
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

2

Development of Safe and Secure Control
Software for Autonomous Mobile Robots

Jerzy A. Barchanski
Brock University

Canada

1. Introduction

It is often said that autonomous robots should be trustworthy or dependable, meaning by this

safe, secure, reliable, etc This terms are too general to be useful, so we prefer to limit the

scope of this chapter to two of their inter-related components - safety and security. They

must be built into a system from the start; it is difficult, if not impossible, to add them in an

adequate and cost-effective manner later on.

We view autonomous robots as situated, real-time embedded systems endowed with

enough intelligence to adapt to changing environment and learn from their experience. They

may operate unattended and through an unsafe operation may cause significant human,

economic or mission losses. The focus of this chapter is on safety and security of robot

control software. This software allows unprecedented complexity of robotic systems, which

goes beyond the ability of current engineering techniques for assuring acceptable risk.

Most of the publications on safety has a form of recommendations on providing safe

environment for robot operators, like the Occupational Safety and Health Administration

regulations or the more recent NASA recommendations for space robots. This approach is

effective when accidents are primarily caused by hardware components failures.

As software becomes more and more important in robot control, we have to consider ways
to prevent accidents caused by software.
Robot control software consists of many interacting components. Accidents arise in the

interactions among the components rather than the failure of individual components.

The need for safety is obvious, but how to ensure it is less obvious. Autonomous robots may

operate unattended and through an unsafe operation may cause significant human,

economic, or mission losses. Similar problems were encountered early on in manufacturing

automation; but autonomous mobile robots may change their behaviour and operate in

much less controlled environments.

We will review at first the principal concepts of system safety like risk and hazard and some

traditional approaches to dealing with them. We consider security as a subset of safety and

we will present our point of view on this issue.

The present trend to make the robots more autonomous requires new approaches to deal
with much more complex problems of their safety. After review of several robot control
architectures from the viewpoint of their safety we present an approach based on systems
theory. While the theory was developed long time ago it turns out very useful to ensure

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 40

safety of complex software systems. We apply it in so called intention specification, which
allows a designer to explain why a specific decision was made and to introduce safety
constraints.

2. Principal concepts of system safety

Safety refers to the ability of a system to operate without causing an accident or an

unacceptable loss (Leveson 1995). An accident is an undesired and unplanned (not

necessarily unexpected) event that results in (at least) a specified level of loss. To prevent

accidents, something must be known about their precursors, and these precursors must be

under control of the system designer. To satisfy these requirements, system safety uses the

concept of a hazard. There are many definitions of hazards. We will define a hazard as a

state or set of conditions of a system that, together with other conditions in the environment

of the system may lead to an accident (or loss). We define therefore a hazard with respect to

the environment of the robot.

In case of physical systems, existence of a hazard depends on how the boundaries of the

system have been drawn – they must include the object that is damaged plus all the

conditions necessary for the loss.
This does not apply to software, since it is not a physical object, only an abstraction. Thus
software by itself is not safe or unsafe, although it could theoretically become unsafe when
executed on a computer. Thus we can talk only about the safety of software and its hazards
in the context of a particular system design within which it is being used. Otherwise, the
hazards associated with software do not exist. Due to this, the system safety engineers
prefer to use the term software system safety instead of software safety.
A hazard has two important characteristics: severity and likelihood of occurrence. Hazard

severity is defined as the worst possible accident that could result from the hazard given the

environment in its most unfavourable state.
The hazard likelihood of occurrence can be specified either qualitatively or quantitatively.
Unfortunately, when the system is being designed and hazards are being analysed and
ranked as to which should be eliminated first, the information needed to evaluate the
likelihood accurately is almost never available. It means, the best what can be done is to
evaluate the likelihood qualitatively.
The combination of severity and likelihood of occurrence is often called the hazard level.
Hazard level, along with two other factors related hazards, are used in the definition of risk.
Risk is the hazard level combined with (1) the likelihood of the hazard leading to an
accident and (2) hazard exposure or duration. Duration is a component of a risk, since the
longer the hazardous state exists, the greatest the chance is that the other prerequisite
conditions will occur.
The relationship between hardware and software hazards is shown on Fig.1, where:
Design dysfunction means any hazard inadvertently built-into the system design due to
design and integration, e.g.: design error, design interface error/oversight, design
integration error/oversight, tool errors;
Code error is any hazard inadvertently built-into the system design due to a coding error,
e.g.: wrong sign (+/-), endless loop, language error;
Hardware induced software error - any hazard resulting from hardware failure causing

safety critical software error, e.g. memory error, memory jump, bit error, change of value of

a critical variable.

www.intechopen.com

Development of Safe and Secure Control Software for Autonomous Mobile Robots 41

Risk = ?

Risk = Probability x Severity

The 3 ways SW can cause
safety related hazards.

P = 1.0 x e-T P = 1 or 0 P = 1 or 0

Hardware
Component

Software
Component

Software
Code Error

Hardware
Induced Error

Software
Design Dysfunction

Hazard
(SW Related)

Immature SW ?

Fig. 1. Generic software hazard model

As an example of risk evaluation let’s take the case when a computer controls movements
of a robot.
The risk is then a function of the
- probability that the computer causes a spurious or unexpected robot movement,
- probability that a human is in the field of movements,
- probability that the human has no time to move or will fail to diagnose the robot failure,
- severity of worst-case consequences.
If the computer executes a robot control software monitoring the state of the system and
including some safety function, then the risk is a function of the
- probability of a dangerous condition arising,
- probability of the computer not detecting it,
- probability of the computer not initiating its safety function,
- probability of the safety function not preventing the hazard,
- probability of conditions occurring that will cause the hazard to lead to an accident,
- worst-case severity of the accident.
In almost all cases, the correct way to combine the elements of the risk function are
unknown, as are the values of the parameters of the function.
Traditional hazard analyses consist of identifying events that could lead the system to a
hazardous state. These events are usually organized into causal chains or trees. Popular
event-based hazard analysis techniques include Fault Tree Analysis (FTA) and Failure
Modes and Effects Criticality Analysis (FMECA). Because of their reliance on discrete failure
events, neither of these techniques adequately handles software or system accidents that
result from dysfunctional interactions between system components.
Hazard analysis usually requires searching for potential sources of hazards through large
system state spaces. To handle this complexity it is possible to use a State Machine Hazard
Analysis (Leveson 1987). While any state machine modeling language can be used, it is more
efficient to use a language providing higher-level abstractions, such as Statecharts (Harel 1987).

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 42

The tasks of the software development process that relates to software hazard analysis include:
- Tracing identified system hazards to the software-hardware interface and then into

requirements and constraints on software behavior.
- Showing the consistency of the software safety constraints with the software

requirements specification and demonstrating the completeness of the software
requirements specification.

In addition, because software can do more than what is specified in the requirements (the
problem of unintended functions), the code itself must be analyzed to ensure that it cannot
exhibit hazardous behavior.

3. Security as a subset of safety

Safety and security are closely related, and their similarity can be used to the advantage of
both (Barchanski J.A., 2004),. Both deal with threats or risks – one with threats to life or
property, and the other with threats to privacy or security. Both often involve negative
requirements or constraints that may conflict with some important system goals. Both involve
protection against losses, although the type of losses may be different. Both involve global
system properties that are difficult to deal with outside of the system context. Both involve
requirements that are considered of supreme importance in deciding whether the system can
and should be used – that is particularly high level of assurance may be needed, and testing
alone is insufficient to establish those levels. In fact, a higher level of assurance that a system is
safe or secure may be needed than that system performs its intended functions.
While we will consider mostly the issues of illegitimate access and usage of a robot there is
another aspect less often encountered – denial of access. It is a threat in which the
communication channel is made unusable by an attacker who transmits noise on purpose
(jamming). While it is not possible to survive jamming when the attacker is all powerful and
can make the entire spectrum unusable over the spatio-temporal range of interest, it may be
possible to drive up the cost of jamming. Two widely used techniques for this are
frequency hopping and direct sequence spread. In both techniques the receiver must know
the pseudorandom sequence of frequencies used by the transmitter. An attacker wishing to
jam the channel must either discover the sequence or jam a sufficient number of frequencies,
therefore employing much more power (and money) than the transmitter.
It should be clear that this protection is conditional on transmitter and receiver having
previously established some shared key (e.g. by imprinting as described in the following
paragraph).
There are also important differences between safety and security. Security focuses on
malicious actions, whereas safety is also concerned with well intended actions. In addition,
the primary emphasis in security traditionally has been preventing unauthorized access to
classified information, as opposed to preventing more general malicious activities. Note,
however, that if an accident or loss event may be caused by illegitimate or malicious access
or usage of a system, then security becomes a subset of safety.

4. Safety aspects of autonomous robots

The concept of autonomy plays an important role in robotics. It relates to an individual or
collective ability to decide and act consistently without outside control or intervention.
Autonomous robots hold the promise of new operation possibilities, easier design and
development, and lower operating costs.
Achieving safety of autonomous robots is much more challenging than teleoperated robots.

www.intechopen.com

Development of Safe and Secure Control Software for Autonomous Mobile Robots 43

To improve safety of autonomous systems, adjustable autonomy can be used, in which the
robot is autonomous to some degree only so a human may still retain more or less control of
its behavior. While verification of the safety of a fully autonomous robot designed for a
critical mission requires extensive test and analysis, safety verification of a semi-
autonomous robot designed for the same mission is less strict – it includes only design
requirements analysis and testing.
Mobile robots control software can implement different robot control architectures.
The oldest architectures were of a hierarchical type, highly influenced by the AI research
of its time. This meant a system having an elaborate model of the world, using sensors to
update this model, and to draw conclusions based on the updated model. This is often
called the sense-plan-act paradigm or deliberative architecture. The hierarchical
architectures did not perform well partly because of the difficulty in modeling of the world,
partly because of relying too much on inadequate sensors.
In 1987 Rodney Brooks revolutionized the field by presenting an architecture based on purely
reactive behaviours with little or no knowledge of the world. The reactive architecture is
inherently parallel, fast, operates on short time scales and is scalable. There are two general
kinds of reactive architectures – subsumption and potential field (Arkin 1999). Reactive
architectures eliminate planning and any functions that involve remembering or reasoning
about the global state of the robot relative to its environment. That means that a robot cannot
plan optimal trajectories, make maps, monitor its own performance or even select the best
behaviours to use to accomplish a task (general planning).
The solutions to the drawbacks of reactive architectures appeared in hybrid architectures
combining the reactive architectures with modified deliberative architectures. They combine
different representations and time scales, combine closed-loop and open loop execution,
may re-use plans and allow dynamic replanning [Murphy 2000].
There is a number of other robot architectures designed independently of the above classes
(e.g., Alami et al, 1998). Especially interesting are architectures including learning or
adaptive components. The ability to adapt is key to survival in dynamic environments.
When robots are adaptive, the following questions need to be addressed:
1. Is learning applied to one or more robots?
2. If multiple robots are adaptive, are they competing or cooperating?
3. What element(s) of the robot(s) get adapted?
4. What techniques are used to adapt?
Learning may alter some components of robot strategy, for example, it may change the
choice of actions to take in response to a stimulus. Learning may be motivated by
observation, it could be initiated in response to success/failure, or be prompted by a general
need for performance improvement. The motivation influences the choice of learning
technique. Nearly every learning technique has been used for robots. The two most
prevalent techniques are reinforcement learning (RL) and evolutionary algorithms (EA).
A very popular form of RL is Q-learning, where robots update their probabilities of taking
actions in a given situation based on penalty/reward.
Introduction of learning makes behavior of robots significantly harder to predict. It is
necessary therefore to develop efficient methods for determining whether the behavior of
learning robots remains within the bounds of prespecified constraints (properties) after
learning. This includes verifying that properties are preserved for single robots as well as
verifying that properties are preserved for multirobot systems. We want the robots to be not
only adaptive, but as well predictable and timely. Predictability can be achieved by formal

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 44

verification while timeliness by streamlining reverification, using the knowledge of what
learning was done. Fast reverification after learning must include proofs that certain useful
learning operators (in case of EA) are a priori guaranteed to be “safe” with respect to some
important classes of properties, i.e. if the property holds for the robot prior to learning, then
it is guaranteed to still hold after learning (Gordon-Spears, 2001). If a robot uses these
“safe” learning operators, it will be guaranteed to preserve the properties with no
reverification required.

5. Hazard analysis of an exemplary case

As an example we will consider a mobile robot acting in a world where the three Laws of
Robotics (Asimov 1950) should be satisfied. We will be concerned with the hazards resulting
from the first two Laws, which are relevant for human-robot interactions :
First Law: “A robot may not injure a human being, or through inaction, may not allow a
human being to come to harm”.
From the first half of the Law: “A robot may not injure a human being” – the hazard is a
harmful physical contact with a human.
It can be mitigated by a safety constraint inherent in the robot behavior avoid _obstacles.
The second part of the law :“A robot through inaction, may not allow a human being to
come to harm” envisioned by Asimov as a kind of action requiring sacrifice of robot
existence to protect its master, is left for future generations of roboticists. At present it may
be implemented at most aposteriori by search and rescue robots.
The second law: “A robot must obey the orders, given to it by human beings except where
such orders would conflict with the First Law.”
This law has to do with tasks commanded by a human, like: move-to-goal, grasp, collect-
pucks, etc. The robot must be able to communicate with a human operator to execute his
orders. The examples of hazards violating this law are communication security hazards – e.g.
receiving from an illegitimate operator false commands or requests which may cause wrong
actions. To eliminate such hazards it must be possible to authenticate the human operator.
Most conventional authentication protocols (e.g. Kerberos) require usage of an online
server. This is out of the question here. Another widely used authentication protocol which
seems to be more suitable is one based on public key cryptography. It was in fact proposed
for authentication of cooperating autonomous digger and dumper truck [Chandler et al
2001]. However the problem of online access to the server appears here as well. What we
need is to be able to create a secure transient association. As well as being secure, the
association must also be transient. When an operator changes, the robot has to obey the new
operator. A solution for this dilemma is to use a metaphor of a duckling emerging from its
egg – it will recognize as its mother the first moving object it sees that makes a sound,
regardless of what it looks like: this phenomenon is called imprinting. Similarly, our robot
will recognize as its owner the first entity that gives it a secret key. As soon as this
imprinting key is received, the robot is no longer a newborn and will stay faithful to its
owner for the rest of its life. The association is secure.
To make the association transient, the robot must be designed so it can die (loose its
memory) and resurrect (be imprinted again). This security policy model, called
“Resurrecting Duckling” (Stajano 2002) can be used not only in the communications
between a human and a robot but between two robots as well, enabling robot-to-robot
secure interaction.
We will focus in the following on the hazard involving collision with an obstacle, whether it
is a human or not. To deal with this hazard, a robot should be able first to detect the

www.intechopen.com

Development of Safe and Secure Control Software for Autonomous Mobile Robots 45

obstacle, then recognize it and finally execute the avoidance manoeuvre. Obstacle
recognition is useful only if the robot is supposed to cooperate with a human or another
robot. Recognition of a human is quite a difficult task. It is necessary to use for this some
special sensors (e.g. a suite of vision and thermal sensors). Recognition of another robot may
be easier as it is possible to give the robot a special appearance (e.g. color). To reduce the
risk of collision, robots must have some kind of a behavior to avoid obstacles. This behavior
should be active all the time, concurrently with any other behavior active at the moment. We
will discuss in the following how efficient are the obstacle avoidance behaviors in different
robot control architectures.

6. Safety of different robot control architectures

6.1 Reactive architectures
As we have noticed above, the hierarchical architecture does not provide adequate
functionality for obstacle avoidance. Much better equipped for this purpose are reactive
architectures. The main reason for this is their direct connection of sensors to actuators. Even
though the architecture does not have a memory-based world model, but as Brooks said
“the world itself is its best model.” Continuous sensing guarantees that it is always current,
though not always correct, due to the sensors errors or failures. One of the characteristics of
reactive architectures is their ability for graceful degradation of emergent behavior (Jones
2004). Let us consider a mobile robot moving to a goal and equipped with a number of
different sensors. In the simplest case it will not discriminate between different kinds of
obstacles. Failure of a sensor to detect an obstacle is called false negative. A false positive
occurs when a sensor reports a condition that does not exists. From the viewpoint of safety a
false negative implies a hazard to be dealt with. One way to mitigate this hazard is to use a
set of different sensors invoking suitable behaviors. For example a robot may use for long
distance journey a sonar-avoid behavior. While still some distance off, the robot will turn
away from sonar detected obstacles. But sonar sensors are easily fooled. Smooth surfaces
struck at shallow angles reflect sonar beams forward, not back toward the robot – thus no
echo is ever detected, causing the sonar system to report a false negative. When this
happens, the robot believes that the path is clear, even if it is not. In this case, the sonar-
avoid behavior fails to trigger. But as the robot approaches the acoustically specular object,
typically the infrared (IR) detectors will sense an obstacle and drive the robot away. But
perhaps along with being too smooth and set at too oblique an angle, the obstacle’s surface
is also too dark to reflect IR radiation reliably back to the IR obstacle detector. Thus the IR
detector may also fail to sense the object, generating a false negative of its own.
With no signal from the IR detector, the IR-avoid behavior does not trigger and the robot
collides with the obstacle. The robot bumper now compresses and triggers the Bumper-
escape behavior. Having failed to avoid the obstacle, the robot must now back up and try to
turn away. Typically, the bump sensors can detect, at least crudely, where the collision has
occurred, say, on the right, or the left of the robot. This knowledge can give the robot an
indication of how to respond.
The performance of the robot may suffer, but the robot can still continue its mission. But
suppose there is yet another difficulty, say, that the bumper is not a full-coverage bumper or
that it has a dead spot at some point and it is exactly that point that the troublesome smooth,
dark oblique object contacts the bumper. Now the bumper fails to report the collision and
accordingly, the Bumper-escape behavior never triggers. We are left with our robot pressing
against the object with all its might. Fortunately, an over-current sensor is available to detect
this condition. When the drive motors are asked to work too hard, as can happen, when

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 46

they force the robot against an object, motor current goes up. Too high current for too long a
time is sensed and is used to trigger a Stall-escape behavior. Although there is no reliable
way to tell where the blockage is located with respect to the robot, Stall-escape can at least
command the robot to retreat and spin. So, the robot still can move towards its goal. We
have assumed that all the problems are caused by a difficult-to-detect obstacle. But the same
behavior would be produced by some inoperative sensors.
Note that the emergent desirable behavior does not require writing a special code that
would explicitly instruct the robot to determine if a sensor is working properly. It is just the
feature of behavior-based architecture.

Fig. 2. Reactive architecture with graceful degradation.

The above examples show a crucial difference between the behavior-based approach of
reactive architectures and the traditional deliberative approach. In reactive architectures we
do not employ a single expensive sensor from which we must demand unattainable levels of
precision and reliability. Rather we achieve superior results using a combination of
relatively unreliable systems that work together to deliver safe behavior.
In the original subsumption architecture the speed was decided by the behavior subsuming
all the other behaviors. Quite often the speed was fixed – the same for all the winning
behaviors.
In case of reactive architecture using potential fields for coordination of behaviors (Arkin
1999) the emergent speed is the magnitude of the vector summed from all the active
behaviors. It allows therefore to avoid obstacles while moving towards a goal – providing
better overall behavior than subsumption architecture.

6.2 Hybrid architectures

The reactive architectures do not have an ability to monitor performance of the robot or to
use e.g. an optimal speed and path to a destination, while avoiding obstacle. This can be

www.intechopen.com

Development of Safe and Secure Control Software for Autonomous Mobile Robots 47

mitigated by appropriately designed deliberative layer of a hybrid architecture. For
example, in managerial architectures (Murphy 2000), the deliberative layer may include a
Sensing Manager monitoring performance of the robot. If a behavior fails or a perceptual
schema detects that sensor values are not consistent or reasonable, the Sensing Manager is
alerted. It can then identify alternative perceptual schemas, or even behaviors, to replace the
problematic behaviour immediately. Imagine a mobile robot in a convoy of robots hauling
food to refugees. If the robot had a glitch in a sensor, it should not suddenly stop and think
about a problem. Instead it should immediately switch to a back-up plan or even to
smoothly slow down while it identifies a back-up plan. Otherwise, the whole convoy would
stop, there might be wrecks, etc. The sensing manager working in the background mode,
can attempt to diagnose the cause of the problem and correct it.
In some managerial architectures (e.g. SFX (Murphy 1996) speed control is considered a

separate behavior. The safe speed of a robot depends on many influences. If the robot

cannot turn in place, it will need to be operating at a slow speed to make the turn without

overshooting. Likewise, it may go slower as it goes up or down hills. These influences are

derived from sensors, and the action is a template (the robot always slows down on hills), so

speed control is a legitimate behavior. But the other behaviors should have some influence

on the speed as well. So, these other strategic behaviors contribute a strategic speed to the

speed control behaviour. If the strategic speed is less than the safe speed computed from the

tactical influences, then the output speed is the strategic speed. But if the tactical safe speed

is lower, the output speed is the tactical speed. Tactical behaviors serve as filters on strategic

commands to ensure that the robot acts in a safe manner in as close accordance with the

strategic intent as possible.

Fig. 3. Strategic and tactical behaviors for path following in SFX architecture.

An example of the Model-oriented architectures is the Task Control Architecture (TCA)

(Simmons 1999). TCA has a flavor of an operating system. There are no behaviors per se,

however many of low level tasks resemble behaviors. The reactive layer in this architecture

called Obstacle Avoidance Layer takes the desired heading and adapts it to the obstacles

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 48

extracted from the evidence grid virtual sensor. The layer uses a curvature-velocity method

(CVM) to factor in not only obstacles but how to respond with a smooth trajectory for the

robot’s current velocity. Because this architecture does not have direct connection of sensors

to actuators, it may have the same problems as the hierarchical architectures of the past –

delayed response to events.

7. System-theoretic approach

To make a progress in dealing with safety in complex systems, we need new models and
conceptions of how accidents occur, that more accurately and completely reflect the types of
accidents we are experiencing today.
We use for safety analysis of robot control architectures a system-theoretical approach
(Barchanski, J.A. 2006), which allows more complex relationships between events to be
considered and also provides a way to look more deeply at why the events occurred. Whereas
industrial safety models focus on unsafe acts or conditions and reliability engineering
emphasizes failure events, a systems approach to safety takes a broader view by focusing on
what was wrong with the system’s design or operations that allowed the accident to take place.
System theory dates from the thirties and forties, and was a response to limitations to the
classic analysis techniques in coping with the increasingly complex systems being built.
Norbert Wiener applied this approach to control and communications engineering while
Ludwig von Bertalanffy developed similar ideas for biology. It was Bertalanffy who
suggested that the emerging ideas in various fields could be combined into a general theory
of systems (Bertalanffy 1969) .
The systems approach focuses on systems taken as a whole, not on the parts examined
separately. It assumes that some properties of systems can only be treated adequately in
their entirety, taking into account all facets relating the social to technical aspects. These
system properties derive from the relationships between the parts of systems: how the parts
interact and fit together. Thus the system approach concentrates on the analysis and design
of the system as a whole as distinct from the components or the parts. While components
may be constructed in a modular fashion, the original analysis and decomposition must be
performed top down.
The foundations of system theory rests on two pairs of ideas:
(1) emergence and hierarchy and (2) communication and control (Checkland 1981).

7.1 Emergence and hierarchy

A general model of complex systems can be expressed in terms of hierarchy of levels of
organization, each more complex than the one below, where a level is characterized by
having emergent properties.
Emergent properties do not exist at lower levels; they are meaningless in the language
appropriate to those levels. Thus, the operation of the processes at the higher levels of the
hierarchy results in a higher levels of complexity – that has emergent properties.
Safety is an emergent property of systems. Determining whether a plant is acceptable safe is
not possible by examining a single valve in the plant.
In fact, statements about the “safety of the valve” without information about the context in
which the valve is used, are meaningless. In a system-theoretic view of safety the emergent
safety properties are controlled or enforced by a set of safety constraints related to the
behavior of the system components.

www.intechopen.com

Development of Safe and Secure Control Software for Autonomous Mobile Robots 49

A second basic part of system theory, the hierarchy theory, deals with the fundamental
differences between levels of a hierarchy. Its ultimate aim is to explain the relationship
between different levels, what generates the levels, what separates them, and what links
them. Emergent properties associated with a set of components at one level in a hierarchy
are related to constraints upon the degree of freedom of those components.
In a systems-theoretic view of safety the emergent safety properties are controlled or
enforced by a set of safety constraints related to the behavior of the system components.
Safety constraints specify those relationships among system variables or components that
constitute the non-hazardous or safe system states. Accidents result from interactions
among system components that violate these constraints – in other words, from a lack of
appropriate constraints on system behavior.

7.2 Communication and control

Regulatory or control action is the imposition of constraints upon the activity at one level of
a hierarchy, which define the “laws of behavior” at that level yielding activity meaningful at
a higher level.
Hierarchies are characterized by control processes operating at the interfaces between levels.

Any description of a control process entails an upper level imposing constraints upon the

lower. The upper level is a source of an alternative (simpler) description of the lower level in

terms of specific functions that are emergent as a result of the imposition of constraints.

Control in open systems (those that have inputs and outputs from their environment)

implies the need for communication. A system is not treated as a static design, but as a

dynamic process that is continually adapting to achieve its ends and to react to changes in

itself and its environment. To be safe, the original design must not only enforce appropriate

constraints on behavior to ensure safe operation (the enforcement of the safety constraints),

but it must continue to operate safely as changes and adaptations occur over time.

8. Intent specification

Conventional software engineering uses top-down and bottom-up hierarchies of two kinds:
- part-whole abstractions (where each level represents aggregation of components of the

lower level),
- information-hiding abstraction (where each level is a refinement of the information at a

higher level).
Higher level specifies the “what”, lower level specifies the “how”. There is no place to
specify the “why” (intent, goal, purpose) of a level.
Systems-theoretical approach allows to do this in so called Intent Specification (Leveson 2000)
which complements the conventional methodology – it implements the “means – ends”
hierarchy, where each level provides the intent (“why”) information about the level below.
The specification supports safety-driven development by tightly integrating the system
safety process and the information resulting from it into the system engineering process and
decision–making environment. The goal is to support design of safe systems rather than
simply attempt to verify safety after-the–fact. Safety-related design decisions are linked to
hazard analysis and design implementations so that assurance of safety is enhanced as well
as any analysis required when changes are proposed.
The levels are used to specify user requirements, environmental assumptions and safety
constraints.

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 50

Especially useful feature of the intent specifications is strong support of traceability. The
structure of the intent specification is such that each level above provides rationale for why
decisions at the lower levels were made the way they were. To be able to follow this
reasoning easily, traceability links are encouraged throughout the document. For example,
each hazard would link, within the same level, to the safety design constraints that mitigate
the hazard. Each safety constraint would then link down from level one to level two where
design decisions comply with and enforce the constraint. Those design decisions would link
down to level three, the subcomponent requirements, where the subcomponent
requirements adhere to the system level design decisions. These links go from the highest
level goals of the system all the way down to the code and operator manuals. By following
these links, one follows the reasoning behind the system's behavior and can evaluate the
safety of changes to the system.
We will review in the following four levels of the intent specification

8.1 Design and safety constraints – level 1

Requirements document what things the system should do. Constraints document things
that the system should not do. Constraints provide limits on the space of possible designs
within which the system will behave as desired. Intent specifications frequently divide
constraints into those that are related to safety and those that are not. Safety constraints are
design constraints motivated by safety concerns. It is fairly easy to derive safety constraints
from hazards. For example, if a hazard for an autonomous mobile robot is having its arm
extended while it is in motion, then the safety constraint could be written that the robot
must not move while its arm is extended. Safety constraints link to the hazards that
generated them and to the design decisions that enforce them.

8.2 System design principles – level 2

The core of the level 2 of an intent specification is the set of design principles that specify
how the design will satisfy the requirements documented in level 1 while not violating any
design constraints. The functional design principles show the functional decomposition
upon which the software logic is structured. It is useful to divide the robot control
functionality into different operating modes (e.g. initialization, autonomy, operator, and
safety). The functionality for each mode should be independent of the others. This feature
allows the designers to change the internal logic of one mode without worrying about the
effect the changes will have on the other modes.
The mode selection logic implements the mode transitions.

8.3 Black box specification – level 3

Level 3 is designed to provide the system designers with a complete set of tools with which
to validate the specified requirements before implementation begins. Only black box
(externally visible) behavior is included, i.e. the input/output function to be computed by
the component. Black box models assist in the requirements review process by eliminating
implementation details that do not affect external behavior and thus are not relevant in the
validation of the requirements. For this purpose, a model of the robot control system is
produced using formal specification language SpecTRM-RL (Leveson 2002).
Most model elements in SpecTRM-RL rely on AND/OR tables. The tables pictured below
are part of the transitions for the “Distance” state in the obstacle avoidance behavior.
AND/OR tables provide a very simple way to read the behavior of a component.

www.intechopen.com

Development of Safe and Secure Control Software for Autonomous Mobile Robots 51

The first column of the table contains expressions that may be true or false. In the very first
row of the table for the Unknown transition below, the expression is System Start. This
expression is true at the instant the system is first started and false at all other times. The next
row's expression is true when the Reset input has a value of High and false at other times.
When reading a table, the true or false value of this first column is matched against the values
in subsequent columns. Subsequent columns must contain T indicating true, F for false, or * for
don't care. If every row in the first column matches the values in some subsequent column, the
table as a whole is true. If no column matches, then the table is not true. Another way of saying
this is that rows are ANDed together and columns are ORed together
As an example, consider the Unknown transition below. If the table is true, then the system
will transition to the state “distance to an obstacle” being unknown. This table can be read
as saying that the distance transitions to unknown if the system is just starting, the system is
being reset, or all the sensors are in the unknown state.
All the system state variables in a SpecTRM-RL model are required to have an "Unknown"
value. A very common error found in requirements specifications and often associated with
accidents is assuming that the computer always has an accurate (up-to-date) model of the
controlled system. If input processing and feedback is disrupted for some reason (including
temporary halting of the computer itself) however, the assumed controlled-system state may
inaccurately reflect the real state. In SpecTRM-RL models, each state variable defaults to the
unknown value at startup and returns to the unknown value after interruptions in
processing or expected (and necessary) inputs are not received.

8.4 Physical and logical design – level 4

Level 4 describes the physical and logical designs of each subcomponent that allows them to

meet the subcomponent requirements described at level 3. The component may be

hardware, software, or some combination of the two.

Software Design Specifications can be represented in any design notation customarily used

for software. Intent specifications can incorporate any desirable design notation, from

formal predicate logic to UML diagrams.

Requirement specifications are mapped into design specifications of a selected robot control

architecture. The mapping can be done in one of three ways:

Uncoupled: the mappings or functions from requirements to design principles are all one-

to-one.

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 52

Loosely coupled: the mappings are one-to-many.
Tightly coupled: the mappings are many-to-many.
For any complex control system, a completely uncoupled designs, while allowing changes to
requirements with minimal impact, is usually not practical.
A tightly-coupled system is highly interdependent. Each part is tightly linked to many other
parts, so that a failure or unplanned behaviour in one, can rapidly affect the status of others.
This is definitely not desirable.
The most appropriate and realistic is to design the system in such a way as to reduce the
impact of requirements changes, i.e. to eliminate the rippling effects to other requirements,
by designing the mappings to be one-to-many (loosely coupled). By this, a failure of a
design element can be traced to incorrect or incomplete requirement.

8.5 Determinism analysis

A system is nondeterministic when it may display one of several behaviors for the same
sequence of inputs. Nondeterministic systems are very difficult to analyze and test because
of the element of chance in their behavior. It is strongly desirable for a safety-critical system
to behave in a deterministic fashion.
SpecTRM-RL models are models of the requirements for system components.
Nondeterminism in the behavior of a SpecTRM-RL model indicates inconsistency in the
requirements. Additional information must be added to the specification to collapse the case
of nondeterminism down to one deterministic choice. The following is an example of
nondeterminism in a SpecTRM-RL model.

This example is taken from the robot control mode. According to the first table, the robot
goes to the Operational mode any time the Reset button is pushed. According to the second
table's first column, the robot transitions to Internal Fault Detected whenever it was already
in Internal Fault Detected. This specification is ambiguous as to whether a reset command
should put the system in an operational state once a fault has been detected.

8.6 Completeness analysis

A system is complete when there is a specified response for every sequence of inputs that

might come into the system. Incomplete systems have combinations of system states and

www.intechopen.com

Development of Safe and Secure Control Software for Autonomous Mobile Robots 53

inputs for which no response is specified. Incompletness occurs when there is no table in a

state or mode definition that is true for some set of conditions. Additional information must

be added to the specification to make one of the tables true.

9. Related methods

The closest to presented above approach to system safety is an industrial hazard analysis
method called HAZard Operability analysis (HAZOP) developed for the British chemical
industry in the 1950’s. The goal of a HAZOP is to identify operational deviations from
intended performance and study their impact on system safety (Soukas, 1988).
The HAZOP procedure is carried out by a HAZOP expert (the leader) and a team of system
experts. The leader poses a battery of questions to the experts in an attempt to elicit potential
system hazards. A HAZOP is potentially an exploratory analysis as neither potential faults
nor hazards have been assumed beforehand. The HAZOP leader hypothesizes an abnormal
condition and analysis proceeds in both directions, determining whether and how the
condition is possible and what effects it has on the system.
The analysis is based on a systems theory model of accidents, in that it concentrates on the
hazards that can result from components interaction, i.e. accidents are caused by deviations
in component behavior.
HAZOP has several limitations. First, it is time- and labor –intensive, in large part due to its
reliance on group discussions and manual analysis procedures. Second, HAZOP analyzes
causes and effects with respect to deviations from expected behaviour, but it does not
analyze whether the design, under normal operating conditions, yields expected behaviour
or if the expected behaviour is what is desired.
A third limitations arises from the fact that HAZOP is a flow-based analysis. Deviations from
within a component or processes are not expected directly; instead, deviation within a
component (as well as human error or other environmental disturbance) is assumed to be
manifested as a disturbed flow. A purely flow oriented approach may cause the analyst to
neglect process-related malfunctions and hazards in favour of pipe-related causes and effects.
Because HAZOP concentrates on physical properties of the system (Souskas, 1988), it is not
directly applicable to analyzing computer input and output.
There is a number of other manual methods for hazard analysis (e.g. Lear, 1993). All of these
methods suffer from two weaknesses with respect to analyzing software. First, being
manual techniques they depend on human understanding of the proposed software, which
can be quite limited. Second, the manual techniques adhere to the HAZOP principle of
identifying deviations in the connections, i.e., the computer inputs and outputs only.
Accordingly, they do not provide guidance for following deviations into the control logic.

10. Conclusion

Knowledge of how to build safe and secure autonomous mobile robots is a prerequisite for
their wide acceptance. In this chapter we have described relationship between robot autonomy
and its safety and security. In contrast to traditional hazard analysis techniques used in electro-
mechanical systems, we have introduced a technique based on system theory. We have
outlined a methodology for building safe autonomous mobile robots based on hazard analysis
and intent specification. The specification supports safety-driven development by tightly
integrating the system safety process and the information resulting from it into the system

www.intechopen.com

Mobile Robots – Control Architectures,
Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training 54

engineering process and decision–making environment. The goal is to support design of safe
systems rather than simply attempt to verify safety after-the–fact. Safety-related design
decisions are linked to hazard analysis and design implementations so that assurance of safety
is enhanced as well as any analysis required when changes are proposed.

11. References

Alami et al (1998), An Architecture for Autonomy, International Journal of Robotics
Research, April 1998.

Arkin, R. (1999) Behaviour-based Robotics,The MIT Press.
Asimov I. (1950), I Robot, Doubleday, Arkin, R. (1999), Behavior-Based Robotics, The MIT

Press
Barchanski J.A.(2004), Safety and Security of Autonomous Robots Software, IAESTED

International Conference on Advances in Computer Science and Technology, St.
Thomas, US Virgin Islands, November 2004.

Barchanski, J.A. (2006), System-Theoretic Approach to Safety of Robot Control
Architectures, Canadian Conference on Electrical and Computer Engineering, 6 -
10 May 2006, Ottawa.

Bertalanffy, L., (1969) General Systems Theory: Foundations, Development and
Applications, G. Braziller, New York,

Chandler, A. et al (2001) Digging into Concurrency, Technical Report, Computing
Department, Lancaster University,

Checkland, P., (1981), Systems Thinking. System Practice, John Wiley &Sons, NY Harel,
D.,(1987) Statecharts: A Visual formalism for complex systems, Science of
Computer Programming, 8:231-274,

Gordon, D. (2001). APT Agents: Agents that are adaptive, predictable, and timely. In Lecture
Notes in Artificial Intelligence, Volume 1871. Springer-Verlag.

Jones, J.L.,(2004), Robot Programming, A Practical Guide, McGraw-Hill
Murphy, R., (1996), Biological and Cognitive Foundations of Intelligent Sensor Fusion, IEEE

Transactions on Systems, Man and Cybernetics, vol. 26, No 1.
Murphy, R., (2000), Introduction to AI Robotics, The MIT Press.
Lear, J.,(1993), Computer hazard and operability studies, In Sydney University Chemical

Engineering Association Symposium: Safety and Reliability of Process Control
Systems, October 1993.

Leveson N. G.(1987), et al, Safety Analysis Using Petri Nets, IEEE Transaction on Software
Engineering, March 1987.

Leveson, N.G., (1995), Safeware: System Safety and Computers, Addison Wesley,.
Leveson, N. G. (2000), Intent Specification: An Approach to Building Human-Centered

Specifications, IEEE Trans. on Software Engineering, January 2000.
Leveson, N. G., (2002), Safety-critical Requirements Specifications using SpecTRM, Trans.

on Soft. Engineering
Simmons, R., et al, (1999), Xavier: An Autonomous Mobile Robot on the Web, Robotics and

Automation, Magazine,
Souskas, J.,(1988), The role of safety analysis in accident prevention, Accident Analysis and

Prevention,
Stajano, F., (2002), Security for Ubiquitous Computing,Wiley,

www.intechopen.com

Mobile Robots - Control Architectures, Bio-Interfacing, Navigation,

Multi Robot Motion Planning and Operator Training

Edited by Dr. Janusz Bȩdkowski

ISBN 978-953-307-842-7

Hard cover, 390 pages

Publisher InTech

Published online 02, December, 2011

Published in print edition December, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The objective of this book is to cover advances of mobile robotics and related technologies applied for multi

robot systems' design and development. Design of control system is a complex issue, requiring the application

of information technologies to link the robots into a single network. Human robot interface becomes a

demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated

electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video

games. A number of developments in navigation and path planning, including parallel programming, can be

observed. Cooperative path planning, formation control of multi robotic agents, communication and distance

measurement between agents are shown. Training of the mobile robot operators is very difficult task also

because of several factors related to different task execution. The presented improvement is related to

environment model generation based on autonomous mobile robot observations.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jerzy A. Barchanski (2011). Development of Safe and Secure Control Software for Autonomous Mobile

Robots, Mobile Robots - Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and

Operator Training, Dr. Janusz Bȩdkowski (Ed.), ISBN: 978-953-307-842-7, InTech, Available from:

http://www.intechopen.com/books/mobile-robots-control-architectures-bio-interfacing-navigation-multi-robot-

motion-planning-and-operator-training/development-of-safe-and-secure-control-software-for-autonomous-

mobile-robots

© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

