level. Early treatment with anti-inflammatory agents 
prevents the loss of endothelial caveolin-1, inhibits the activation of proliferative pathways 
and attenuates PH; however, once the PH is established, these agents are not effective 
(Mathew 2007, Huang 2008, Huang 2010). Caveolin-1 null mice exhibit vascular defect and 
cardiomyopathy with a propensity to develop PH; rescue of caveolin-1 ameliorates 
cardiovascular function and attenuates PH (Murata 2007). Loss of endothelial caveolin-1 has 
also been reported in idiopathic PAH (Achcar 2006, Patel 2007, Mathew 2011a). Thus, there 
is a strong evidence that endothelial caveolin-1 has a pivotal role in PH. Endothelial 
caveolin-1 regulates inflammatory response, proinflammatory cytokines, inhibits a number 
of mitogens implicated in PH, and it controls cell proliferation and apoptosis. Thus, the loss 
of endothelial caveolin-1 is sufficient to initiate PH and facilitate the progression of the 
disease.  

4.1.2 Enhanced expression of caveolin-1 in SMC   

Recently it was reported that in addition to the loss of endothelial caveolin-1, pulmonary 

arterial SMC from patients with idiopathic PAH exhibited enhanced expression of caveolin-

1. These SMC with enhanced expression of caveolin-1 exhibited altered Ca2+ handling,  

increased cytosolic  [Ca2+]i and increased DNA synthesis. Increased [Ca2+]i  is a trigger for 

DNA synthesis and  cell proliferation (Patel 2007). In patients with chronic obstructive 

pulmonary disease (COPD), enhanced expression of caveolin-1 in SMC correlates with the 

presence of PH (Huber 2009). Recently it was reported that a child developed PH about 2 

years after having completely recovered from acute respiratory distress syndrome (ARDS). 

It is well established that underlying pathology of ARDS is pulmonary vascular endothelial 

damage. At the time of the diagnosis of PH, pulmonary arteries exhibited loss of endothelial 

caveolin-1 and medial wall thickening. Importantly, the arteries that exhibited loss of 

endothelial caveolin-1 coupled with the loss of vWF had robust expression of caveolin-1 in 

SMC; whereas, the arteries that exhibited endothelial caveolin-1 loss alone did not have 

enhanced expression of caveolin-1 in SMC. Second lung biopsy done 3 years later exhibited 

neointima formation and by then the vasculature had become unresponsive to therapy 

(Mathew 2011a). These results suggest that the initial EC injury during ARDS was 

progressive although not clinically apparent. Since vWF is stored in Weibel Palade bodies 

within the EC, the loss of vWF is indicative of an extensive endothelial damage and/or loss. 

Therefore, it is not surprising that increased plasma levels of vWF and Ang2, and circulating 

endothelial cells in PAH are considered markers of poor prognosis (Kawut 2005,  Kümpers 

2010, Smadja 2010). It is worth noting here that both vWF and Ang2 are stored in Weibel 

Palade bodies and during stress/activation, these bodies deliver their cargo at the 

endothelial cell surface.   
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Caveolin-1 is essential for normal functioning of SMC. Under normal circumstances, 

caveolin-1 inhibits receptor and non-receptor tyrosine kinases by sequestering them to 

caveolae and prevents cell proliferation. Disruption of caveolin-1 has been shown to 

increase cell proliferation in airway and vascular SMC. Caveolin-1 keeps mitogens inactive 

in caveolae; however, under increased mechanical stress/strain, caveolin-1 translocates from 

caveolae to non-caveolar sites within the plasma membrane of cultured SMC, and 

translocated caveolin-1 triggers cell cycle progression and cell proliferation (Gosens 2006, 

Hassan 2006, Kawabe 2004, Mathew 2011b). It has also been shown that cultured cells 

(murine lung endothelial and HeLa cells) exposed to mechanical stress exhibit reduction in 

caveolin-1 and cavin-1 (also known as polymerase 1 and transcript release factor) 

interaction, disappearance of caveolae and increased expression of caveolin-1 at the plasma 

membrane. Importantly, caveolin-1 requires cavin for caveolae formation [Sinha 2011, 

Mathew 2011b). From these studies it appears that the progressive EC damage and the 

eventual loss expose underlying SMC to blood elements and cyclic shear stress, leading to 

enhanced expression of caveolin-1 and its translocation from caveolae. It is worth noting 

here that the activation of matrix metalloproteinases (MMP) 2 is a critical step in the 

migration of SMC through the basement barrier, which facilitates neointima formation. 

Increased expression and activity of MMP2 has been reported in SMC from patients with 

idiopathic PAH. MMP2 and its physiologic activator MT1-MMP colocalize in caveolae and 

are negatively regulated by caveolin-1 [Mathew 2011b). These observations further support 

the view that SMC exposed to increased shear stress may translocate caveolin-1 from 

caveolae to other plasma membrane sites, thus losing its inhibitory activity on MT1-MMP 

and MMP2, thus, facilitating cell migration via MMP2.  

Increased eNOS expression and PKG nitration have been shown in caveolin-1 null mice and 

also in the lungs of patients with idiopathic PAH contributing to the worsening of the 

disease. The expression of eNOS is reported to be either low or increased in the lungs of 

patients with PH. This is not surprising because the disease does not progress uniformly, the 

expression of eNOS depends on the stage of disease in a given lung section. In PH, the initial 

loss of EC is followed by the appearance of apoptosis resistant EC. These neointimal EC 

have increased expression of eNOS and reduced expression of caveolin-1, thus, resulting in 

uncoupling of eNOS, oxidant and nitration injury [Mathew 2011b).  

As shown in Figure 1, the sequel of EC injury (shear stress, drug toxicity, inflammation) can 

be summarized as follows: 1) a progressive disruption of EC membrane integrity and the 

loss of endothelial caveolin-1, 2) impaired Ca2+ entry into EC resulting in reduced 

production of NO, PGI2 and EDHF leading to impaired vascular relaxation, 3) activation of 

proliferative and antiapoptotic pathways leading to vascular cell proliferation, medial wall 

thickening and PH. As the disease progresses, further loss of proteins occurs indicating 

extensive EC damage/loss. This is followed by enhanced expression of cav-1 in SMC, where 

cav-1 facilitates cell proliferation and migration leading to neointima formation. Thus, the 

translocated caveolin-1 in SMC not only loses its ability to inhibit proliferative pathways but 

also switches from being antiproliferative to proproliferative that may eventually lead to 

SMC phenotype change from contractile to synthetic. Recent studies indicate that there is 

increased expression of eNOS in neointimal EC; but eNOS is dysfunctional, resulting in 

oxidant/nitration injury thus further aggravating PH (Mathew 2011b).  

www.intechopen.com



 
Pulmonary Hypertension: Endothelial Cell Function 

 

15 

 

Fig. 1. Adapted from Mathew R, Pulmonary Medicine 2011; 2011:57432. A proposed model for 
PH associated with disruption of endothelial caveolin-1 resulting in the loss of vasodilators, 
and the activation of proliferative and anti-apoptotic pathways leading to pulmonary 
vascular remodeling. EC disruption is progressive and extensive damage/ loss of EC 
exposes SMC to direct shear stress leading to enhanced expression of caveolin-1 in SMC 
which participates in further cell proliferation and cell migration resulting in neointima 
formation. Newly formed EC in neointima express increased eNOS; low caveolin-1 
expression in these cells may in part be responsible for the observed dysfunctional eNOS. 
Resulting oxidant/nitration injury may further influence SMC adversely leading to 
irreversible PH.  

4.2 Endothelial dysfunction without caveolin-1 loss 

PH is an important cause of increased mortality in patients suffering from chronic heart 

diseases associated with hypoxia. Acute hypoxia causes reversible pulmonary 

vasoconstriction and PH. Chronic hypoxia causes vasoconstriction with subsequent vascular 

remodeling and sustained PH. Not unlike MCT-induced PH, hypoxia-induced PH is 

associated with low bioavailability of NO and impaired endothelium-dependent pulmonary 

vascular relaxation. In contrast to the MCT model, in the hypoxia model there is no loss of 

eNOS, caveolin-1 or HSP90 proteins (Huang 2010, Mathew 2011b). Pulmonary arteries of 

rats with hypoxia-induced PH reveal that eNOS forms a tight complex with caveolin-1, and 

becomes dissociated from HSP90 and calmodulin, resulting in eNOS dysfunction. Bovine 

pulmonary artery EC exposed to hypoxia also exhibit tight coupling of eNOS and caveolin-1 

accompanied by PY-STAT3 activation. Since caveolin-1 inhibits PY-STAT3 activation, the 

activation of PY-STAT3 in hypoxia-induced PH despite the unaltered expression of 

caveolin-1 protein indicates that caveolin-1 has lost its inhibitory function (Huang 2008, 

Mathew 2011b, Murata 2002). Thus, this complex formation renders both eNOS and 
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caveolin-1 dysfunctional. Statins therapy has shown to protect eNOS function in hypoxia-

induced PH. The major effect of statins is reported to be the uncoupling of eNOS/caveolin-1 

complex, thus, freeing eNOS for activation (Murata 2005). Therefore, it is likely that the 

statins disrupt the tight cavolin-1/eNOS coupling, resulting from hypoxia- induced 

perturbation of EC membrane, thus, restoring antiproliferative properties of caveolin-1 and 

NO production by eNOS. Unlike the MCT model, hypoxia does not appear to cause physical 

disruption of EC membrane, but causes perturbation of the EC membrane leading to 

“mislocalization” of caveolin-1 and eNOS. As depicted in Figure 2, hypoxia induces tight 

complex formation of eNOS and caveolin-1 resulting in dysfunction of both molecules 

leading to impaired availability of NO, increased ROS production and activation of 

proliferative pathways, thus facilitating increased medial wall thickness and PH. It is 

important to note that unlike the MCT model, there is no loss of eNOS or caveolin-1 protein 

in the hypoxia model.  

Fig. 2. Adapted from Mathew R, Pulmonary Medicine 2011; 2011:57432. Hypoxia-induced 

perturbation of endothelial cell membrane results in a tight complex formation of 

caveolin-1 and eNOS, rendering both molecules dysfunctional leading to low NO 

bioavailability and superoxide generation; and the loss of ability of caveolin-1 to inhibit 

proliferative pathways.  

5. Therapeutic potential 

Since the introduction of vasodilators and anti-mitogenic therapy, there has been a 

significant improvement in exercise tolerance and life expectancy in patients with PH 

compared with the historical controls. However, there is no cure; the disease is progresses 

albeit at a slower rate. Currently approved therapy belongs to 3 major groups: 1) PGI2 

analogues: PGI2 remains the mainstay in the treatment of PH. Synthetic PGI2 used as 
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continuous infusion has been found to be efficacious in several forms of PH. Other synthetic 

analogues for use via oral and subcutaneous routes are available. 2) ET-1 blockers: ET-1 is a 

potent vasoconstrictor with mitogenic and inflammatory properties; and it functions both in 

paracrine and autocrine fashion. The effects of ET-1 are mediated through ETA and ETB 

receptors. Bosentan, a sulfonamide-based dual endothelin receptor antagonist has been in 

use for the treatment of PH. Several studies have shown improvement in hemodynamic 

parameters, exercise tolerance and the time to clinical worsening in patients with PAH. One 

of the important side effects of bosentan is abnormal liver function tests. Ambrisentan, a 

propanoic-based ET-1 receptor blocker seems to have much lower incidence of liver function 

abnormalities. 3) PDE5 inhibitors: PDE5 inhibitors block the conversion of cGMP to 5' GMP. 

Sildenafil is the most commonly used drug in this group. These drugs are used as 

monotherapy or in combination. Newer drugs such as soluble guanylate cyclase activators, 

tyrosine kinase inhibitors are being tested (Rhodes 2009, Stenmark 2009).  

Endothelial progenitor cells (EPC) and gene therapy are being actively pursued. However, 
the vectors and gene delivery systems still need to be refined (Reynolds 2011). Several 
experimental studies with EPC/gene therapy have shown encouraging results. 
Administration of bone-derived EPC transduced with eNOS was found to be effective in 
reversing the disease process in established MCT-induced PH, but EPC administration had 
no effect on hypoxia-induced PH (Zhao 2005, Raoul 2007). In contrast, BMPRII gene therapy 
attenuated hypoxia-induced PH but had no effect on MCT-induced PH (Reynolds 2009, 
McMurtry 2007). The MCT model is associated with progressive loss of endothelial cell 
membrane integrity leading to extensive EC damage and/or loss; whereas, hypoxia does 
not cause EC loss. These studies raise important questions: 1) whether the state of native EC 
is important in selecting EPC transduced with the desired gene or the vector-driven gene 
therapy, or 2) these results are simply related to the efficacy of the genes in question. An 
ideal treatment would be to tailor the EPC/gene therapy for individual patients. A 
combination of gene therapy and pharmacological agents may be able to reverse the disease 
or at least halt the progression.  

6. Summary 

EC with specialized membrane rafts and organelles conduct a fine orchestra with multiple 
interacting sections (signaling pathways) to produce harmonious music (vascular health). 
Events such as injury/inflammation/shear stress leading to one false note, if not repaired 
early, leads to utter chaos, and the recovery becomes almost impossible. In response to 
injury, several signaling pathways are activated in an attempt to repair the damage. 
However, these pathways do become deregulated and the cytoprotective molecules become 
cytotoxic leading to the loss of barrier function, vasodilatation mechanisms, and the 
activation of cell proliferative and antiapoptotic pathways. Current therapy is based on 
individual signaling pathways. A holistic approach to recover EC function may be an 
attractive strategy to pursue for the treatment of PH.  
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