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1. Introduction 

Actually, the research on human interactive robot (HIR) has been a topic of both science 
fiction and academic speculation for a long time. The origin of HIR as a discrete issue was 
stated by 20th century author Isaac Asimov in 1941, in his novel “I, Robot”. He stated the 
Three Laws of Robotics1 as, “ 
a. A robot may not injure a human being or, through inaction, allow a human being to 

come to harm. 
b. A robot must obey any orders given to it by human beings, except where such orders 

would conflict with the First Law. 
c. A robot must protect its own existence as long as such protection does not conflict with 

the First or Second Law. ” 
The three laws of robotics determine the idea of safe interaction which constitutes the basic 
rules of HIR. With the advances of artificial intelligence (AI), the HIR could eventually have 
more proactive behaviours, planning their motion in complex unknown environments. 
Nowadays, HIR are artificial agents with capacities of perception and action in the human’s 
environment. Their use has been tended to be found in the most technologically advanced 
societies in critical domains as search and rescue, military battle, law enforcement, 
entertainment, hospital care, etc. These domains of applications imply a closer interaction 
with human. The concept of closeness is to be taken in its full meaning, HIR and humans not 
only share the workspace but also share goals in terms of task achievement. The HIR has to 
adapt itself to human’s way of expressing desires and fulfill its task. Taking lifting up 
human in elder care for example, the human interactive robot RI-MAN, designed by the 
RIKEN Bio-Mimetic Control Research Center, communicates with human by listening and 
speaking, which makes it understand the human will (Onish, Luo et al. 2007). To fulfil the 
task, it also estimates the attitude of human body in real-time by tactile sense (Mukai, Onishi 
et al. 2008). This example contains two aspects of HIR, one is to understand the human mind 
and the other is to accomplish the manipulation. The former is based on AI techniques, like 
language comprehension, and the latter is relied on force control. 
On the other hand, human’s environments are much more complex. Thus, the HIR needs 
perceiving and understanding capacities to build dynamic models of its surroundings. It 

                                                 
1 In science friction, the Three Laws of Robotics are a set of three rules written by Isaac Asimov, which 
almost all positronic robots appearing in his friction must obey. 
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needs to categorize objects, recognize and locate humans and further their emotions. Also in 
the case of human interactive robot RI-MAN (Mukai, Onishi et al. 2008), if he cannot 
navigate in the hospital and further more cannot locate the human, the understanding and 
good manipulation mentioned above make no sense. In our opinion, with the development 
of human society and robotics technology, HIR research becomes much important (Fig. 1). 
 

 

Fig. 1. Interaction relation between human, robot and environment. 

As HIR interacts with human, sometimes we can model the process of human activity 
accurately and the robot-human interaction process can be simulated and further done by 
theoretical approach; sometimes human movement is too complex to model and in that case, 
the experimental approach is a good way. However, the above thing is to make the HIR 
capable to navigate in the human environment. 
The chapter focuses on the issue of designing control strategies of human interactive robot 
where dealing with uncertainties is a critical issue. Actually, although there are many 
researches on HIR, these works do not concern too much on the uncertainty. The fact is that 
there are various uncertainties in the world which comes from robot, human, environment, 
etc. Developing human interactive robot, in some concept, is dealing with uncertainties. 
Actually, there are kinds of solving approaches for uncertainties according to circumstances: 
some uncertain can be assumed as Gaussian noise and based on the property of Gaussian 
noise, we can do estimation more accurately; some uncertainty coming from model 
reduction and this kind of uncertainty can be solved by control theory; some uncertainty is 
neither hard to model, nor difficult to determine the source. In that case, it is a better way to 
consider it as a black box and recognize it by system identification. 
In our opinion, the issue of uncertainty has become a major stumbling block for the design 
of capable human interactive robot. To develop a human interactive robot, it is evitable to 
deal with uncertainties. Furthermore, managing uncertainty is possibly the most important 
step towards robust real-world HIR systems (Thrun, Burgard et al. 2005). The basic principle 
of this chapter is to design control for HIR by dealing with uncertainties. Specifically, there 
are a number of factors that contribute to the uncertainty of robot, human and environment: 
Firstly, robot environment is inherently unpredictable. While the degree of uncertainty in 
well-structured environment such as assembly lines is small, environments such as 
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highways and private homes are highly dynamic and in many ways highly unpredictable. 
The uncertainty is particularly high for robots to operating in the proximity of people. 
Secondly, sensors are limited in what they can perceive. Limitations arise from several 
factors. The range and resolution of a sensor is subject to physical limitations. For example, 
cameras cannot see through walls, and the spatial resolution of a camera image is limited. 
Sensors are also subject to noise, which perturbs sensor measurements in unpredictable 
ways and hence limits the information that can be extracted. And finally, sensors can break. 
Detecting a faulty sensor can be extremely difficult. 
Thirdly, robot actuation involves motors that are, at least to some extent, unpredictable. 

Uncertainty arises from the physical structure of actuator, i.e. actuator is impossible to 

achieve absolute precision. In addition, uncertainty also comes from control noise, wear-

and-tear, mechanical failure, etc. 

Fourthly, some uncertainty is caused by model approximation. Models are abstractions of 

the real world. As such, they only partially model the underlying physical process of the 

subject. Model errors are a source of uncertainty that has a great impact on the fulfillment of 

the robot task. 

Fifthly, there are some uncertainties that are extremely difficult to model or are impossible 

to obtain. In that case, the uncertainty is very hard to deal with by analytic methods, like 

mathematical approaches. Also the evaluation of the uncertainty, both sources and 

magnitude are hard to be obtained. 

In summary, the uncertainties caused by the five factors can be noted as environment 

uncertainty, sensor uncertainty, actuator uncertainty, model uncertainty, unmodeled 

uncertainty, respectively. The above five kinds of uncertainties involve nearly all the 

uncertainties human interactive robot may encounter. The control design of HIR in this 

chapter takes it a clue to deal with the uncertainties mentioned above. In other words, we 

correlate the basic HIR’s technical problems with the five uncertainties. By dealing with the 

uncertainties, we design control for HIR and finally solve the basic technical problems of 

HIR. Specifically, the first basic problem is to make HIR capable to navigate in a large 

unknown environment which corresponds to dealing with environment uncertainty, sensor 

uncertainty and actuator uncertainty; the second basic problem is to propose approach for 

HIR to physically interact with human which has large degrees of freedom (DOF). This basic 

problem corresponds to dealing with the model uncertainty. The third basic problem is to 

design approach for HIR to mentally interact with human, i.e. extract the human’s intention, 

which corresponds to dealing with unmodeled uncertainty. The detailed explanation on 

correlation between the basic problems and corresponding uncertainties is as follows: 

The first basic problem concerns two issues as robot localization and environment cognition, 

i.e. to estimate the robot’s position and the feature’s position. Considering that robot’s 

motion and observation are affected by Gaussian noise, its kinematics model and sensor 

model are added by uncertainty. Similarly, the position of feature (or landmark from the 

viewpoint of mapping) is also affected by Gaussian noise; herein we add Gaussian 

uncertainty in the model. With regards to these models with uncertainty, it is better to use a 

probabilistic approach to estimate robot’s and landmark’s positions, i.e. simultaneous 

localization and mapping (SLAM). By definition, SLAM is the process by which a mobile 

robot builds a map of an environment and at the same time uses this map to compute its 

own location. By SLAM, robot is able to navigate in an unknown environment freely. 

However, the problem is that the current SLAM approaches only fit the relative small 
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environment because of the time-consuming computation. When solving the first basic 

problem, the main topic is to propose an efficient SLAM approach for large scale unknown 

environment. 

The second basic problem contains two issues potentially: the interactive object is human 

dynamics with large degree of freedom; the interactive manipulation is physically done by 

force. As the first issue, human body has numerous bones and joints and the human model 

is a very complex one with large degrees of freedom. Exerting force on such a big model is 

very complex and such dynamic process is impossible to be calculated in real time. Here we 

use model reduction to decrease the DOF of human model whereas the reduction error (i.e. 

model uncertainty) comes out. For the second issue, external force is exerted on human. 

Unlike common object, human has passive moment in human joint and more complicated, 

sometimes moves at his or her will. Such force character provides a big challenge to control. 

To solve the basic problem two, the main topic is to propose an adaptive force control 

approach for HIR when physically contacting with human. More specifically, we take a 

typical case to research, i.e. how to lift human by HIR in nursing care. 

The third basic problem focuses on obtaining the human’s intention. Actually, the human’s 

intention is very difficult to measure. The model for human mind is also extremely hard to 

build right now. For us, the human’s intention is almost full of unmodeled uncertainty, i.e., 

we have little knowledge about it. In this case, treating it as a black box is a good way. We 

stimulate the black box (i.e. human dynamics system) and measure output. By choosing a 

suitable function to link the stimulus signal and output, we can obtain the intention model 

experimentally. The main topic here is to design an approach for extracting human’s 

intention. Without loss of generality, in this chapter we consider the problem of estimating 

the human’s intended walking speed. 

To conclude, in this chapter, we design controls for human interactive robot by dealing with 

the environment uncertainty, sensor uncertainty, actuator uncertainty, model uncertainty 

and unmodeled uncertainty. Specifically, the typical problems of HIR we focus on are 

designing an efficient SLAM approach for large unknown environment; proposing an 

adaptive force control for lifting human up; estimating human’s intended walking speed. 

The above three typical problems involve the basic problems when designing controls for 

HIR. The solution of them also provides a general solving framework for HIR, which is of 

great importance both in research and in application. The preceding researches relating with 

the above three typical problems are shown as follows. 

2. Motion control for large environment navigation 

2.1 Background 

Extended Information Filter SLAM (EIF-SLAM) estimates the positions of robot and 

landmarks by updating information matrix and information vector. The total element 

numbers of information matrix and information vector are 

    2lmdof landmark n dof robot   

and 

   lmdof landmark n dof robot   
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where lmn  denotes the mapped landmarks. ( )dof landmark  and ( )dof robot  denote 

landmarks’ degree of freedom (DOF) and robot’s DOF, respectively. Actually, the 

dimension of the information matrix increases rapidly with the increase of the landmark 

number in the environment. For example, if a three-dimensional environment has 100 

landmarks, the information matrix is a huge matrix with dimension of 303 by 303. Actually, 

the computational burden in EIF-SLAM is mainly due to the calculation of the information 

matrix. 
Previous research has proven that information matrix is a naturally sparse matrix (Eustice, 

Singh et al. 2005). Hence, it is a good way to make use of this feature and change 

information matrix into a real sparse matrix for computation reduction. Until now, the 

successful research includes Thrun et al.’s work which solved a relatively large environment 

(i.e. Victoria Park) for the first time (Thrun, Koller et al. 2002); Eustice et al.’s work which 

constructed the map of Titanic ship in the dark ocean (Eustice, Singh et al. 2005). Among this 

work, the sparsification of information matrix was obtained by constructing a proper 

topological structure of Bayes network, which needs to classify the landmarks in advance. 

This is a time-consuming work and against the enhancement of efficiency. Actually, the 

intuitive idea is to set the near-zero elements to zero directly. Thrun tried this way (Thrun, 

Liu et al. 2004), however, Eustice proved that direct sparsification leads the algorithm 

diverge (Eustice, Walter et al. 2005), which indicates the improper sparsification process 

mentioned may cause the algorithm corrupt. If we want to pursue this kind of idea, we have 

to clarify the condition under which the algorithm maintains stable which constitutes the 

basis of this section. This section focuses on proposing an efficient stable sparsification 

SLAM approach for large scale environment. 

2.2 Sparsing information matrix 

2.2.1 Characters of information matrix 

In fact, information matrix in EIF-SLAM has special structural characters (Dong, Luo et al. 

2009) where the value denotes the numerical value of the element in information matrix 

located at ( , )row index column index . It is convenient to divide the elements of information 

matrix into two parts: Part I denotes larger part where the elements have larger values. The 

elements along the main-diagonal and near the endpoints of sub diagonal line belong to this 

part. Part II is composed of other elements in the information matrix. Three main characters 

of information matrix can be stated as 
a. Information matrix is symmetric along the main diagonal line; 

b. Elements with huge values distribute in the neighborhood of the main diagonal line 

and the end points of the sub diagonal line (Part I); 

c. For the elements of Part II, the value of the element decreases with the distance from the 

main diagonal line. 

The reasons for character 1) to 3) can be explained as follows, respectively (Smith, Self et al. 

1990; Liu and Thrun 2003; Eustice, Singh et al. 2005; Eustice, Singh et al. 2006). 

a. Each element in the information matrix denotes the link strength between the 

corresponding landmark and robot. As we all know that the link strength has symmetry, 

i.e. if the link strength between A and B is  , then the link strength both from A to B 

and from B to A are  . Therefore, information matrix is a symmetric matrix; 
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b. From the viewpoint of Bayes network, the link strength shows the correlation. In SLAM 

problem, the largest correlation is the relation of robot itself and landmark itself. The 

correlation between the robot and landmark becomes weak with time. If the robot is 

currently observing a landmark, the correlation between the robot and the landmark is 

strong. The elements in diagonal line denote the link strength of robot versus itself, or 

landmark versus itself while the elements near the endpoint of information matrix 

show the link strength of robot versus current observing landmark. Hence, the elements 

with large value centralize in Part II; 

c. The correlation becomes weak when time passes after observing it. When the robot 

observes the landmark again, the correlation increases again. 

The most important characteristic of information matrix is that most elements of it are 

nearly zero. In other words, an information matrix is a nearly sparse matrix. The 

information matrix sparsification by different threshold (1 6)i i    is shown in Fig. 2 

where i  is 

 
2

1

13
1

10
(1 5)

10

i i i
 






    


 (1) 

 

 

Fig. 2. Information matrix sparsification. 

After computing the sparse ratios of the information matrices in Fig. 2, we can get the graph 

that illustrates how the sparse ratio changes with the threshold (Fig. 3) where the x-axis 

denotes the threshold and the y-axis denotes the sparse ratio. By using a curve fitting 

method, it shows that the distribution of elements in the information matrix satisfies a linear 

distribution in logarithmic coordinates. The sparse ratio increases with the threshold. 

However, sparsification error arises from the sparsification process. Furthermore, 

inappropriate sparsification may lead EIF-SLAM to diverge. Therefore, the key issue here is 

to find a condition under which the estimation results converge all the time. 

From the illustrations above, the information matrix in EIF-SLAM algorithm is naturally 

sparse. Hence, the sparsification structure of the information matrix is very suitable to be 

sparsed. Moreover, because the computations are mainly on the calculation relating with 
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information estimation variables, high efficiency is predicted by sparsing the information 

matrix. The following sparsification approach utilizes the characters of the information 

matrix to decrease the computational burden of EIF-SLAM. 
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Fig. 3. Linear relation between sparse ratio and threshold. 

From the illustrations above, we obtain that the information matrix in EIF-SLAM algorithm 
is naturally sparse. Hence, the sparsification structure of the information matrix is very 
suitable to be sparsed. Moreover, because the computations are mainly on the calculation 
relating with information estimation variables, high efficiency is predicted by sparsing the 
information matrix. The following sparsification approach utilizes the characters of the 
information matrix to decrease the computational burden of EIF-SLAM. 

2.2.2 Sparsification approach 

The mean vector   and the covariance matrix   of the environment state vector   are 

written in the form 

 

1 1 11 12 1

2 2 21 22 2
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Assume estimation error is a Gaussian noise, we have 
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By taking the relation between time estimation variables and information estimation 
variables 

 
1

1

 



 

  

 (4) 

into Equation (3), we obtain 

 

   
   
   

1 1

1 1

1 1

Prob max Sqrt ( ) 0 0.68

Prob max 2 Sqrt ( ) 0 0.95

Prob max 3 Sqrt ( ) 0 0.997

D

D

D

 

 

 

 

 

 

     

      

      

 (5) 

Here we propose Theorem 1 to clarify the conditions for sparsification for guaranteeing the 

convergence. In other words, from the viewpoint of mathematics, Theorem 1 gives the 

consistency condition; from the viewpoint of geometric, the mean remains in the range of 

the corresponding covariance under consistency condition. 

Theorem 1 

Assume the new information matrix after sparsification is written in the form of E  , 

where E  is the sparsification error matrix. If   1max 0H       is satisfied, we 

obtain 

     1 1max Sqrt ( ) 0E D         (6) 

where 

 
 
 

1

1

H I E E

E I E





    

    
 (7) 

 ,  ,   and E  are defined as 

 2
2

1 3 1

0
, , ,

0 0

E
E

      
                     

 (8) 

where the element positions of   are the transport element position of E . That is, the 

portioned matrices E ,  ,   and   are of order of 1 2m m , 2 1m m , 2n m  and 1m n , 

respectively. 
The proof of Theorem 1 is shown in (Dong, Tang et al. 2010). Consider Equation (6) with 

respect to Equation (5), it is shown that after sparsification, each estimated mean still inside 

the scope of corresponding covariance. That is to say, the estimated position of the robot or 

landmark is inside the estimation range, which indicates the estimation is reliable. In 

addition, the proof of Theorem 1 also gives a quite efficient way to get covariance matrix 
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from information matrix without directly computing the inversion. According to Theorem 1, 

we can eliminate the information matrix under the condition of stabilization. In practice, 

loop-closure is used to compensate the estimation error which comes from sparsification. 

After sparsification, another theorem was proposed to evaluate sparsification error by 

deriving the upper bound of relative error ratios, including mean vector error ratio and 

covariance matrix error ratio (Dong, Tang et al. 2010). 

2.3 Large complex environment simulation 

The proposed sparsification SLAM approach was simulated in a large scale environment 

(about 400 landmarks). As the landmarks are very dense, the environment is a complicated 

one. Such environment can further verify the effectiveness of the proposed approach. In the 

simulation, the robot applied is a two-wheel robot with three degrees of freedom and the 

sensor arranged on the robot is range-bearing type sensor (such as laser, camera, etc.). The 

robot moves counterclockwise for two laps while utilizing sparsification approach to 

process SLAM. 

2.3.1 Efficiency analysis 

The main computational burden of EIF-SLAM is primarily from the three steps: motion 

update, features addition and observation update. The comparison of computational time 

between EIF-SLAM (denoted as stars) and sparsification method (denoted as crosses) is 

shown in Fig. 4. It shows that the sparsification approach is able to solve SLAM in the 

environment with 400 landmarks. Furthermore, according to the curve trend of 

computational time, we can predict that our sparsification method has an efficiency 

advantage for large environment. 
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Fig. 4. Efficiency comparison between EIF-SLAM and sparsification SLAM. 
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2.3.2 Accuracy analysis 
The comparison of error and covariance is shown in Fig. 5 where dash line and solid line 
denote estimation error and self-covariance of robot’s position, respectively. Horizontal axis 
shows the time. Vertical axis denotes the estimation error and covariance where x and y 
denote the moving directions, respectively. It shows that estimation error and covariance 
decrease sharply at time 250, which indicates that there is a loop-closure at this moment. 
In fact, during the first lap, the error and covariance by the sparsification method nearly 
have the same magnitude, (in Fig.5 (b), the solid line nearly coincides with the dash line), 
which indicates that the sparsification method eliminates considerable number of elements 
under the condition of consistency. In the second lap, the estimation error by EIF-SLAM (Fig. 
5 (a)) and the sparsification approach (Fig. 5 (b)) seems the same. Thus, it can be concluded 
that by using loop-closure properly, the sparsification approach can obtain satisfying 
accuracy with high efficiency. 
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Fig. 5. Comparison of estimation error and covariance. 

2.4 Summary 

In this section, a sparsification EIF-SLAM approach was proposed to enable human 

interactive robot to navigate in the large unknown environment. According to the normal 

structural features of information matrix, we eliminate many of the near-zero elements in 

the information matrix. Such sparsification process is under the condition of consistency. 
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Hence the sparsification approach stays stable. In addition, the upper bound of estimation 

error is also given for evaluation. The large complex environment simulation indicates that 

the sparsification approach has the advantage of high efficiency and accuracy. The outdoor 

car-park experiment shows the ability to realize consistent estimation by the sparsification 

approach (Dong, Luo et al. 2009). 

Compared to the previous researches on efficient navigation of human interactive robot, the 

sparsification approach proposed in this section gives a direct but effective way to obtain 

efficiency. Concerning parameters, we can compromise the efficiency and accuracy under 

the condition of stabilization. It is also noted that the consistency condition derived in this 

section also has great meaning for the future research on sparsification. 

This section dealt with the environment uncertainty, sensor uncertainty, actuator 

uncertainty, and assumed them as Gaussian noises. The proposed sparsification SLAM 

approach eliminated these uncertainties and realized high efficiency of SLAM estimation. 

3. Adaptive force control for lifting human 

3.1 Background 

It has been thought that the human body is composed of 206 bones and numerous human 

joints connecting adjacent bones. Based on the physiological structure of human joints, the 

human joints can be mainly divided into three types as the hinge (1 DOF), the pivot (1 DOF) 

and the ball socket (3 DOF). In dynamic equations, each DOF is expressed as one differential 

equation, which indicates that the overall set of equations of human body dynamics is a 

very huge one. The force interaction with such a big model needs considerable computation 

for human interactive robot. 

As illustrated in Section 1, in the process of lifting human, the human body has to be 

considered as a free-floating multi-link rigid object with passive moments. Compared with 

one-end-fixed object, like manipulator, free-floating object is much more complex. The force 

acting on any part of the object would affect the attitude of the entire object. Moreover, 

although the multi-link object has been researched a lot, the one with large DOF and large 

redundancy has not fully been considered yet. Another problem is calculation; any 

computation on such a huge model needs much computational time whereas the safe lifting 

requires real-time computation. 

In consideration of the difficulties mentioned above, our basic idea for lifting human comes 

from the daily experience. When we human lift a person, we do not care too much about the 

detailed dynamics, like the change of ankle angle, hand position and so on. What we do care 

about are the head position, the vertical deflection of upper limb and the hip angle. Here we 

call them “states of interest”. From the viewpoint of system theorem, we treat the human 

body as a large redundant system whose dimensions are reduced by diverting the effects of 

other “joints of noninterest” to the “interested ones”. The resulting body model is a reduced 

one with less DOF but unfortunately, has huge uncertainties (i.e. model uncertainty). Here 

we focus on proper model reduction and methods for dealing with the generating model 

uncertainty, which leads to a force control for lifting human. 

3.2 Force interaction modeling 

If we consider human body as a rigid multi-link object, each bone corresponds to a link and 

each human joint corresponds to a joint connecting adjacent links. Moreover, human joints 
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have passive torques corresponding to the constriction forces and moments developed by 

ligaments, joint capsules and other soft tissues. Hence, we write the dynamics of human in 

the from 

 ( ) ( , ) ( ) passH q q C q q q G q       (9) 

where 

1nq     Generalized body states, including the position of head and the angles of all the 

joints. 

( )n nH q   Inertia matrix, defined as a positive semi-definite symmetric matrix, containing 

information on the body’s instantaneous mass distribution. 

( , )n nC q q   Centripetal and coriolis torques. ( , )C q q  term contains products of angular  

speeds. When the degree of freedom is rotational, the terms of ( , )C q q  represent the 

moments of centrifugal forces. 

1( )nG q   Gravitational torques. Because ( )G q  changes as the posture configuration of the 

human body model, its terms are functions of the generalized states. 

1pass n   Passive joint torque, including torques and moments arising from muscular 

activations and passive elastic structures surrounding the human joints. 
Here the HIR’s task is to lift human, i.e. to control the position and posture of the body to 
the desired states by external forces. Adding the force exertion in Equation (9), leads to: 

 ( ) ( , ) ( ) pass robH q q C q q q G q         (10) 

where 

1rob n   The torques acted by the robot arms which is controllable. 

Actually, the human interactive robot considered in this section has two manipulation arms, 

like RI-MAN (Mukai, Onishi et al. 2008). Force is applied to the fixed point at back and 

knees, shown as 1F  and 2F . Forces 1F  and 2F  have relations with rob  as 

 1 1 2 2
T T

rob J F J F    (11) 

where 1J  and 2J  are the Jacobian matrices of the human body model. 

3.3 Human dynamics reduction 

The basic idea in this section is to reduce the human body model into a small one with less 
degree of freedom, which includes the following three steps: 
a. Choose “states of interest”. These states include the fundamental performance 

indexes of the task. In other words, based on these states, we can determine whether 
the task is complete or not and furthermore, evaluate the performance is good or not. 
Let us define  

  1 1 1
, ,

T
m m

q q q


   (12) 

as the “states of interest” and 

  2 1 ( ) 1
, ,

T
m n n m

q q q  
   (13) 
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as the “uninterested states” consisting of the other states. The overall state can be written as 

 1 2
T

q q q . 

b. Arrange the dynamic equation set. Based on the division of generalized states in (a), we 

change the element position of H , C , G , pass , rob . The expanded form of new 

dynamics equation set is 

 
,1 ,111 12 111 12 1 1

,2,221 22 2 221 22 2

,
pass rob

robpass

C C GH H q q

H H q qC C G

 


           
              
                 

 
 

 (14) 

where the dimensions of sub block matrices of 11H , 12H , 21H , 22H  are m m ,  m n m  , 

 n m m  ,    n m n m   , respectively. The dimensions of the sub block matrices 11C , 

12C , 21C , 22C  are m m ,  m n m  ,  n m m  ,    n m n m   , respectively. The 

dimensions of vectors 1G , ,1pass , ,1rob  are 1m , and 2G , ,2pass , ,2rob  are   1n m  . 
c. Construct the small dynamics equation set. First of all, we define the generalized states 

of reduced model as 

 
1sq q  (15) 

Then extracting the parts of the human dynamics relating with sq , we get 

 1 1
11 12 11 12 1 ,1 ,1

2 2
pass rob

q q
H H C C G

q q
 

   
            

   

 
 

 (16) 

Considering that the dynamic model is time-varying, after arranging Equation (16), we 
obtain 

  11 1 11 1 1 12 2 12 2 ,1 ,1( ) ( ) ( ) ( ) ( ) ( ) ( )pass robH t q C t q G t H t q C t q t t           (17) 

By defining the inertia matrix, centripetal matrix, gravitational matrix and torque vector of 

the reduced human dynamics as 

 

11

11

1 12 2 12 2 ,1

,1

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

s

s

s pass

s rob

H t H t

C t C t

G t G t H t q C t q t

t t



 





   



 
 (18) 

we obtain the general mechanical form of the reduced human dynamics 

 ( ) ( ) ( ) ( )s s s s s sH t q C t q G t t     (19) 

where the subscript s  denotes the small system. We consider the influences from 

“uninterested human joints” (in this case from state 2q ) as perturbations. 

We change the attitude of reduced human model adaptively by estimating the parameters of 

sH , sC  and sG  in real time. The detailed estimation meanings are as follows. 

 Estimating sH  and sC  --- make the system adaptively adjust itself to various people 

with different weights.  
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 Estimating sG  --- eliminate the perturbations from other “uninterested joints”. 
Considering the basic principle above, the approach to be proposed in this section is to 
identify and control the reduced human dynamics at the same time. Assuming that the 
human parameters are totally unknown in advance, for the safety in the nursing activity, the 
identification process needs to be performed in real time. On the other hand, the weights 
and heights etc. of the human bodies are different between individuals. Hence, the strategy 
also has to be able to tolerate these individual difference. 

3.4 Attitude control and human parameter identification 

First of all, we assume that we do not have any priori knowledge before lifting human, i.e. the 

initial value of sH , sC , sG  are set to be zero matrices and zero vectors. The benefit of such 

assumption is that the proposed trajectory is much more robust and can be adaptive to various 

people with different heights and weights. Whereas, such assumption also leads to a problem, i.e. 

it generates much model uncertainties in the dynamics. To solve the above problem, we use 

robust controller to change the human attitude to the desired states. Moreover, online human 

parameter identification is also done so as to estimate the human body in real time. 
For the convenience of mathematical derivation, we define the actual human parameter 

vector 

 
TT T T

H C GP P P P     (20) 

where 

 ,11 ,12 ,1 , 1 , 2 ,

T

H s s s n s n s n s nnP H H H H H H      (21) 

 ,11 ,12 ,1 , 1 , 2 ,

T

C s s s n s n s n s nnP C C C C C C      (22) 

 ,1 ,2 ,

T

G s s s nP G G G     (23) 

and estimated human parameter vector as 

 ˆ ˆ ˆ ˆ TT T T
H C GP P P P   

 (24) 

where 

 
,11 ,12 ,1 , 1 , 2 ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ T

H s s s n s n s n s nnP H H H H H H      (25) 

 
,11 ,12 ,1 , 1 , 2 ,

ˆ ˆ ˆ ˆ ˆ ˆˆ T

C s s s n s n s n s nnP C C C C C C      (26) 

 
,1 ,2 ,

ˆ ˆ ˆˆ T

G s s s nP G G G     (27) 

Then the estimation error vector can be defined as 

 ˆP P P   (28) 
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In fact, not any combination of H , C and G  corresponds to a physical system. Therefore, 

the first step is to prove that the reduced human model represents a real physical system. It 

is easy to verify that by proving that 2s sH C  is a skew-symmetric matrix. In other words, 

the reduced human model satisfies energy conservation where the detailed derivation is in 

(Dong, Luo et al. 2010). 
We propose a theorem to change the “states of interest” of human body. It is composed of a 
human attitude control law and a human parameter identification law. In fact, the control 
process and identification process run at the same time. In the proof of Theorem 2, the 
global stability is shown by proving that the derivative of the constructed Lyapunov 
function candidate is less than zero. 

Theorem 2 

Consider a time-varying system with m-order 

 ( ) ( ) ( ) ( )s s s s s sH t q C t q G t t     (29) 

without any pre-knowledge about sH , sC  and sG . The vector ,s dq  means the desired states. 

Define the sliding term s  as 

 , ,( )' ( )s s s s d s s ds q q q q q q          (30) 

where   is a positive diagonal matrix. Define the reference velocity ,s rq  and reference 

acceleration ,s rq  as 

 
,

,

s r s

s r s

q q s

q q s

 

 

 
  

 (31) 

If we choose the human attitude control law 

 , ,
ˆ ˆˆ ( ) ( ) ( ) sgn( )s s s r s s r sH t q C t q G t k s        (32) 

and human parameter identification law 

 1
1 , , 1 , , 1

ˆ T T T T
s r n s r s r n s r nP s q s q s q s q s s     

        (33) 

under the assumption of 

 sgn( )T Tk s s P P     (34) 

the human dynamics tracks the desired state trajectory and the parameter estimation sH , 

sC  and sG  converge to the actual human parameters asymptotically, where k  and   are 

positive diagonal matrixes, sgn( )  is a signal function. 

The proof of Theorem 2 is shown in (Dong, Luo et al. 2010). It is noted that the signals 

required in the control law and identification law are s , ,s rq , ,s rq  (Equation (32) and 

Equation (33)). According to the definitions of s , ,s rq , ,s rq  (Equation (30) and Equation (31)), 

the basic signals required are sq , sq , sq . Actually, the “states of interest” sq , sq  represent 

the basic attitude element of human, i.e. position, angle, linear velocity, angular velocity. 
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Hence, they are easy for measuring. The measurement can be achieved by binocular vision 

technology. However, sq  is hard to measure. To avoid the acceleration signal, we use 

filtering technology. Specifically, let ( )w t  be the impulse response of a stable, proper filter. 

For example, for the first-order filter /( )p   where 0  , /p d dt , the impulse 

response is te  . Then using partial integration, sq  can be integrated as 

 

 
0 00

0

( ) ( )

(0) ( ) (0) ( ) ( )

tt t

s s s

t

s s s s

dw
w t r q dr w t r q q dr

dr

w q w t q w t r q w t r q dr

   

     

 



  

    
 (35) 

which means ( , )s sq f q w  , i.e., the acceleration signal can be obtained from velocity signal. 

3.5 Simulation 
3.5.1 Simulation results 

The simulation was implemented by coordination of three software packages, including 
AUTOLEV, MATLAB and VORTEX. The detailed cooperation relations are explained as 
follows. AUTOLEV is used to construct the human model (Kane and Levinson 1985). We 
choose MATLAB to process the main computation of solving ordinary differential equations; 
Although VORTEX is able to do physical simulation, the programming grammar is a bit 
complex. Here, we just use its stereoscopic presentation function to make animations.  

In the simulation, we choose the head position (denoted as ,h xP , ,h yP , ,h zP ), the angle drift 

off the horizontal line of lower-trunk (denoted as 1,x , 1,y , 1,z ), the angle of lower-trunk 

and upper-leg (denoted as 2,x , 2,y , 2,z ) to constitute the “states of interest”, i.e. 

 
, , , 1, 1, 1, 2, 2, 2 ,, , , , , , , ,

T

s h x h y h z x y z x y zq P P P         
 (36) 

The initial velocity and acceleration are set as (0) (0) 0s sq q   and the desired states are set as 

 
 

 
,

, ,

0.2, 0.8, 0.01, 0.01, 0.01, 0.7854, 0.01, 0.01, 1.5708

0, 0, 0, 0, 0, 0, 0, 0, 0

T
s d

T
s d s d

q

q q

 

  
 (37) 

Applying the human attitude control law in Equation (32) and human parameter adaptation 
law in Equation (33), we obtain 

 
, , , 1, 1, 1, 2, 2 , 2 ,, , , , , , , ,

T

s h x h y h z x y z x y zF F F         
 (38) 

Then we choose 

 

,

1 ,

,

1, 1, 1, 2, 2 , 2, 1, 1, 1, 2 , 2, 2 ,

2 1, 1, 1, 2, 2 , 2 , 1, 1, 1, 2 , 2 , 2,

1, 1, 1, 2 , 2 , 2, 1,

( sin sin ) ( cos cos )

( cos cos ) ( sin sin )

( cos cos ) (

h x

h y

h z

z z z z z z y y y y y y

z z z z z z x x x x x x

x x x x x x

F

F F

F

l l l l

F l l l l

l l

       

       
    

 
 

  
 
 

  

   
  1, 1, 2 , 2, 2 ,sin sin )y y y y y yl l  

 
 
 
  

 (39) 
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where 1, 1, 1,, ,
T

x y zl l l    denotes the distance between the head position and the buttock. 

2, 2, 2,, ,
T

x y zl l l    denotes the distance between the buttock and the application point of 2F . 

By applying 1F  and 2F , human attitude control is achieved. 

The energy, position and angle changes are shown in Fig. 6. It is seen that it takes about 1 
second to accomplish the process of attitude change. There is a peak of kinematics energy at 
the time of about 0.2 second which means at that time, the attitude changes very quickly (Fig. 
6 (a)). One reason is that we assume no pre-knowledge of the human body at the beginning 
of the simulation. The head position changed to the desired (0.2m, 0.8m, 0.01m) at about 1 
second (Fig. 6 (b)). Compared with other joints rotating in x or y direction, the joints rotating 
in z direction change significantly. Thus, the angle changes of these joints affect the head 
position in x direction greater. 

In (Dong, Luo et al. 2010), it is shown that 2s sH C  is a skew-symmetric matrix which 

indicates that parts of the states (or their linear combination) can be controlled as a whole. In 

the simulation, we constructed a new state which is the angle sum of head, chest, mid-trunk, 

and lower-trunk. The angle drift off the horizontal line of the new state changes to the 

desired -0.7854 rad (i.e. -45 degrees) at about 1 second as shown in Fig. 6 (c). The angle 

between lower-trunk and upper-leg changes to the desired 1.5708 rad (i.e. 90 degrees) at 

about 1 second (Fig. 6 (d)). 
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Fig. 6. Energy and angle change. 
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3.5.2 Animation 

We imported the computed motion data into the VORTEX human model to make animation. 

Here the human model is the visible skeleton which was built in (Dong, Luo et al. 2010). 

Compared with the human model for simulation (16 links and 35 DOF), the human model 

for animation is a redundant one (54 links and 61 DOF). Here we just make the 

corresponding human joints rotate and maintain the redundant human joints fixed. As 

assumed in the simulation that the force contact type is contingence, we choose two 

cylindrical objects to represent robot arms. 

The position of the head, angle drift off the horizontal line of lower-trunk, angle of lower-trunk 

and upper-leg are chosen as the “states of interest” (Fig. 7 (a)). The animation of lifting up human 

by the adaptive force control is shown in Fig. 7 (b) – (f). At the beginning of the simulation, we 

assume that we do not have any pre-knowledge about the human parameter. Hence, the initial 

values of ˆ
sH , ˆ

sC  and ˆ
sG  are set to zero matrices (or zero vectors). As the identification of the 

human parameter goes on, ˆ
sH , ˆ

sC , ˆ
sG  converge to the true values sH , sC , sG . 

 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 7. “States of interest” in lifting human and Snapshots of the lifting human process 
(Dong, Luo et al. 2010). 
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3.6 Summary 

In this section, an attitude control approach was proposed to lift human without regard to 

the individual differences, such as height, weight, and so on. We used robust adaptive 

control to eliminate the effects from the “uninterested joints” and identify the human 

parameters in real time. In addition, the convergence analysis, including tracking time and 

static tracking error, was also given. The approach was simulated by lifting a normal human 

body with two robot arms, which verifies the efficiency and effectiveness of the proposed 

strategy. 

Compared with the previous researches, there are two novelties in the proposed approach. 

First is that it is not necessary to measure human, like height and weight, in advance 

because the approach can automatically identify the human parameter online. Second is that 

the attitude control law ensures the accuracy. Moreover, the robust controller which we 

proposed also has the ability to tolerate the model uncertainty of human. 

Actually, lifting human is a typical problem when interacting with human by force. As 

human is such a big redundant model, a good solution is to reduce it and design controls. 

Here, there are two sources of model uncertainties: one is from the unmodeled dynamics 

which we cannot measure; the other is the generating model uncertainty which comes 

from model reduction. The effectiveness of the adaptive force control shows that by 

designing robust controller and online estimator, the two uncertainties mentioned can be 

solved. 

4. Speed control by human’s walking intention 

4.1 Background 

Human walking servo robot is a robot which adaptively adjusts its velocity to human’s 

walking speed. In this section, we consider controlled treadmill as human walking servo 

robot. In the previous human walking servo robot applications, the subjects had to passively 

follow the given speed (Mcdermott, Ades et al. 2009; Powell, Stevens et al. 2009). However, 

in many application cases, the human walking servo robot control strategy motivated by 

human will is very desirable. However, human will is very complex and hard to be 

measured. Even if certain models are obtained by brain signal, like brain computer interface 

(BCI), the models are limited because of great unmodeled uncertainty. 

Such a huge unmodeled uncertainty is very difficult to handle. Although the adaptive 

control with identification can tolerate some degree of unmodeled dynamics, it requires the 

unmodeled uncertainty is in some degree of limit. Once the model uncertainty is beyond the 

threshold, the control strategy corrupts. Considering this, we have to find another way 

which does not rely on model much. One constructive perspective is to consider the human 

process as a black box with multi-input and multi-output. Based on the experimental 

approach, we can evaluate the human process by the input stimulation (from 1u  to mu ) and 

output human response (from 1x  to nx ). The objective is to find a relation if  to satisfy 

1( , , )i i mx f u u   1 i n   where if  can be linear or nonlinear function. By determing if  

(1 )i n  , we can evaluate the human process. This section focuses on designing control for 

human walking servo robot by human’s walking intention. As we consider the human 

process as a multi-input-muilti-output (MIMO) black box, the main topic is to identify the 

MIMO human process. 
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4.2 Human walking intention extraction 
4.2.1 Characteristic index 

The coordinate definition is shown in Fig. 8. Here based on the real product of force plate, 

we assume that the true origin of the strain gauge force plate is not at the geometric center of 

the plate surface. There is a pad on the force plate. After a series of calibrations of the true 

origin, the true origin 'O  is at (0,0, )h . 
 

 

Fig. 8. Coordinate system. 

According to the coordinate, the reaction force of ground to feet was simulated where the 

human model is built by OPENSIM in Section 4.4. It is shown that in one dynamic circle, the 

force zF  is a bell-shape signal; yF  is a sine-shape signal (Fig. 9 (a)). 
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Fig. 9. Envelope of yzR  in acceleration. 

We can explain the reason of such curve shape as follows. When foot gets in touch with the 

surface of force plate, zF  increases very rapidly. At the same time, foot has to make a break 

to adjust its speed to the velocity of the force plate by fiction. After break process, foot 

applies a force with inverse direction to drive the leg to take a step, i.e. make a preparation 

for higher speed of leg in the next moment. It is noted that, compared with the previous 

break process, yF  changes its direction at this time. Until now, the foot is on the force plate. 

Hence, zF  maintains large (for a normal person with 70 kg weight, zF  is about 700 N). 
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Finally, the subject alternates the other foot to support body and zF  decreases rapidly. 

Considering the fact that when zF  is large enough, one foot is firmly on the human walking 

servo robot. We define a ratio index ,y zR  as 

 ,

0

y
z

y z z

F
F

R F

others




 



 (40) 

where   is a threshold. In normal cases,   is set as max{ } 80%zF  . According to the curve 

shapes of yF  and zF , the curve shape of ,y zR  is a composite signal of connection of sine-

shape signals and zero signals. 
To prove the above simulation result and corresponding analysis, we use Bertec treadmill 
TM07-B to complete a verification experiment. It is noted that under the treadmill, there are 
two force plates individually measuring the interaction force and moment. In the 
experiment, the reaction data are measured when the treadmill velocity varies from 1.0 m/s 
to 1.6 m/s. 

Without loss of generality, the zero signals are ignored in analysis, which leads to that ,y zR  

changes to a connection of various sine-shape signals with different magnitude. It can be 

inferred that ,y zR  is a characteristic index for the walking intention: when the subject 

intends to speed up, ,y zR


 becomes large, i.e. both the magnitudes of peak value and 

valley value become large. After acceleration, ,y zR  returns to a new equilibrium state (Fig. 9 

(b)). In other words, the envelope curve of ,y zR  determines the intended walking speed. The 

deceleration case can be explained in a similar way. 

4.2.2 Walking intention modeling 

To model the characteristic index ,y zR


, we use least-squares regression method to 

identify it. Specifically, first of all define the local peak value ,y zR  and local valley value 

,y zR of ,y zR  as 

 
, ,

0

, ,
0

max{ }

min{ }

y z y z
t T

y z y z
t T

R R

R R



 


 




 (41) 

where T  is the period of ,y zR . We can get a sequence of measurements 

 intend,1 , ,1 intend,2 , ,2 intend, , ,( , ),( , ), ,( , )y z y z n y z nV R V R V R    (42) 

Assuming that ,y zR  is predicted as a function of the intended walking speed intendV , then 

one can model this situation by 

 , intend( , )y z w w wR f V      (43) 

where w  is a parameter vector. The random variable w  is independent of intendV  and on 

average it is equal to zero, i.e. ( ) 0wE   . We want to find wf  that fits the measurement data 

best and we define the loss function to measure the quality of the fit as 
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, intend

2
( , )y z w w wL R f V      (44) 

We minimize it over all choices of parameter vector w . To find the approximation function, 

we write 

 
 , intend, ( , ),

0
y z w w w

w

L R f V  







 (45) 

In this section, we choose the other three model candidates: quadratic, cubic, 4th degree 

polynomial. In the experiment, we obtain ,y zR  ten times when the treadmill velocity varies 

from 0.1 m/s to 1.0 m/s. The observation samples are shown in Table 1. 
 

Velocity 
(m/s) ,y zR  ,y zR  Velocity 

(m/s) ,y zR  ,y zR  

0.1 0.0080 -0.0213 0.6 0.0872 -0.1172 

0.2 0.0310 -0.0353 0.7 0.1078 -0.0834 

0.3 0.0716 -0.0542 0.8 0.1126 -0.1224 

0.4 0.0622 -0.0695 0.9 0.1153 -0.1187 

0.5 0.0957 -0.0884 1.0 0.1841 -0.1421 

Table 1. Observation samples. 

For the purpose of evaluating the candidate models, we define residual norm as the sum of 

square of deviations 

  , , , , , intend
2 2

1 1

ˆ ˆ,
n n

r y z i y z y z i w w
i i

S R R R f V   

 
      (46) 

where ,
ˆ

y zR  is the estimation of ,y zR  based on the particular model. Take linear model for 

example, , ,0 ,1 intend
ˆ ˆ ˆ

y z w wR V    . The regression results are shown in Table 2. 
 

Regression Model Results 
Norm of 
Residuals 

linear , intend0.13 0.011y zR V     0.039887 

quadratic 
2

, intend intend0.067 0.2 0.00072y zR V V     0.034701 

cubic 
3 2

, intend intend intend0.08 0.19 0.25

0.0022

y zR V V V    


0.034094 

4th degree 
polynomial 

4 3 2
, intend intend intend

intend

0.6 1.1 0.56

0.097 0.0021

y zR V V V

V

    

 
 0.031844 

Table 2. Regression results. 

Because the residual norms of the four types do not have big difference, any model of the 

four is able to describe the human’s intended walking speed. Therefore, for simplicity we 

choose the linear model as follows. 
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 , intend0.13 0.011y zR V      (47) 

To summarize, the human walking intention is extracted in four steps as follows. The first 

step is to collect a sequence of measurements intend,1 , ,1 intend, , ,( , ), ,( , )y z n y z nV R V R  . The 

second step is to select a model type for intended walking speed based on Equation (43). 

Take linear model for example, , ,0 ,1 intendy z w wR V    . The third step is to define the loss 

function (Equation (44)) and compute the estimation of unknown coefficients. In the case of 

linear model, ,0
ˆ
w  and ,1

ˆ
w  are derived in (Dong, Luo et al. 2010). The fourth step is to 

compute the residual norms of the candidate models (Equation (46)). Considering model 

complexity and accuracy, choose a proper model. 

4.3 Adaptive speed control 

Nowadays human walking servo robot’s application has become more and more popular in 

many fields like athletic exercise, rehabilitation training. In the following part, a speed 

control by human’s walking intention is proposed by which the subject control the speed of 

human walking servo robot at his (or her) will. 

4.3.1 System construction 

The human walking servo robot used in the application is Bertec treadmill TM07-B. When 

the user walks on the treadmill, the dual force plates (placed under the human walking 

servo robot) measure the force and moment signals in x, y, z directions as xF , yF , zF , xM , 

yM , zM  and output them as analog signals. After amplifying them and doing analog-to-

digital (A/D) conversion, the digital signals are transferred to PC. Based on the force 

signals, human’s walking intention is identified by the least-squares method illustrated in 

Section 4.2.2. Then the human’s intended walking speed is used to drive the motors 

corresponding with left belt speed control and right belt speed control, respectively (Fig. 

10). Here from the viewpoint of control, the control plant is Bertec treadmill TM07-B 

which is controlled by the inner speed controller in the inner loop feedback (Dong, 

Oshiumi et al. 2010). 
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Fig. 10. System construction of human walking servo robot. 
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When the subject walks on the treadmill, there is some kind of perturbation adding to the 
control signal. It is noted that our control objective is to control the treadmill by human’s 
intended walking speed. Hence, we have to establish an outer loop feedback between the 

subject’s intended speed intendV  and the treadmill’s inner speed controller. 

4.3.2 Experiment results 

To calculate the transfer function ( )G s , we use the characteristic index of intended walking 

speed in Equation (47). Hence, the intended walking speed is calculated as follows. 

 
 
intend ,

intend

,

( 1) ( ) 0
( )

( ) 0.011 /0.13

y z

y z

V k R k
V k

R k others





   
 

 (48) 

There are many reasons, like sensor noise, causing computed intended walking speed not 
smooth. Here, we choose a delay-line filter to solve the problem. Finally, the intended 
walking speed driving the treadmill’s inner controller is 

 
4

treadmill intend
1

1
( ) ( )

4 i

V k V k i


   (49) 

Good performance can be obtained by using the above filter for many times. Fig. 11 shows a 
dynamic walking process with acceleration motion, deceleration motion and uniform 

motion (constant speed motion) in the time interval [28,34] , [55,65] , [15,24] , respectively. 
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Fig. 11. Speed control result. 

4.4 Summary 

This section proposed a method for extracting human’s walking intention and based on it, a 
speed control was proposed for adaptively driving human walking servo robot by human’s 
will. The ground reaction force is considered as the indicator of the human’s intended 
walking speed. By analyzing the walking simulation, we found a characteristic index which 
has significant relevance with the intended walking speed. After processing least-squares 
regression, four kinds of candidate models were obtained. For simplicity, we chose the 
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linear model. The extracted human intention was used to control the human walking servo 
robot. The control performance shows the effectiveness of the proposed method for 
extracting human walking intention. 
Compared with previous researches, there are two novelties to be illustrated. First is that the 
proposed method for human walking intention extraction simply uses the ground reaction 
forces to do estimation. The method is so easy-to-use that it even can be used on single-chip. 
The second is that in the previous human walking servo robot control, the subject had to 
follow the speed of human walking servo robot passively. While the proposed speed control 
can adaptively adjust the velocity of human walking servo robot to the subject’s, which 
shows great potential both in research and real-world applications. 
Actually, when HIR interacts with human by human’s intention, it is extremely hard to 
model or identify the unmodeled uncertainty because we know so little about human’s 
intention. In this case, it is a good way to analyze it just from the relation between inputs 
and outputs. The proposed speed control based on human’s walking intention shows that 
by identifying the relation mentioned, we can deal with the unmodeled uncertainty from 
human’s intention. 

5. Conclusion 

In this chapter, we designed kinds of control strategies of HIR and solved three typical 
problems for HIR. A sparse extended information filter SLAM approach was proposed for 
HIR’s navigation in a large unknown environment, which ensures HIR can fulfil its task in 
human surrounding environments. An adaptive force control was designed for HIR To lift 
human solving the physical interaction under an uncertainty of human dynamics of dealing 
with the complex human dynamics during interaction. A speed control by human’s 
intended walking speed was designed, which gives a solution to extracting human’s 
intention. Compared with other HIR approach, this chapter takes fully into account of 
uncertainties HIR encounters, including environment uncertainty, sensor uncertainty, 
actuator uncertainty, model uncertainty and unmodeled uncertainty. The contribution of 
this chapter is not only to give specific HIR controls for specific cases, but also to provide a 
good solving framework for HIR problem. 
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