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1. Introduction 

Recent developments in robotics have raised the interest in mobile robots due to their wide 
range of applications requiring high level of autonomy of individual mobile agents. This 
increased level of autonomy needs more sophisticated path-planning and motion control 
methods, which have been studied extensively in the recent years [10].  
This paper focuses on a typical industrial application in which several mobile robots share 
the same workspace. These units may carry materials or be capable of carrying out various 
repair jobs at some locations, etc. Due to the tight schedules to achieve high productivity in 
such applications, it is imperative to synchronize the motion of the units so that they arrive 
at the required location on time without collision with obstacles or with other units. 
Coordinated planning of such multi-robot systems is addressed in the literature based on 
some search methodology [7] or using neural network based techniques [8]. 
Since a high number of units can be involved, it may not be possible to design collision free 
trajectories for all robots, i.e. avoiding each other and all static obstacles cannot be 
guaranteed only by the path geometry. Instead of constructing trajectories with complex 
geometries so that they have only a few or no intersections at all, one can design simple 
paths which disregard moving obstacles (i.e. other robots) and take only the static obstacles 
into account, so the path geometries are supposed to be fixed for each robot. Such motion 
planning algorithms are readily available in the literature [1,3,4] for simple polygonal 
obstacle representations. This initial path geometry designed and assigned to each unit 
ensures the avoidance of static obstacles.  
The avoidance of the moving obstacles can be achieved by choosing a suitable velocity 
profile along the fixed-geometry trajectories. In order to obtain the proper velocity input, we 
assign first a default velocity profile which the unit would use without the dynamic 
obstacles. Such a profile can be designed to be optimal in some sense (minimal time or cost) 
and may satisfy additional constraints, if necessary [2]. The default velocity profile consists 
of intervals with constant or zero acceleration. Acceleration parameters change at the 
boundaries of these intervals. This default velocity profile is then modified such that a unit 
decelerates or accelerates its motion to let other units pass through potential collision areas 
(identified from the path geometries). 
We suppose that a priority level is assigned to each robot so that a unit with a given priority 
regards all units with higher priority level as dynamic obstacles. The ranking of the units is 
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arbitrary, e.g. faster units may receive higher priority in order not to slow them down. Other 
considerations can be also incorporated in the choice of priority order. The velocity 
distributions of the robots are thus determined in a serial way according to the priority 
ordering of the robots. Recall that one may get a globally better solution in terms of the 
overall time used to complete all trajectories if the priority order of the robots is relaxed but 
such a relaxation would imply the need of a high level search algorithm. The study of such a 
high level search algorithm is beyond the scope of this paper. 
The velocity tuning method presented in this paper for an individual robot is based on time-
scaling. The default time-scale determined by the default velocity profile is parameterized 
by a virtual time parameter which has to be then mapped to the real or global time such that 
no collision occurs. The mapping between the virtual and global time parameters is referred 
to as the time-scaling in the sequel. The time-plane is the space spanned by the virtual and 
global time parameters. 
If a collision is possible between two units according to the path geometries (so that they 
intersect each other), the collision to be avoided can be converted into a so called static time-
obstacle in the time-plane [5,6]. A mapping avoiding the static time-obstacles shall be used 
to define the time-scaling of the path of the current unit. Once the path is expressed by the 
global time parameter, this procedure can be repeated for all units down to the one with the 
lowest priority.  
The remaining part of the paper is organized as follows. Section 2 presents an overview on 
time-scaling, Section 3 presents our path-planning method in the time-plane, 
Implementation results are presented in Section 4 and Conclusions are drawn in Section 5. 

2. An overview on time-scaling 

In this section some mathematical background is given for the time-scaling. The default 
velocity that is assigned to a robot and so the time distribution of its path is expressed using 
a virtual time parameter . We denote this reference path by ( ) and define the default 

velocity as  

 ( ) ( )
d

v
d

 

   (1) 

The time distribution of the reference trajectory is constructed regardless to any moving 
obstacles. Motion of dynamic obstacles (i.e. other robots) is expressed with the global time 
parameter t , thus if ( )dynO t  represents the trajectory of a dynamic obstacle and 

 ( ) ( )dynO t   (2) 

then the current unit collides with the dynamic obstacle. To avoid this collision we must 
find a function ( )t   that alters the time distribution of the reference path such that 

 ( ( )) ( )dynt O t   (3) 

The function ( )t  maps the virtual time values to global or real time. A mapping that 
ensures avoidance of all dynamic obstacles will be the time-scaling function. Such a time-
scaling function may be constructed from several functions over different time intervals. 
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Methods for finding an adequate time-scaling function in our application will be presented 
in the next section. Based on the real time and virtual time parameters, we can define the 
t  time-plane. If a collision is possible between two units according to the path 
geometries, the collision to be avoided can be converted into a time-obstacle timeO   which 
appears as a static obstacle in the time-plane. A time-obstacle is assigned to a collision area 
in the workspace and it is the set of those virtual and real time pairs where any parts of the 
unit and the moving obstacle are located at the same place within the collision area 
corresponding to the time-scaled units default velocity. In most of the cases they will appear 
as rectangular shaped time-obstacles; in special cases, however, they might be enclosed by 
nonlinear curves.  
Avoiding dynamic obstacles in the workspace is analogous to avoiding the corresponding 
time-obstacles on the time-plane. Based on this analogy, the time-scaling function is the path 
on the time-plane that avoids all time-obstacles. After constructing this path, the scaled 
reference path can be generated. Since ( )t   we have 

 
( )

( )
d d d

dt d dt

 



   (4) 

which, using (1), yields to  

 ( ) ( ) ( )
d

v t
dt

      (5) 

The velocity according to the scaled reference path can be generated by multiplying the 
original speed by the derivative of the time-scaling function w.r.t. the real time 

 ( ) ( ( )) ( )v t v t t    (6) 

where ( )v t  is the scaled velocity. 

2.1 Criteria for the time-scaling function 

A proper time-scaling function must not only avoid the time-obstacles, but must also satisfy 
criteria according to the kinematic constraints prescribed for the control (velocity) inputs. A 
collision-free course requires a time-scaling function not mapping any time value into a 
time-obstacle, which means that  , ( ) timet t O   must be satisfied for all time values and all 
time-obstacles. 
Since time cannot rewind and we allow the robot to stop only at its final position, the scaling 
function ( )t must be strictly monotonically increasing. It might also be required that the 
robot’s velocity does not decrease under a specified minimal value except at the start and 
goal positions, where the velocity is assigned to be zero. We assume that the default velocity 
is the maximal possible speed along the trajectory and its values cannot be exceeded at any 
time. This implies that the scaled velocity must not be greater at any real time instance than 
the velocity at the corresponding virtual time instance. It is also assumed that the 
acceleration and the deceleration are also bounded both in negative and positive directions. 
The acceleration (deceleration) limit is considered to be independent of time. These 
aforementioned constraints define the inequalities 
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 min ( ) ( )v v t v     (7) 

which, together with (6), results in 

 min ( ) ( ) ( )v v t v     (8) 

for the scaled velocity where minv  is the specified minimum speed value. After dividing 
with ( )v   it follows that 

 min ( ) 1
( )

v
t

v



   (9) 

which defines a global upper bound for the time-scaling function meaning that the t   
curve in the time-plane must not be intersected. The lower bound will be the solution of the 
differential equation 

 min( )
( )

v
t

v



  (10) 

The constraint on the acceleration reads 

 min max( )
d

a v t a
dt

   (11) 

where maxa  and mina are the admissible maximal positive and negative acceleration values. 
Since 

 
22

2( ) ( ) ( )
d d d

v t v a
dt dtdt

       
 

  (12) 

one gets 

 2
min max( ) ( )a v a a        (13) 

The solutions for the maximal values will result in two curves which will be used by the 
path planning algorithms in the time-plane.  

2.2 Construction of the time-obstacles 

A time-obstacle is always assigned to a collision area around the intersection of two 
geometric paths. Each collision area along the path of one unit generates a time-obstacle. 
The time-obstacle assigned to a collision area is the set of those virtual-time and real-time 
pairs where any parts of two units are located at the same place. We have to take into 
account the real physical dimensions of the units, which means that the entering time to a 
collision area is when the front of the unit arrives at the boundary of the collision area, and 
the exit time is when its rear point leaves it. If the time-scaled unit cannot enter the area until 
the higher priority unit has passed through, the time-obstacle will be rectangle shaped with 
vertexes ( , )enter entert  , ( , )enter exitt  , ( , )exit exitt  , ( , )exit entert  where enter and exit  are the time 
values of entering and exiting the collision area of the time-scaled unit, while entert and exitt  
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Fig. 1. Colliding units in the workspace (on the left) and the time-obstacle of the colliding 
units (on the right) 

 

 
Fig. 2. Colliding units in a corridor (in the workspace) 
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are the similar values for the given dynamic obstacle. Fig. 1 shows a collision situation in the 
workspace and on the time plane. 
In some special cases the path geometries may have common sections (e.g. the units follow 
each other in a narrow corridor). In such cases, when the motion directions of the colliding 
units are identical, one has to examine the time-values when certain parts of the collision 
area are free for the scaled unit. In this case the time-obstacle is enclosed by nonlinear 
curves. Fig. 2 shows an example of two robots proceeding along the same way in a narrow 
corridor and Fig. 3 shows the time-obstacle representation of the collision area. 
Suppose that we have accelerating units in the corridor. Equation (14) defines the area 
which is occupied by both units at the same time instance: 

 
2 21 1

( ) ( ) ( ) ( ) ( ) ( )
2 2unit enter unit enter enter obs enter obs enter dyn entera v a t t v t t O t              (14) 

where ( ) ( )enter dyn enterO t  . From (14) one can derive the equations of the curves that 
enclose the time-obstacles in case of accelerating motions (narrow corridor case). 

 
2 2

2 1 1
1

( ) 2 ( ) ( )unit
unit obs unit obs unit

unit unit

v
t v v a t t a a t t

a a
         (15a) 

 
2 2

1 2 2
1

( ) 2 ( ) ( )unit
unit obs unit obs unit

unit unit

v
t v v a t t a a t t

a a
         (15b) 

In (15a) the fronts of the units arrive at the border of the corridor at 1  and 1t  , respectively, 
while their rear sides arrive to the same location at 2  and 2t . 
In the simpler case, when the time-scaled unit moves with constant speed, Equation (16) 
defines the points of the time-obstacle which is enclosed by the curves defined by Equations 
(17a) and (17b). 

 
21

( ) ( ) ( ) ( ) ( )
2unit enter enter obs enter obs enter dyn enterv a t t v t t O t           (16) 

 
2

1 2 2
1

( ) ( ) ( )
2

obs obs

unit unit

v a
t t t t t

v v
       (17a) 

 2
2 1 1

1
( ) ( ) ( )

2
obs obs

unit unit

v a
t t t t t

v v
       (17b) 

In (15a), (15b), (17a) and (17b) the fronts of the units arrive at the border of the corridor at 1  
and 1t  , respectively, while their rear sides arrive at the same location at 2  and 2t . 
Similarly at 3  and 3t  the front of the units arrive at the exit of the corridor, respectively, 
while their rear sides arrive at the same location at 4  and 4t . A nonlinear time-obstacle has 
thus six vertices (see Fig. 3).  
In the sequel we focus mainly on rectangle shaped time-obstacles but the results can be 
extended for obstacles presented in Fig. 3. 
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Fig. 3. Nonlinear time-obstacle 

3. Path-planning in the time-plane 

In this section the method of trajectory-planning in the time-plane will be presented, 
involving the solution of differential equations derived from the kinematic constraints 
prescribed for the robots motion, connecting dedicated points on the time-plane and 
avoiding time-obstacles.  
Let us emphasize again that the default velocity profile consists of intervals with constant or 
zero accelerations. Acceleration parameters change at the boundaries of these intervals. We 
denote these points by i  where i  refers to the index of the time instance where the 
acceleration change occurs. At a certain time  where its value is assumed to be 

 1i i      (18) 

the expression of the default velocity is   

 ( ) ( )i i iv a v      (19) 

where 

 ( )i ia a  ,        ( )i iv v   (20) 

are the acceleration and velocity parameters at the border point i . Fig. 4 shows an example 
for such a velocity function. 
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Fig. 4. Default velocity profile 

3.1 Solving the differential equations 
Regarding the admissible values of the accelerations specified by (13) and (19) the following 
equations can be obtained for the motion of the time-scaled unit: 

 2
maxi i ia a v a        (21) 

 2
mini i ia a v a        (22) 

 2 0i i ia a v         (23) 

which means that solutions of (21) and (22) result maximal and minimal accelerations in the 
scaled velocity, while the solution of (23) results zero acceleration. The solutions of (21) and 
(22) span an area on the time-plane. From a certain starting point on the time-plane only the 
points within this area can be reached. Let us denote such a starting point with ( , )s s sT t   
and assume that the value of the default velocity at the corresponding instant is ( )s sv v  , 
while its scaled value at the corresponding st time instance is ( )s s sv t v . The ( )t   
function that satisfies (21) is denoted by max( )a

a t  in case of non-zero acceleration or 

max( )v
a t  in case of zero acceleration. The subscript refers to the effect of the function on the 

velocity, which is maxa  in this case.  

The exact formula for max( )a
a t  reads 

 2 2
max max

1
( ) 2 ( ) ( )a s

a s s i s s s i s
i i

v
t v a v t t a a t t

a a
          (24) 
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and its derivative is 

 max
max 2 2

max

( )
( )

2 ( ) ( )

a s s s
a

s i s s s i s

v a t t
t

v a v t t a a t t






 


   
  (25) 

while its inverse is 

 1 2 2 2 2 2
max max

max max

1
( ) ( ( ) )a s s

a s i s s i s
i

v
t a v a a v v

a a a


           (26) 

Applying the function max( )a
a t  to the default velocity ( )v  , the resulting scaled velocity 

will be max max( ) ( ) ( ( ))a a
a av t t v t    that has a simple form 

 max( ) ( ) ( )s s sv t a t t v     (27) 

These expressions are valid for those time values where 1
max 1( , ( ))a

s a it t  
 , i.e. it is only 

valid over the interval for which the equations were solved. In order to span the solution for 
several intervals, the initial conditions s  and s  must be updated. When reaching any of 
the border points, the following changes have to be made regarding the parameters: 

1s i   , 1
max 1( )a

s a it  
 and max 1( )a

s a i      in the formula of max( )a
a t . The formula of 

max( )v
a t  reads  

 2max
max

1
( ) ( ) ( )

2
v

a s s s s
i

a
t t t t t

v
         (28) 

its derivative is 

 max
max( ) ( )v

a s s
i

a
t t t

v
     (29) 

while its inverse is 

 
1 2 max
max

max max

( ) 2 ( )v s i i
a s s s

i

v v a
t

a a v

           (30) 

The function max( )v
a t  results the same scaled velocity as max( )a

a t  does, so 

  max max max( ) ( ) ( ( )) ( ) ( )v v
a a s s sv t t v t a t t v        (31) 

Similarly these are valid for the time values where 1
max 1( , ( ))v

s a it t  
 . The solutions of (22) 

which result maximal negative acceleration, are min( )a
a t and min( )v

a t . Expressions of these 
functions, the derivatives and the inverses read 

 
2 2

min min
1

( ) 2 ( ) ( )a s
a s s i s s s i s

i i

v
t v a v t t a a t t

a a
          (32) 
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 min
min 2 2

max

( )
( )

2 ( ) ( )

a s s
a

s i s s s i s

v a t t
t

v a v t t a a t t




 


   
  (33) 

 1 2 2 2 2 2
min min

min min

1
( ) ( ( ) )a s s

a s i s s i s
i

v
t a v a a v v

a a a

          (34) 

where 1
min 1( , ( ))a

s a it t  
  and 

 2min
min

1
( ) ( ) ( )

2
v

a s s s s
i

a
t t t t t

v
        (35) 

 min
min( ) ( )v

a s s
i

a
t t t

v
     (36) 

 1 2 min
min

min min

( ) 2 ( )v s i i
a s s s

i

v v a
t

a a v


           (37) 

where 1
min 1( , ( ))v

s a it t  
 . Both min( )a

a t and min( )v
a t  result the scaled velocity function 

 min( ) ( ) ( )s s sv t a t t v     (38) 

The solutions of (23) are ( )a
v t  and ( )v

v t , which can be used to keep the velocity constant 
once a desired value is reached. It can be any velocity within the robots’ reach, but these 
functions are used for not letting the velocity decrease under a certain minimal value. The 
expressions of the functions, their derivatives and their inverses are as follows: 

 
21

( ) 2 ( )a s
v s s i s s s

i i

v
t v a v t t

a a
        (39) 

 
2

( )
2 ( )

a s s
v

s i s s s

v
t

v a v t t







 
  (40) 

 
2 2

1 ( )
( )

2
a s

v s
i s s

v v
t

a v

 


 
   (41) 

where 1
1( , ( ))a

s v it t  
  . Similarly, 

 ( ) ( )v s
v s s

i

v
t t t

v
     (42) 

 ( )v s
v

i

v
t

v
   (43) 
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 1( ) ( )v i
v s s

s

v
t

v
        (44) 

where 1
1( , ( ))v

s v it t  
 . These solutions enforce the scaled velocity to be 

 ( ) sv t v  (45) 

Since the constraint ( ) 1t   must be respected (see (9)), it has to be checked whether the 
value of the derivative of an applied ( )t  function reaches the unity at a certain point. We 
denote this point by ( , )ch ch chT t   where the control has to be changed to constant time-
scaling and remain on the curve  

 ( ) ( )const ch cht m t t      (46) 

where in this case 1m  . Fig. 5 shows an example of applying different time scaling 
functions. 

 
Fig. 5. Finding the changing point 

To find the point chT the equation  

 
max( ) 1a

a cht   (47) 

or 

  max( ) 1v
a cht   (48) 
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should be solved, depending on the actual interval. Solving (47) results a quadratic equation 

 2 2 2
max max max( )( ) 2 ( )( ) ( 1) 0i ch s s s i ch s s sa a a t t v a a t t v           (49) 

The one satisfying 1
max 1( , ( ))a

ch s a it t  
 of the two roots of (49) should be selected, which 

results max( )a
ch a cht  . 

In case of (48), the solution for cht  is much simpler 

 
max

(1 ) i
ch s s

v
t t

a
    (50) 

and max( )v
ch a cht  . Note that the formulae (51) and (52) only give accurate value if  

1
max max 1( ( )) 1a a

a a i  
  . The corresponding condition for (50) is 1

max max 1( ( )) 1v v
a a i  

  , i.e. 
it has to be checked whether the value of the derivative at the next point determined by the 
function corresponding to the next border point is greater than one.  
For negative accelerations, we must guarantee that the scaled velocity does not drop below 

minv  . Therefore, the point ( , )ch ch chT t   where the time scaling is changed to ( )a
v t or 

( )v
v t  (with minsv v  in their formulae) can be determined easily: 

 min

min

( )s s
ch s

v v
t t

a

  
   (51) 

and min( )a
ch a cht   or min( )v

ch a cht   respectively. Fig. 6 shows an example of finding this 
point. 
 

 
Fig. 6. Finding the changing point 
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When moving from a given point ( , )s s sT t  to another point ( , )g g gT t   on the time-plane, 
it has to be checked first whether gT is within the area of reachable points from sT . In order 
to do so, the boundaries of the reachable area have to be determined. The upper boundary 
will be the union of curves resulting maximal acceleration and then maximal speed, and the 
lower boundary will be the union of ones resulting maximal deceleration and then minimal 
velocity. Let us denote the upper boundary that origins in sT and ends at gt  by 

[ ],Ts Tg MAX  and the lower boundary by [ ],Ts Tg MIN . gT is reachable from sT  if and only if 
the inequalities below are both satisfied 

 [ ], ( )g Ts Tg MAX gt   ,             [ ], ( )g Ts Tg MIN gt    (52) 

Fig. 7 shows the area enclosed by these boundaries. 
 

 
Fig. 7. The area of reachable points 

If (52) is satisfied, gT  is within the reach of sT  and a trajectory connecting these two points 
can be planned. The main idea of trajectory planning is to travel along the upper or the 
lower boundary depending on the initial conditions in sT  and then switch to a straight line 
i.e. constant time-scaling. The switching point ( , )sw sw swT t   can be determined by solving 
the equation 

 [ ], ( )g sw
Ts Tg MAX sw

g sw

t
t t

 



 


  (53) 
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or 

 [ ], ( )g sw
Ts Tg MIN sw

g sw

t
t t

 



 


  (54) 

depending on the selected boundary. In case of (53), the switching point can be on a 

max( )a
a t curve or on a max( )v

a t curve, so (53) transforms to 

   max( )g sw a
a sw

g sw

t
t t

 






  (55) 

or 

 max( )g sw v
a sw

g sw

t
t t

 






  (56) 

Solving (55) results in a quadratic equation, introducing the notation i s sa v   and 
( )g i g s sv a v     

 

 
 
 

2 2 2
max max

2 2 2
max

22 2 2

( ( )) ( )

2( ( ) )( ( ) ) 2 ( )

( ) 0

i g s g i sw s

i g s g s s g sw s

g s s g s

a a t t v a a t t

a a t t t t v v t t

t t v v v



  



    

       

    

 (57) 

Of the roots of (57) one has to select the solution that satisfies 1 1
max max 1( ( ), ( ))a a

sw a i a it     
 , 

after that max( )a
sw a swt  . Solving (56) also leads to a quadratic equation 

 2max max1
( ) ( ) ( ) ( ) 0

2 sw s g s sw s g s s g s
i i

a a
t t t t t t t t

v v
  

 
         

 
 (58) 

One has to select the solution that satisfies 1 1
max max 1( ( ), ( ))a a

sw a i a it     
 , after that 

max( )v
sw a swt  . 

Determining the switching point in case of travelling on the lower boundary the following 
equations should be solved 

 min( )g sw a
a sw

g sw

t
t t

 






  (59) 

 min( )g sw v
a sw

g sw

t
t t

 






  (60) 

 ( )g sw a
v sw

g sw

t
t t

 






    with          minsv v  (61) 
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depending on the possible location of the switching point. The solution of (59) and (60) are 
similar to (55) and (56) except that at the expressions maxa  is replaced by mina . Solving (61) 

leads to a quadratic equation 

    22 2 2 2 2 2 2 2( ) 2 ( ) 2 ( ) ( ) ( ) 0sw s g s s g sw s g s s g st t t t v v t t t t v v v               (62) 

One has to select the solution that satisfies 1 1
1( ( ), ( ))a a

sw v i v it     
 , after that ( )a

sw v swt  . 
After determining the switching point swT  the following equation can be used to travel 

along a straight line until reaching gT :  

  ( ) ( )g sw
const sw sw

g sw

t t t
t t

 
 


  


 (63) 

Here ( , )sw gt t t . Fig. 8 shows an example of finding such a switching point. 

0gT  can be reached directly from sT  . It is possible to reach 1gT  by travelling along the 
upper boundary and then switching to a straight line at 1swT  . Similarly, 2gT  can be reached 
by travelling along the lower boundary and then switching to a straight line at 2swT . 
 

 
Fig. 8. Travelling on a border than switching to a straight line  

Note that constant time-scaling with the general formula 
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 ( ) ( )const s st m t t     (64) 

results the scaled velocity function 

 2( ) ( )i s sv t m a t t mv    (65) 

Denoting the curve that origins in sT and ends in swT by [ ]Ts Tsw  and the one that origins in 

swT and ends in gT by [ ]Tsw Tg  , the path from sT to gT  is  

 [ ] [ ] [ ]Ts Tg Ts Tsw Tsw Tg       (66) 

One should follow the following steps when constructing this path: 
1. From a dedicated starting point construct the boundaries of the area of the 

reachable points. Update initial conditions at the border points and apply the 
appropriate type of curve for every interval between the starting point and the one 
desired to reach. When reaching a point where the scaled velocity would overrun 
the limits change to constant time-scaling or to the solution that results minimal 
speed, respectively.  

2. Examine whether the desired point to reach is within the area of the reachable points.  
3. Depending on the initial conditions at the starting point travel along the upper or the 

lower boundary until switching to a straight line is possible. Concatenate this line to the 
curve sequence between the starting and the switching point. 

3.2 Avoiding time-obstacles 
Avoiding time-obstacles includes collision detection with time-obstacles and a specific 
path planning method based on the algorithms mentioned above. Collision detection is 
simple in case of a rectangular time-obstacle. Since the solutions of the differential 
equations are given in analytic form, the exact time-values have to be substituted into 
those formulae in order to check whether a certain point of the curve belongs to a time-
obstacle. Let us denote the vertices of a rectangular time-obstacle by its four corner points 
on the time-plane: 

 , ,

, ,

( , ) ( , )

( , ) ( , )
enter enter enter enter enter exit enter exit

exit enter exit enter exit exit exit exit

T t T t

T t T t

 
 

 

 
 (67) 

The edges of this time-obstacle are the intervals between these points. In case of the 
horizontal edges, if one of 

  [ ]( )enter Ts Tg enter exitt    ,       [ ]( )enter Ts Tg exit exitt     (68) 

is satisfied, then a collision occurs. A similar formula can be applied for the vertical edges, 
thus a collision occurs when one of 

 1
[ ]( )enter Ts Tg enter exitt t

   , 1
[ ]( )enter Ts Tg exit exitt t

     (69) 

is satisfied.  
Note that one has to substitute the exact time-values into the appropriate element (i.e. curve 
sequence) of [ ]Ts Tg  and 1

[ ]Ts Tg


  corresponding to the given time-value. 
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In case of nonlinear time-obstacles, the  simplest way to determine a collision is to regard 
the scaled velocities. If 

 ( ) ( ) ( , )
texit

enter dyn enter exit

tenter

v t dt t O t t
 

    
 
     (70) 

then the unit collides with a dynamic obstacle.  
In the sequel, a path planning method based on the algorithm of connecting points on the 
time-plane and determining collisions with time-obstacles will be presented. Because of the 
presence of time-obstacles, an exact path between dedicated points might not exist, even if 
the desired point of reach is within the reachable area of the starting point sT . Fig. 9 shows 
an example of several time-obstacles lying between the starting and the goal positions, while 
Fig. 10 shows that sT  cannot be connected with gT  directly because of a collision with a 
time-obstacle. 
 

 
Fig. 9. Time-obstacles between two points 

A path from the starting point avoiding the time-obstacles might only guarantee an 
endpoint with the same real-time coordinate gt  as the desired gT  , but the resulting virtual-
time coordinate may differ from the desired g . It is advised to examine which points with 
the real-time coordinate gt  can be reached from this starting point sT . At first the corner 
points of the time-obstacles which can be reached without colliding with any other time-
obstacles have to be determined. To do so, a graph (i.e. tree) building approach is proposed.  
At first the parent node is selected to be the actual point, desired to be reached. Child nodes 
are the upper left and lower right vertices of the time obstacle that the specific route hits first 
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Fig. 10. The goal point cannot be reached without collision 

(i.e. the one that is the nearest to the starting point and has an intersection with the actual 
path). The graph building can be done sequentially. Fig. 11 shows steps of a sequence of 
determining the child nodes and connecting them to their parent nodes.  
 

 
Fig. 11. Selecting child nodes by determining collisions on the time-plane (on the left) and 
building the graph (on the right) 
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The path from sT  to gT  intersects with the time-obstacle with corner points 9T  and 10T , 
thus in the graph these become the children of gT . Now the desired point of reach will be 

9T or 10T , respectively. Fig. 12 shows that none of them can be reached without collision, 
thus they will also have child nodes in the graph. 
 

 
Fig. 12. Selecting child nodes by determining collisions (on the left) and building the graph 
(on the right) 

Final steps of graph building is presented by Fig. 13:  
 

 
Fig. 13. The corner points that can be reached with no collision (on the left), building the 
graph (on the right) 
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On Fig. 13 the dotted contour denotes that 1T  and 4T  are located outside of the area of 
reachable points. Fig. 14 represents the final graph. 
 

 
Fig. 14. The final graph 

Nodes with no children provide the vertices that can be reached from the starting point 
without collision. After determining these points, a new starting point must be assigned 
from the ones determined afore, and the algorithm must be carried on until finding all 
possible routes from the original starting point to the ones with real-time coordinate gt . Fig. 
15 shows all possible routes from the original starting point to the points with real-time 
coordinate gt   while Fig. 16 shows its graph representation. Dot-contoured nodes denote 
that no route exists from their parent node that reaches them without collision or exceeding 
the kinematic constraints. 
 

 
Fig. 15. Possible routes from Ts 
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Fig. 16. Graph representation of the possible routes 

3.3 The global path-planning method 

Path-planning on the time-plane starts from the point at which the original velocity reaches 
a desired minimal value that was referred to as minv . The curve t   and the curve that 
spans through all intervals and results the minimal velocity enclose the area that the robot 
can reach during the time of its motion. Any other points outside this area are unreachable 
due to the kinematic constraints. Fig. 17 shows an example for such an area. 
 

 
Fig. 17. Global area of reachable points 
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The goal of path-planning is to reach a point on the time-plane with virtual time coordinate 

end  (the end of travel in virtual time) and with a minimal value of real-time coordinate, i.e. 
to minimize the duration of travel in real time. In order to reach such a point, the following 
considerations should be followed: 
1. When starting a path from a point, apply maximal control inputs and maintain this 

course until reaching a point with virtual time coordinate end .  
2. In case of collision, determine all time-obstacle corner points that can be reached from 

the starting point with no collision.  
3. Assign a new starting point from these corner points and continue from step 1. If no 

further movement can be made, go back to a previous starting point and select another 
corner point to reach.  

Navigating through all time-obstacles may not give an optimal solution. The possibility of 
delaying the departure of a certain robot should also be considered, which allows time-
obstacles to disappear from its time-plane. Depending on the certain area of application, it 
can cause difficulties due to tight schedules. Fig. 18 shows an example of delaying a unit’s 
departure so it can use its default velocity and arrive at its desired destination earlier then 
by using time scaling-based obstacle avoidance. 
 

 
Fig. 18. Arrival times differ when delaying departure and using no time-scaling 
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3.4 Generation of the scaled velocity 
The scaled velocity can be generated by multiplying the original velocity function and the 
derivative of the time-scaling function (see (6)). It is only necessary to calculate the values of 
the new velocity in those real-time instants where parameters in the original velocity have 
changed and where the time-scaling function changes its nature. The latter occurs typically 
at switching points where constant time-scaling is applied after maximal inputs and 
changing points where maximal or minimal value of velocity is reached. After these 
calculations, these points have to be connected by linear segments.  

3.5 Synchronizing the motion of the robots 
As it has been already mentioned, it is imperative to synchronize the units’ motion in an 
area crowded by robots. A straightforward solution is to define a hierarchy between the 
robots so that higher priority units disregard ones with lower priority level. Such a priority 
order can be defined regarding several factors, and priority levels may also be redistributed 
regularly in order to meet the actual requirements. The general algorithm managing the 
multi-unit fleet is the following: 
1. Consider the highest priority level. 
2. Take a robot with a given priority level and design an optimal path avoiding static 

obstacles. 
3. Assign an optimal velocity to this robot. 
4. If the robot collides with any other robots with higher priority, determine the possible 

time-obstacles. 
5. Construct the time-scaling function and generate the scaled velocity. 
6. Take the next robot with lower priority and continue from step 1. 

4. Implementation results 

We present a robot system with four robots, the workspace and the trajectories are shown in 
Fig. 19.  
The length of the robots are assumed to be 1 meter while their width are assumed to be 0.8 
meters. (These values may be also different for each robot.) The paths consist of linear 
segments and they are extended with the widths of the robots. The coordinates of the points 
where the robots enter or leave the collision areas are calculated using these geometric 
parameters. On Fig. 19 the points S1, S2, S3 and S4 denote to the initial locations of the 
robots while G1, G2, G3 and G4 determines the goal locations respectively. The highest 
priority robot is Robot#1, the next one is Robot#2 then Robot#3 and Robot#4 has the lowest 
priority level. Table 1 contains information about the boundaries of the path elements (x and 
y coordinates respectively). We designed simple default velocites which are shown in Table 
2 together with the scaled velocity. The admissible values of the maximal positive and 
negative accelerations for Robot#1 and Robot#3 are 0.2 2/m s  and -0.2 2/m s  while for 
Robot#2 and Robot#4 the same values are 0.5 2/m s  and -0.5 2/m s  respectively. The 
minimal velocity is 0.2 /m s  for all robots. Since Robot#1 has the highest priority it does not 
need to be scaled. The time-scaling process for Robot#2, Robot#3 and Robot#4 are shown on 
Fig. 20, 22 and 24. Datatips on the time-scaling function indicate the relevant time instances 
where the scaled velocity values have to be calculated. The original  and the resulted scaled 
velocity functions (with blue and green colors respectively) are drawn on Fig. 21, 23 and 25.  
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Fig. 19. Workspace 

 
Fig. 20. Time-scaling for Robot#2 
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Fig. 21. Scaled velocity for Robot#2 

 
Fig. 22. Time-scaling for Robot#3 
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Fig. 23. Scaled velocity for Robot#3 

 
Fig. 24. Time-scaling for Robot#4 
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Fig. 25. Scaled velocity for Robot#4 

Information on the relevant time instances, the derivate of the time-scaling function at those 
instances and the calculated scaled velocity values are shown in Table 2.  
 

Robot# x coordinate(m) y coordinate(m) 

Robot#1 

2 18 
7 12 

14 12 
18 8 

Robot#2 

14 1 
14 7 
10 12 
1 12 

Robot#3 
1 8 

10 8 
15 18 

Robot#4 

5 19 
5 10 
7 5 

16 5 

Table 1. Path of the robots 
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Robot# 
 

Virtual time(s) Real time(s) ( )t Default velocity (m/s) Scaled velocity(m/s) 

Robot#2 

0 0 1.0000 0 0 

0.4000 0.4000 1.0000 0.2000 0.2000 

0.8106 1.0213 0.4935 0.4053 0.2000 

4.0000 7.4846 0.4935 2.0000 0.9869 

7.2854 14.1425 0.4935 2.0000 0.9869 

8.7984 16.1686 1.0000 2.0000 2.0000 

17.4031 24.7733 1.0000 2.0000 2.0000 

21.4031 28.7733 1.0000 0 0 

Robot#3 

0 0 1.0000 0 0 

1.0000 1.0000 1.0000 0.2000 0.2000 

1.1957 1.2149 0.8363 0.2391 0.2000 

5.0000 5.7638 0.8363 1.0000 0.8363 

13.5249 15.9575 0.8363 1.0000 0.8363 

14.2764 16.7760 1.0000 1.0000 1.0000 

20.1803 22.6799 1.0000 1.0000 1.0000 

25.1803 27.6799 1.0000 0 0 

Robot#4 

0 0 1.0000 0 0 

0.4000 0.4000 1.0000 0.2000 0.2000 

0.4206 0.4211 0.9510 0.2103 0.2000 

4.0000 4.1850 0.9510 2.0000 1.9020 

4.8524 5.0813 0.9510 2.0000 1.9020 

6.5996 8.1832 0.1755 2.0000 0.3510 

6.7816 9.2205 0.1755 2.0000 0.3510 

8.7200 12.5184 1.0000 2.0000 2.0000 

19.3852 23.1836 1.0000 2.0000 2.0000 

23.3852 27.1836 1.0000 0 0 

Table 2. Results of time-scaling for the robots 
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5. Conclusions 

In this chapter a time-scaling based obstacle avoidance method was presented that is able to 
avoid dynamic obstacles as well as static obstacles. We designed and described an algorithm 
being able to find a time-scaling function that avoids all time-obstacles in the time-plane and 
thus ensures a collision free path in the robots’ workspace. 
The determined time-scaling function also satisfies the criteria according to the kinematic 
constraints prescribed for the control (velocity) inputs. The solutions of the differential 
equations describing the motion of the time-scaled units were presented with a method that 
makes finding a path between dedicated points in the time-plane possible.  
Since the solutions of the differential equations are given in analytic form there is no need 
for time-consuming computations and determining the scaled velocity function is simple.  
Planning on the time-plane is based on a novel and fast tree-building method. The path-
planning algorithm is considered to be complete since it gives a definite answer in a finite 
time. All components of the algorithm are well suited for real time implementation.  
Should time-scaling fail to work we still have a method to avoid collision with delaying the 
robots. Fig. 24 shows a scenario where a better solution is achieved by using time-scaling 
than simply delaying the robot. 
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environment model generation based on autonomous mobile robot observations.
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