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1. Introduction 

Although many different definitions of cognition exist, there is a general acceptance that 
cognition can be defined as a higher function with respect to both the primary stages of 
sensory information processing and the final stage of motor output. This idea has been the 
basis of many well known psychological models where one can identify “input boxes” (i.e., 
visual, auditory, somatosensory information), and “output boxes” (i.e., motor commands), 
with, intermediate, high level (attention, language, memory, …) and low-level (motor 
intention, preparation) cognitive functions (see, for instance, the information processing 
model of Smidt and Lee (2005), or the model for central representation of goal-directed 
movements of Jeannerod (1990)).  
Although these models are, without doubt, well suited to the study of cognitive processes 
from a psychological standpoint, they are not very helpful from a neuroscientific point of 
view. Indeed, ever since the very first investigations into the functioning of the living brain, 
the main aim has been to localize cognitive functions into the cortical structures of the brain. 
There exist at least two problems related to this approach. Firstly, and this is not a recent 
objection (e.g., Posner and Raichle (1998) page 16), it is doubtful whether the cognitive 
functions as presently conceived have a meaning for the brain. Let us take for example the 
so-called “eye-hand coordination”. This “function” is much studied today and many 
publications report attempts to localize it in the brain. But, for a normally developed brain, 
this is not a specific function which is needed at specific moments and which is necessarily 
implemented in a specific brain structure. All input is continuously put in relation with each 
other as a function of the particular output. It seems more likely that eye-hand coordination 
is controlled in a continuous, implicit and distributed way. It is pertinent here to mention 
the ecological approach of perception (Gibson, 1986). This approach is based on the concept 
of “affordance” that characterizes the object of perception as a whole of many possible 
actions and interactions, and is in rupture with the cognitive approach. Indeed, according to 
the latter approach, the brain organizes the perception of the world, whereas in the 
ecological approach, the world organizes the perception: The role of the brain is to extract 
the information presented by the world. This theory suggests that the traditional approach 
of studying cerebral functioning is not very appropriate: the cognitive functions that we 
define do not have much sense for the brain and, what’s more, we generally put subjects in 
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environments which are too artificial in order to study brain functioning. However, since in 
their opinion perception is “direct”, Gibson and his successors have largely ignored the 
brain and have, therefore, not contributed to the understanding of brain functioning. 
Although there is much more to say on this subject, we will not develop this point any 
further in the present chapter. 
The second drawback with the cognitive approach is the fact that cognition has mainly been 
sought outside the primary cortical areas. Indeed, since the above-mentioned cognitive 
models localize cognition between the input and the output, cognition is necessarily located 
in the secondary and associative cortical areas. For a long time, the primary motor area has 
been considered as a simple “execution area” of which the neuronal activity reflects the 
immediate output to the muscles. In the same way, the primary sensory areas are often 
presumed to simply transfer sensory information to higher order cognitive systems. For the 
same reason, studies concerned with the functioning of the secondary and associative areas 
do not really take into account the direct projections of the nervous system to peripheral 
structures. 
In this chapter, we aim to show that the hierarchical and modular vision of brain 
functioning is no longer defendable. Cognition emerges from the interaction between 
regions that are distributed over the whole brain, including the primary cortical areas. After 
a brief review of the anatomy of the primary somatosensory (S1) and motor (M1) areas, we 
will develop arguments in favor of this hypothesis. We will mention the highly flexible 
functional organization of the primary sensorimotor cortical areas. We will show that the 
neuronal activity of S1 depends on the environmental and cognitive context, i.e., on the 
value of the stimulus at a given moment. Then, we will show that M1 is much more than a 
simple transmission area between the non-primary motor areas and the spinal cord. Indeed, 
M1 is active in tasks without any motor output and the M1 neuronal activity depends on the 
context in which a motor output is produced and can be adapted and modified in real time. 
We will end with an example of a clinical implication of this hypothesis, concerning 
phantom limb sensations in patients with upper limb amputations. 

2. Primary cortical areas 

2.1 Anatomical organization of the primary areas 

What makes a primary cortical area “primary” is that it is, either, the first cortical structure 
receiving the sub-cortical projections transporting visual, auditory or somatosensory 
information, or the last cortical stage before the motor commands descend to sub-cortical 
structures. The cortex of each hemisphere contains one primary motor area (M1) and three 
primary sensory areas. M1 is localized on the pre-central wall at the depth of the central 
sulcus. The post-central gyrus contains the primary somatosensory area (S1), extending 
from the posterior wall of the central sulcus to the depth of the anterior wall of the post-
central sulcus. The primary auditory area (A1) is situated in the superior temporal gyrus on 
the dorso-postero-medial part of the transverse gyri of Heschl (Liégeois-Chauvel et al., 
1991).  Finally, the primary visual area (V1) is located at the posterior poles of the occipital 
lobes in the calcarian sulcus. 
Broadly speaking, the cortex contains at least 6 well defined neural layers that can often 
even be sub-dived into sub-layers. The cellular organization differs sufficiently between the 
different cortical regions that we can use it as a criterion to delimitate functional cortical 
areas. This was first done by Korbinian Brodmann at the beginning of the twentieth century 
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who established the well-known cerebral map based on the cytoarchitecture of the different 
regions of the cortex. Each region of the cortex containing the same cellular organization 
was attributed the same number, ranging from 1 to 52. Brodmann’s assumption was that a 
given anatomical organization must correspond to a particular function. For instance, 
Brodmann’s area 17, which receives information from a thalamic nucleus which in turn 
receives projections from the retina, is called the primary visual cortex; Brodmann’s areas 41 
and 42 form the primary auditory cortex; Brodmann’s areas 1 to 3 form the primary 
somatosensory cortex; Brodmann’s area 4 globally corresponds to the primary motor cortex. 
It is important to note that the Brodmann classification is based on adult brains and so were 
anatomically and neurophysiologically fully developed. It has been shown that the 
cytoarchitecture of the sensorimotor cortex is subject to considerable modifications from 
birth (or even before) until the age of 20 (Shumeiko, 1998). Today, it is not clear how the 
cytoarchitecture of the cortex depends on its functional development. 
The primary sensory areas differ from other cortical areas mainly by the thickness of layer 4. 
Whatever the cortical structure, this layer receives sensory information. For instance, the 
axons from the optical radiation primarily project onto neurons of the fourth layer of V1. M1 
has a fourth layer that is clearly thinner than S1, indicating that it receives less sensory 
information. However, M1 does receive some sensory input in layers 1 to 4, not only from 
cortical sensory areas but also directly from the thalamus. Also, several secondary motor 
areas, such as the premotor (PM), supplementary motor (SMA) and cingular motor areas, 
project directly onto M1 (Dum & Strick, 2002).  Concerning the efferent fibers of M1, layer 5 
contains the so-called “Cells of Betz” (large pyramidal neurons), visible with only little 
optical enlargement. Part of the corticospinal tract finds its origin in these pyramidal 
neurons. This tract consists of well myelinated axons which directly descend into the spinal 
cord. Some of these axons even project directly onto the motoneurons of the distal muscles 
without passing by interneurons (Maier et al., 2002). M1 also sends small efferent axons 
from layers 5 and 6 to other cortical areas.  

2.2 Flexibility and plasticity of the primary cortical areas 

The primary cortical areas represent the information coming from (or going to) the 
periphery according to a topological principle, i.e., retinotopic for V1, tonotopic for A1, and 
somatotopic for S1 and M1. These “maps” were long considered as stable and definitive 
once the neural functions are fully developed. We now know that this is not correct. 
Without elaborating on this huge research domain, we will give some examples involving 
M1 and S1 which show that these topologic maps are highly flexible and constantly re-
actualized.  
We begin with some basic details concerning the somatotopy of M1. In a normal subject, M1 
shows a rather global somatotopic organization in a medial-lateral direction, representing 
the leg, back, arm, hand and face (Penfield & Boldrey, 1937). This rather fine somatotopic 
organization seems to reflect a “basic” organization that exists when the subject is passive. 
However, when engaged in a task, within each sub-area, we can identify a distributed 
representation adapted to the requirements of the task. This has been shown by Sanes and 
colleagues (1995) in an fMRI study. They asked subjects to make flexion/extension 
movements with different fingers (one at a time) or with the wrist. For each movement, they 
found multiple activation sites in the arm area of M1. Moreover, these sites showed an 
important overlap. These results, which have since been confirmed by other studies (see 
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Indovina et Sanes, 2001; for a review Sanes & Donoghue, 2000), strongly suggest that the 
neurons within the arm area of M1 form a distributed network controlling ensembles of arm 
muscles as a function of how they are implicated in the particular movement. Pascual-Leone 
and colleagues (1995), in a transcranial magnetic stimulation (TMS) study, confirmed this by 
showing a modification of the hand representation in M1 in subjects learning a 5-finger 
piano exercise. During a training period of 2 hours a day over 5 consecutive days, the 
cortical area targeting the muscles implicated in the task enlarged. Moreover, the activation 
threshold decreased. This modification was limited to the implicated hand. Similarly, again 
using TMS, it has been shown that the cortical area targeting an immobilized part of the 
body is diminished after immobilization, the reduction being correlated to the duration of 
the immobilization (Liepert et al., 1995).  
Several animal studies have also shown a reorganization of S1 after tactile stimulation. For 
example, when monkeys are trained to get food out of holes of different diameters, the 
representation of the hand surface in area 3b of S1 shows less overlap of receptive fields for 
the trained fingers than for the control fingers (Xerri et al., 1999). Also, rats exposed to an 
environment rich in tactile stimulation, show an enlarged tactile representation of their 
paws with a higher spatial resolution in S1 (Xerri et al., 1996). It is interesting to note that 
this reorganization of S1 can be produced at all ages (Coq & Xerri, 2001). 
In an extensive review, Xerri (1998) reported on the plasticity of the primary somatosensory 
and motor areas after either a peripheral or central lesion. A temporary anesthesia of the 
dorsal roots of the spinal cord related to the fingers gives rise very rapidly (i.e., within some 
minutes) to both an enlargement of the receptive fields close to the anesthetized fingers, and 
the appearance of new receptive fields. At the cortical level, this means that the cortical zone 
corresponding to the anesthetized fingers is invaded by the representation of the hand 
surface adjacent to the anesthetized fingers. This reorganization is reversible and disappears 
after dissipation of the anaesthesia. Contrary to the expanded zones seen immediately after 
denervation, those observed later on show a clear somatotopic organization.  This means 
that there is an organized spatial redistribution of a large number of cortical input fibers. 
After amputation of the hand or forearm, the territories of the cortical representation of the 
lost body part are reoccupied by the afferent information from the adjacent body part and 
from the face (e.g., Florence & Kaas, 1995). This reorganization is known to be (at least 
partly) reversible. This has been confirmed in an fMRI study before and after a 
transplantation of both hands in an adult human subject (Giraux et al., 2001). This particular 
patient had had a traumatic amputation of both hands 4 years earlier. After the bilateral 
transplantation of the hands and an extensive rehabilitation, the centre of activity evoked by 
movements of the elbow and the hand was modified in such a manner that the cortical 
organization became similar to that before amputation of the hands. After six months, the 
transplanted hands were recognized and could be used quasi-normally. These examples 
show the important flexibility and plasticity at the level of the primary sensorimotor areas as 
a function of the afferent information and the task in which the subject is engaged. 

2.3 Functional activity of the primary sensory areas 

As mentioned before, the primary cortical areas have been long considered as a simple 
information transmission area between the outside world and the associative and cognitive 
areas. We now know that the activity of the primary areas is, on the one hand, not simply 
related to the input or output of information of the concerned modality, and, on the other 
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hand, a complex function of the sensory information and the cognitive context in which the 
activity is evoked. In this section, we will give several examples concerning the primary 
sensory areas to justify this hypothesis. We will then elaborate on the functioning of the 
primary motor area in section 2.4. 

2.3.1 Multimodality 

Several recent neurophysiologic studies have shown that the activity of the primary sensory 
areas can be influenced by the sensory information of another modality. This has long been 
established in blind or deaf subjects (e.g., Finney et al., 2001; Hunt et al., 2006; Théoret et al., 
2004), but it has also been identified in normal subjects. Non-invasive neuroimaging studies 
in human subject have shown a cross-modal modulation of evoked activity in primary 
sensory areas. For example, when both the face and voice of a speaking person were 
presented, the BOLD level in A1 and V1 was increased compared to when only the face or 
only the voice was presented (Calvert et al., 1999; Clavagnier et al., 2004). Interestingly, lip 
reading (with no sound) evokes an increase of BOLD level in the auditory cortex (Calvert et 
al., 1997). Also, a vibrotactile stimulation of the fingers evokes a response in the auditory 
cortex (Caetano & Jousmäki, 2006), and tactile exploration without visual information 
increases the BOLD level in V1 (Merabet et al., 2007). 
Unitary recording in monkeys has shown that the eye position in the head influences the 
activity of neurons in A1 (Fu et al., 2004). Not only is the sound-response of these neurons 
affected but also their spontaneous activity (Werner-Reiss et al., 2003). Broche and 
colleagues (2005) recently found neurons in A1 of the monkey whose activity was related to 
non-auditory but relevant-to-the-task events. The monkeys performed a difficult auditory 
categorization task: After the appearance of a light, the monkey had to initiate a sound 
sequence by pushing a lever, and subsequently release the lever only when the frequency 
envelop of the sound sequence was diminishing. The authors found neurons whose activity 
was synchronized either with the appearance of the light, or with the start or end of lever 
pushing. This activity in A1 did not exist when the same monkeys performed a visual 
discrimination task.  
All these results suggest the existence of corticocortical projections binding cortical areas of 
different modalities. Indeed, direct projections from the auditory cortex on V1 have been 
identified (Falchier et al., 2002), as well as bidirectional projections between S1 and A1 
(Budinger et al., 2006) and between the visual cortex and S1 (Cappe & Barone, 2005). This 
shows that part of the activity of the primary sensory areas can be due to information 
coming from other modalities. In other words, the primary sensory areas cannot be 
considered as isolated centres for unimodal information processing. 

2.3.2 Influence of the cognitive context 

First of all, S1 can be active before the arrival of the sensory information. For example, when 
one is anticipating being tickled, S1 is already active before the real tickling starts in a 
similar way to when the tickling is actually happening (Carlsson et al., 2000). Moreover, the 
level of S1 activity during the anticipation of a painful stimulus seems to be correlated to the 
level of temporal predictability of the stimulus, i.e., the activity is higher when one knows 
exactly the moment of arrival of the stimulus (Carlsson et al., 2006). In a similar way, we 
recently showed an increase in BOLD level in S1 during the anticipation of a motor 
perturbation to which the subject had to react, i.e., well before the arrival of the 
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proprioceptive information evoked by the perturbation (De Graaf et al., 2009). These 
examples clearly show that the activity of S1 is not only found following a somatosensory 
stimulus but that is can precede it. Maybe even more surprising, the simple observation of 
another person being touched evokes an activity in S1 of the observer which has a 
somatotopy corresponding to the part of the body of the person who is being touched 
(among others, Blakemore et al., 2005). In this case, there is no corresponding somatosensory 
stimulus of the observer’s own body at all. 
Secondly, the activity in the primary sensory areas appears to depend in an important way 
on the cognitive context in which the activity is evoked. This is already clear from the above-
mentioned study from Broche and colleagues (2005) showing that as a function of the task 
the activity can be multimodal, but there are other examples. For instance, Molchan and 
colleagues (1994) presented pairs of sounds and air puffs in the right eye (evoking an eye 
blink) and measured the metabolic cerebral response by PET. After the initial learning 
process, they found not only that the sound alone evoked an eye blink, but also that the 
same sound evoked a higher activity an A1 compared to the activity level before learning. 
This implies that the activity of A1 depends on the “associative value” of the sound. 
Another example is the long established fact that electrophysiological responses depend on 
the level of the attention we give to a signal (Hillyard et al., 1973). More recently, it has been 
shown that this attention level dependant activity can be localized in the primary areas. 
Indeed, Woldorff and colleagues (1993), in an auditory dichotic listening task, found 
increased short-latency neuromagnetic responses (20-50 ms) for the sound presented in the 
attended ear. Localization techniques placed the neural generator of these short-latency 
responses in A1. This suggests that auditory attention can selectively modulate early 
sensory processes, i.e., before or at the onset of the cortical processing. Another example is 
the observation that the somatotopic organization of S1 is modulated as a function of the 
cognitive context of the task in which the subject is engaged. Schaefer and colleagues (2005) 
analysed the functional organization of S1 of subjects performing a “Tower of Hanoi” task, 
and compared this to the organization of S1 in the same subjects performing the same 
movements but without the cognitive demands of the puzzle. The results clearly showed 
that the representation of the fingers implied a larger neural population in S1 during the 
Tower of Hanoi task than during the control task, although the executed movements (and 
thus the somatosensory information) were the same. This does not only confirm the 
flexibility in real time of S1, but also, and more importantly, shows that the functional 
organisation of S1 depends on the cognitive context. 
In two reviews concerning unitary recording in A1, Weinberger (2007a, b) has shown how 
neuronal activity in A1 of animals depends on the behavioural context. The optimal 
frequency of the receptive field of different cells was determined in several Guinea pigs. The 
animals were then presented with 30-45 sound/shock pairs, the sound having a frequency 
different from the optimal frequency. After the experimental session, the optimal frequency 
of the cells was found to be modified, approaching the frequency of the sound used in the 
experimental session, whereas the response to the prior optimal frequency was reduced. 
This modification of the response in A1 develops very fast (detectable after only 5 trials, like 
cardiac and behavioural responses). It was also found to be stable in time after 8 weeks, 
even without further training (Weinberger 2004). It is worth noting that these characteristics 
are one of the most important features of the associative memory. This implies that not only 
the frequency response in A1 depends on the environmental context of the animal, but also 
a neurophysiologic trace of memory might exist in a primary sensory area. 
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The neuronal activity of V1 also depends on the context. It has been shown that the spatial 
and temporal contexts of the visual stimulus can influence cellular responses to the 
stimulus. For instance, when a stimulus with an optimal orientation for a given cell is 
presented at the same time as other stimuli with orthogonal orientations, the cell response 
increases, whereas when the same optimal stimulus is presented at the same time as other 
stimuli with the same orientation, the cell response decreases (Gilbert and Wiesel, 1990). 
Also, when monkeys are trained in visual discrimination tasks with the same stimuli at the 
same position in the visual field, the neuronal response characteristics depend on the task 
(Li et al., 2004). Another example is the fact that the evoked activity of neurons in V1 
significantly depends on the location to which the spatial attention is directed without 
changing the gaze direction: When the attention is directed to the location of the receptive 
field, the cellular response increases (Motter, 1993).  
All these examples strongly suggest that the primary sensory cortical areas do more than 
simply transmit peripheral sensory information. The neuronal activity depends strongly on 
the environmental context (i.e., other sensory information) as well as the cognitive context 
(i.e., the task in which the subject is engaged), in other words, on the value that we give to a 
stimulus at a given moment. A too restricted vision of the functioning of the primary 
sensory areas would lead to a loss of important information and would impede a full 
understanding of the functioning of these areas. 

2.4 Functional activity of the primary motor area 

At the cortical level, voluntary motor control is well-known to involve several areas: M1, 
and three non-primary motor areas (the pre-motor cortex, the supplementary motor area 
and the cingular motor cortex) (e.g., Rouiller, 1996). Concerning the functional role of area 
M1 within this network, the most classical view suggests that the primary motor cortex is 
the final output of a complex network in which the most cognitive aspects of movement 
control (e.g. action preparation and/or planning) are processed upstream within the non-
primary motor areas. This model supports a hierarchical organization of the cortical control 
of movement. Alternatively, some recent physiological findings suggest that area M1 is itself 
involved in important movement-related cognitive functions (see Requin et al., 1991; 
Georgopoulos, 2000; Bonnard et al., 2004 for reviews), arguing in favor of a more distributed 
model. 

2.4.1 M1 activity without motor production 

M1 can be active during the preparation of an action, i.e., well before the motor production. 
Indeed, in several human EEG and fMRI studies it has been shown that M1 is active during 
the preparation phase of a voluntary movement, either just before the execution (Ball et al., 
1999; Cunnington et al., 2003; Toro et al., 1993; Wildgruber et al., 1997), or from the very 
beginning of the preparation phase in the case of sequential movements (see Zang et al., 
2003). In a different context, we recently reported an important activity in M1 during the 
whole duration of the preparation of a reaction to a motor perturbation (De Graaf et al., 
2009). Similarly, unitary recordings in monkeys have also shown active neurons in M1 
during the preparation without any accompanying muscular activity (see Riehle (2005) for a 
review). Moreover, Lu and Ashe (2005) found neurons in M1 with an anticipatory activity 
that was exclusively related to a specific movement sequence. These neurons showed an 
interaction between the temporal order of the movement and the associated direction, i.e., 
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their sensitivity to movement direction depended on the movement sequence to prepare. 
This suggests that M1 activity is not limited to “simply” coding the next movement 
direction (Bremmer, 2005).  
In these examples, although the activity of M1 is observed before the movement, it still 
involved preparation of a real movement. Recently, it has been shown that M1 is also 
active during motor imagery which is not followed by an action. Indeed, when imagining 
performing a movement, the blood flow in M1 increases, even without any muscular 
activity (Porro et al., 1996; Roth et al., 1996; see Grèzes and Decety, 2000, for a review). 
Moreover, through TMS, it has been shown that the corticospinal excitability (reflected by 
the amplitude of the motor evoked potentials recorded for the muscles that would be 
implicated in overt movement execution), depends on the content of the motor image 
(Yahagi and Kasai, 1998). The temporal dynamics of the corticospinal excitability during 
imagery is similar to that found during overt movement execution (Hashimoto and 
Rothwell, 1999). Another example is the implication of M1 during the observation of 
another person’s movements (e.g., Fadiga et al., 1995; 2005; Raos et al., 2004). A 
Bereitshafts potential has even been found while observing predictable movements 
(Kilner et al., 2004). Also, a movement illusion, evoked by muscular vibration (without 
any associated movement), evokes an activity in M1 (Casini et al., 2006). Morover, the 
increase of the BOLD level in M1 during the illusion is correlated with the force of the 
illusion (Romaiguère et al., 2003). Longcamp and colleagues (2006) found M1 to be 
implicated in passive reading of hand written texts. Very interestingly, Hauk and 
colleagues (2004) published a study concerning the passive reading of words that 
represented actions of the tongue, the arm or the leg (for example “lick”, “pick”, kick”). 
Although no muscular activity could be found, the BOLD level in M1 was increased 
following the somatotopic organization of this area. In other words, they found an activity 
in the arm area of M1 for words concerning actions of the arm, in the tongue area for 
tongue words, etc.  All of these examples clearly show that M1 is active in circumstances 
where, although there is some sort of “motricity”, it is not necessary to have an actual 
motor output: The simple reading of verbs representing an action can evoke an activity in 
that area that is classically accepted as the area of motor production. 

2.4.2 Influence of the context on M1 activity 

Several results in the literature show that, for a given motor output, the activity of M1 can 
strongly depend on the context. One example is the result of our fMRI study on the 
awareness of muscular force (De Graaf et al., 2004). In a reference condition, subjects made 
rhythmical hand movements and they were informed that, in a subsequent condition in 
which the resistance to the movement would be increased, they had to either reproduce 
their initial muscular forces or reproduce the movement kinematics (Fig. 1B). To vary the 
external force, the subject had a manipulandum attached to the right forearm and hand over 
the wrist joint (Fig. 1A). This manipulandum was an fMRI-compatible mechanically jointed 
arm, only allowing flexion and extension movements at the wrist. A laterally attached lever 
allowed the internal friction of the manipulandum to be varied. The lever had two possible 
positions: High and low internal friction. During the experiment, the subjects easily changed 
the lever position themselves in response to an instruction given on a screen. A 
potentiometer was fixed on the rotation axis of the manipulandum to record the subjects’ 
wrist movements.  
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Fig. 1. Manipulandum used to measure the rhythmical wrist extension/flexion, as well as to 
vary the resistance to the movement (A). Schematical representation of the protocol (B). 
Note that during the reference conditions (Ref_Force and Ref_Mov), the actual motor output 
was the same. 

The contrast in M1 activity between the condition during which the subjects had to pay 
attention to their muscular forces (Ref_Force) and the condition during which they had to 
pay attention to their kinematics (Ref_Mov) (conditions in which the actual motor output 
was equivalent!) suggests that obtaining awareness of muscular forces exerted during 
movement execution makes much higher demands on many brain structures, in particular 
the primary sensorimotor areas (Fig. 2). Interestingly, for the contrast between Same_Force 
and Same_Mov, conditions for which the actual muscle forces were very different, we did 
not find any difference in BOLD level. This clearly suggests, on the one hand, that for a 
similar motor output the BOLD level of M1 can vary with the specific attention the subject 
gives to the task, and, on the other hand, that different levels of force production do not 
necessarily imply different levels of BOLD activity in the primary sensorimotor areas. In a 
subsequent study (Bonnard et al., 2007), we showed an increase in BOLD level as well as 
corticospinal excitability of M1 when subjects were required to produce forces with higher 
precision, although the actual force level was the same. So, as a function of the attention the 
subject gives to certain aspects of the task, the global level of activity of M1 can vary for the 
same motor output.  
At a unitary neuronal level, Hepp-Reymond and colleagues (1999) gave a very powerful 
demonstration of the dependence of the coding of the force production on the context. 
Several monkeys were trained to finely control their force production with a precision grip 
in a visuomotor force pursuit task: The monkeys had to follow a rectangle presented on a 
screen with a cursor by exerting pressure on a force transducer held between their thumb 
and index. They were presented with either two or three different force levels in a trial. 
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Importantly, the monkeys knew in advance which trial type was going to be presented by 
means of a colour coding of the rectangle. The discharge frequency of M1 neurones for a 
given force level appeared to vary with the total force the monkeys had to produce during 
the trial, i.e., the discharge frequency was lower for the second force level when the 
monkeys also had to produce the third force level during the trial than when the second 
force level was the maximum force level of the trial. This clearly shows that the coding of 
force in M1 neuronal population depends on the context of the task, in this case the total 
force range. Moreover, this adaptation to context is achieved in real time (here, trial per 
trial), suggesting an important flexibility at the level of functioning of the neuronal network 
within M1.  
 

T = 4.90

T = 6.27

T = 4.90

T = 6.27

 
Fig. 2. Result of the t-contrast Ref_Force– Ref_Mov. Height threshold of significance: 
corrected P<0.01 (T = 4.90). Voxel extent threshold: 20 voxels. The voxels, all seen in the 
glass brain representation, are superimposed on the spm single subject canonical brain on 
the anatomical slices passing through Talairach coordinates [-2 -13 47]. 

All of the above-mentioned results concerning the neuronal activity of M1 clearly show that 
M1 is not a simple transmission relay between the non-primary motor areas (that anticipate, 
prepare) and the spinal cord, but rather a real crossroad playing an important role in 
cognitive motor integration. Indeed, M1 is implicated in tasks without any motor output. 
Moreover, the functioning of M1 depends on the cognitive context in which a motor output 
will be or is produced: Its functioning is modulated in real time. 

3. Secondary cortical areas 

It is important to remember that M1 is not the only origin of the corticospinal tract. In 
monkeys, the topographical distribution of these projections has been studied by isolating 
the corticospinal neurons projecting on the spinal cord between the cervical and thoracic 
level (C5-T1), using an injection of a retrograde marker in the region of the motoneurons in 
the spinal cord (Dum and Strick, 1991; Maier et al., 2002). Is has been shown that half of the 
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fibers of the pyramidal tract find their origin in M1, the other half comes from non primary 
motor areas, i.e., SMA proper (12-19%), premotor area (21%), and cingular motor area (17-
21%). Also, a large number of unitary recording studies in cortical neurons in awake 
monkeys have shown that neurons presenting particular parametric relations with different 
phases of movement execution can be found in all structures of the cortical motor network, 
i.e., in M1, premotor cortex and the supplementary motor cortex (for reviews see Porter and 
Lemon, 1993; Requin et al., 1991; Georgopoulos, 2000). This strongly suggests that these non 
primary cortical regions can also send motor commands directly to motoneurons. We have 
already seen that M1 is not uniquely a “motor execution area”, and now we can add that 
premotor areas, classically regarded as “preparation centres”, can also have executive 
functions. 
In a similar way, direct projections from the thalamus to non-primary visual areas have been 
found. For example, there exists a direct projection from the lateral geniculate nucleus onto 
MT (V5) without passing by V1. These projections represent about 10% of those coming 
from V1 (Sincich et al., 2004). Also, direct thalamo-cortical projections on secondary auditory 
areas (Barth et al., 1995; Di and Barth, 1992) and on secondary somatosensory areas (Hiraga 
et al., 2005; Stevens et al., 1993) have been identified.  
Since the topic of this chapter is the primary cortical areas, we will not elaborate on the 
possible function of these direct projections onto and from secondary cortical areas. 
However, it was important to mention this since the existence of these direct projections 
confirms that the segmental and hierarchic vision of brain functioning is no longer 
defendable. Indeed, the primary cortical areas are an integral part of a cortical network 
underlying cognitive integration, and, whatsmore, the secondary motor areas have 
executive functions. 

4. A clinical implication 

An important implication of this conception of cerebral functioning is that the whole cortex 
should be considered when studying, for instance, the consequences of cortical plasticity 
following central or peripheral lesions. In this last section of the chapter, we will use as 
example the amputation of the hand and/or forearm. 
As already mentioned in section 2.2, after amputation of the hand or forearm, the territories 
of the representation of the lost body part in S1 seem rapidly occupied by afferent 
information from adjacent body parts (e.g., Florence & Kaas, 1995; Gagné et al., 2011; 
Vandermeeren et al., 2003). The same reorganization is known to hold for M1, i.e., neurons 
originally sending motor commands to hand muscles pre-amputation send them to stump 
muscles post-amputation. Indeed, TMS on this reorganized part of M1 evoked MEPs in the 
stump muscles (Mercier et al., 2006).  
This reorganization, however, is very complex and appears to be incomplete. Indeed, after 
amputation, patients very often report a vivid perception of presence of their lost limb. This 
“phantom limb” can be the object of mechanical, thermal and even painful sensations 
(Kooijman et al., 2000). Even more surprisingly is that the phantom limb can often be 
“moved” at will (Kooijman et al., 2000; Reilly et al., 2006). Although these voluntary 
phantom movements are slow and more effortful than movements of the intact limb, the 
patients feel these movements to be “executed” corresponding to their will (e.g., Reilly et al., 
2006), and they are able to imitate with their intact arm the movements they execute with 
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their phantom limb. Some results in the literature suggest that the sending of motor 
commands is necessary in order to “perform” voluntary phantom limb movements. These 
motor commands, as they cannot arrive on the muscles of the lost limb, arrive on the 
muscles of the stump instead. Indeed, during voluntary phantom limb movements, the 
EMG pattern found on the stump muscles correspond to neither the EMG patterns for real 
movements of the stump, nor to the EMG patterns found on the corresponding muscles of 
the intact arm during imitation of the phantom limb movements (Reilly et al., 2006; Gagné et 
al., 2009). This strongly suggests that specific motor commands are sent from M1 when 
“executing” a specific phantom limb movement. Moreover, when the hand area of M1 in an 
amputated patient is stimulated with TMS, a phantom limb movement is evoked (Mercier et 
al., 2006). So, there exists a reorganization of the primary somatosensory and motor areas, 
leading to new relations between body parts and neuronal populations, where motor 
commands to the missing limb can still be sent.  
There seems to exist a relation between the degree of cortical reorganization and the degree 
of phantom limb pain. Lotze and colleagues (2001), in a fMRI study, reported that patients 
without phantom limb pain showed significantly less reorganization of the primary 
sensorimotor areas than patients with phantom limb pain. This raises the question whether 
cortical reorganization should be avoided, and, if so, how.  
Currently, it is not known what exactly underlies the appearance of phantom limb 
sensations such as movements or pain, but it seems likely that it is, at least partly, related to 
the complex cortical reorganization following amputation. The search for answers to 
questions such as “What causes phantom limb pain and how can we avoid it?”, “Why are 
phantom limb movements slow and effortful?”, and “Can we use phantom limb movements 
to increase control of prostheses?”, must take into account that the primary cortical areas are 
an integral part of a cortical network underlying cognitive (motor) functioning, and the 
secondary motor areas can have an executive function. With respect to this latter point, a 
possible reorganization of the secondary motor areas following amputation has not yet been 
investigated. 
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