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1. Introduction 

It has been estimated that nearly 19 million Americans or 8% of the U.S. population need 
treatment for an alcohol problem. Alcohol dependence accounts for approximately 100,000 
deaths each year. Alcoholism abuse and dependence costs the United States $185 billion 
dollars in direct and indirect social costs per year with more than 70% of the cost attributed 
to lost productivity.  
Current treatments for alcohol dependence include acamprosate calcium, disulfiram, and 
naltrexone (NTX). NTX is a potent competitive opioid antagonist with high affinity for the 
mu-opioid receptor. NTX is currently available in an oral 50 mg tablet (ReVia® and 
generics) as well as a 380 mg depot injection for the treatment of opiate and alcohol 
addiction (Vivitrol®; PDR, 1996). The dosage forms have had limited success due to poor 
oral bioavailability (5-40%), intense side effects such as nausea and stomach pain, as well as 
inconsistent release from the depot form (Vivitrol®; PDR, 1996). An alternative approach to 
circumvent drawbacks from oral therapy and painful depot injections to treat alcoholism is 
transdermal delivery. By initially limiting the input of the drug dose directly to the systemic 
circulation, extensive metabolism in the liver is bypassed, thereby increasing efficacy and 
decreasing the chance of deleterious side effects. Transdermal drug delivery systems are 
trouble-free outpatient products, and monthly reoccurring healthcare visits to receive a 
painful injection can be avoided.  
Opioid antagonists such as NTX, naloxone and nalmefene, a nonselective opioid antagonist, 
have been studied for delivery by the transdermal route for the treatment of alcohol 
dependence. However, most of the opioid antagonists do not have suitable physicochemical 
properties for required therapeutic skin permeation rates from passive-delivery. Previous 
attempts to deliver a controlled therapeutic dose of NTX through the skin have been 
unsuccessful in achieving desirable permeation rates in the high end of the therapeutic 
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range (Hammell et al., 2004; Pillai et al., 2004; Vaddi et al., 2005). NTX’s primary metabolite, 
6-β-naltrexol (NTXOL), is formed by reduction at the 6-keto group. NTXOL, which may 
provide a longer duration of action than NTX, also does not have optimal physicochemical 
properties for transdermal delivery (King et al., 1997; Verebey et al., 1976). NTXOL’s 
maximum flux values have been reported to be 6-fold less than that of the parent NTX 
(Paudel et al., 2005). Approaches ranging from prodrug synthesis to codrug formation have 
been applied to enhance permeation of NTX and NTXOL through the skin with limited 
successes (Kiptoo et al., 2006; Valiveti et al., 2005).  
The most recent approach to deliver therapeutically relevant levels of NTX is with the 
application of microneedle (MN) arrays to the skin (Wermeling et al., 2008). NTXOL has also 
been evaluated for MN skin permeation enhancement in hairless guinea pigs (GP) (Banks et 
al., 2010). Microneedles, composed from stainless steel, biodegradable polymers, and silicon, 
provide an aqueous conduit for drug to bypass the stratum corneum and enter the systemic 
circulation (Prausnitz, 2004; Prausnitz et al., 2005). MN study, while in its infancy, has 
focused on a broad range of compounds such as insulin, desmopressin, oligonucleotides, 
and vaccines for permeation enhancement (Cormier et al., 2004; Coulman et al., 2006; 
Gardeniers et al., 2003; Martanto et al., 2004; Mikszta et al., 2002; Prausnitz, 2004). MNs have 
been mostly used either as a pretreatment to permeabilize skin before applying a patch or 
with drug coated onto the MN array for rapid dissolution and release in the skin (Cormier et 
al., 2004; Martanto et al., 2004; Prausnitz, 2004).  
Previous studies have shown that the transdermal flux of NTX and NTXOL can be enhanced 
by MN and can be optimized by using MN in combination with charged (protonated) drugs 
that have increased solubility in an aqueous patch reservoir and increased permeability 
through aqueous pathways created by MN in the skin (Banks et al., 2008). Another study 
determined the lifetime of MN-created aqueous pore pathways (Banks et al., 2010). MN pore 
lifetime was estimated by pharmacokinetic evaluation, transepidermal water loss (TEWL) 
and visualization of MN-treated skin pore diameters using light microscopy. A 3.6-fold 
enhancement in steady-state plasma concentration was observed in vivo with MN treated 
skin with the hydrochloride (HCl) salt of NTXOL as compared to NTXOL base. TEWL 
measurements and microscopic evaluation of stained MN-treated GP skin indicated the 
presence of pores, suggesting a feasible nonlipid bilayer pathway for enhanced transdermal 
delivery. Overall, MN-assisted transdermal delivery appeared viable for at least 48 h after 
MN-application.  
It has been shown that formulation, specifically the viscosity of the formulation, influences 
the MN-enhanced transdermal transport of NTX·HCl (Milewski & Stinchcomb., 2011). 
Another study has combined microneedle skin pretreatment with the use of a highly water-
soluble PEGylated NTX prodrug for further improvement in the percutaneous flux of NTX 
(Milewski et al., 2010). The main drawback of MN-assisted delivery, however, is that the 
micropores begin to close between 48-72 hour (Banks et al., 2010) and hence it is not possible 
to achieve sustained delivery of the drug for a prolonged period. A recent study has shown 
that by using diclofenac, a nonspecific COX inhibitor, daily with NTX enables the delivery 
of the drug over a 7 day period in hairless GP (Banks et al., 2011).  
An in vitro/in vivo correlation (IVIVC) is an integral relationship in pharmaceutical dosage 
form development. Defined by the FDA, an IVIVC is a predictive model describing the 
relationship between an in vitro property of a dosage form and relevant in vivo response 
(FDA). In the case of transdermal delivery, the in vitro property is the rate of permeation or 
release through the skin while the in vivo response is the plasma drug concentration. An 
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IVIVC is an important aspect of transdermal delivery, because it gives validation to in vitro 
diffusion studies. Building confidence into the in vitro model is a cost and time saving factor 
that affords screening of multiple compounds and only testing the most successful in vivo. 
Previous studies looking at transdermal delivery of NTX prodrugs and a highly lipophilc 
drug, delta 8-THC, showed good correlation with the hairless GP pharmacokinetic model 
and in vitro flow through diffusion cell data (Valiveti et al., 2004a). The approach to deliver 
NTX at therapeutically relevant levels that has recently been studied is to use the water 
soluble form of NTX aided by MN facilitated permeation of the skin (Banks et al., 2008). In 
this present study, we describe IVIVC of NTX through MN treated skin. In vitro skin 
permeation studies were carried out across MN treated GP and human skin with a gel 
comprised of the hydrophilic HCl salt form of NTX. Then, in vivo studies were carried out in 
GP utilizing a MN gel patch delivery system to establish an IVIVC in GPs. Finally, the in 
vitro human skin data was compared with data from a previous healthy human volunteer 
study (Wermeling et al., 2008) to establish the human IVIVC. 

2. Materials and methods 

2.1 Materials 

NTX·HCl was purchased from Mallinckrodt Inc. (St. Louis, MO, USA). Hanks’ balanced salts 
modified powder and propylene glycol was purchased from Sigma Aldrich (St. Louis, MO, 
USA). Ammonium citrate was purchased from Alfa Aesar (Ward Hill, MA, USA). Sodium 
bicarbonate, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), gentamicin sulfate, 
ammonium acetate, ethyl acetate, acetonitrile (ACN), triethylamine (TEA) and trifluoroacetic 
acid (TFA) were obtained from Fisher Scientific (Fairlawn, NJ, USA). A Barnstead nanopure 
Diamond Ultrapure water system was used for all aqueous solutions (Barnstead International, 
Dubuque, IA, USA). 1-Octanesulfonate was purchased from Regis Technologies, Inc (Morton 
Grove, IL, USA). Natrosol® (Hydroxyethylcellulose250HHX PHARM) was a gift from 
Hercules, Inc. (Wilmington, DE, USA). Benzyl Alcohol was purchased from Spectrum 
Chemical MFG. Corp. (Gardena, CA, USA). 

2.2 Microneedle fabrication 

In-plane microneedle rows with five microneedles were cut from stainless steel sheets 
(Trinity Brand Industries, SS 304, 75 mm thick; McMaster-Carr, Atlanta, GA, USA) using an 
infrared laser (Resonetics Maestro, Nashua, NH, USA) using methods previously described 
(Martanto et al., 2004) in the laboratory of Dr. Mark Prausnitz at the Georgia Institute of 
Technology. Briefly, the microneedle row was first drafted in AutoCAD software 
(Autodesk, Cupertino, CA, USA). Using this design, the infrared laser cut microneedles into 
the stainless steel sheet. The microneedle rows were then cleaned with detergent (Alconox, 
White Plains, NY, USA) to de-grease the surface and remove part of the slag and oxides 
deposited during laser-cutting. To completely clean the slag and debris and to sharpen 
microneedle tips, microneedle rows were electropolished in a solution containing glycerin, 
ortho-phosphoric acid (85%) and water in a ratio of 6:3:1 by volume (all chemicals, Fisher 
Scientific, Fair Lawn, NJ, USA). Electropolishing was performed in a 300 ml glass beaker at 
70°C, a stirring rate of 150 rpm, with a current density of 1.8 mA/mm2 applied for 15 min. A 
copper plate was used as the cathode (negative), while microneedles acted as the anode 
(positive). The electropolished microneedle rows were then cleaned by alternatively dipping 
in 25 % nitric acid (Fisher Scientific) and deionized water with a total of three repetitions. A 
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final rinse was performed under running deionized water before drying under pressurized 
air. Dry microneedle rows were stored in air-tight containers until later use. MN arrays for 
human studies were fabricated to produce patches containing 50MNs arranged in 5x10 
arrays of MNs. Each MN measured 620 μm in length, 160 μm in width at the base, and 1 μm 
in radius of curvature at the tip. For in vitro studies and in vivo GP studies, each MN 
measured 750 μm in length, had a base width of 180 μm, and <1 μm radius in curvature at 
the tip. The distance between individual MNs was approximately 1 mm. 

2.3 16% NTX·HCl gel formulation 

The NTX gel formulation used for in vitro and in vivo studies consisted of NTX·HCl, (16.0%), 
propylene glycol (60.75%), sterile water for injection (20.25%), benzyl alcohol (1.0%) and 
hydroxyethylcellulose (2.0%). For human studies, the same formulation composition was 
used except that the gel was formulated, prepared, and tested according to current good 
manufacturing practices as outlined by the FDA and was carried out in collaboration with 
Coldstream Laboratories, Inc., formerly named The Center for Pharmaceutical Science and 
Technology (Wermeling et al., 2008). 

2.4 In vitro studies 
2.4.1 In vitro diffusion studies across full thickness hairless GP and human skin 

Full thickness hairless GP skin was harvested from euthanatized animals. Animal studies 
were approved by the University of Kentucky IACUC. Human skin harvested during 
abdominoplasty was used for the diffusion studies. Human tissue use was approved by the 
University of Kentucky Institutional Review Board. Skin sections were obtained by 
removing the subcutaneous fatty tissue by scalpel dissection, and were stored at -20°C. A 
PermeGear flow-through (In-Line, Riegelsville, PA, USA) diffusion cell system was used for 
the skin permeation studies. Skin used for microneedle treatment was placed on a wafer of 
polydimethylsiloxane polymer, which mimicked the underlying mechanical support of 
tissue because of its comparable structural flexibility and elasticity. The human skin was 
pierced 20 times with an array containing 5 MN (Figure 1) (i.e., to make a total of 100 
individual and non-over lapping piercings) before mounting the skin in the diffusion cell. 
Diffusion studies to determine flux values for GP skin were performed in such a way that 
only 3 insertions were made to obtain 15 individual and non-overlapping MN insertions. 
The insertion of MN into skin was carried out manually by applying gentle finger pressure 
followed by instantaneous removal. MN‘s were distributed evenly within the 0.95 cm2 area 
of skin and could easily be visualized after each 5 MN insertion, as to prevent reapplication 
in the same area. Single MN sections of 5 were used simply out of ease for the experimental 
procedure. If any damage to an MN section was observed the section was replaced. Cells 
containing MN treated skin showed no presence of receiver solution back flow into the 
donor compartment. Untreated skin samples were simply placed in the diffusion cells. 
Diffusion cells were kept at 32°C using a circulating water bath. Data were collected using 
skin from a single guinea pig or human. 
donor with three cells for untreated formulations and 3-4 cells for the MN treated 
formulations. The physiological receiver solution was HEPES-buffered Hanks’ balanced 
salts with gentamicin at pH 7.4, and the flow rate was adjusted to 1.1 ml/h. Each cell was 
charged with 0.25 ml of the gel spread over the skin in the donor compartment of the 
chamber. The diffusion cells were covered with a stopper to prevent evaporation. Samples 
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were collected from the receiver compartment in six-hour increments over 48 h. All samples 
were stored at 4°C until analyzed by HPLC.  

  

Fig. 1. Left depicts a 50 MN array used in human and GP studies and right shows a 
protective gel patch covering. 

2.4.2 HPLC analysis 

Quantitative analysis of NTX concentrations in receiver samples was carried out using a 
modification of the HPLC assay described by Hussain et al. (Hussain et al., 1987; Paudel et 
al., 2005). This HPLC analysis was performed as reported by Vaddi et al. (Vaddi et al., 2005). 
The receiver samples were diluted 10 fold with acetonitrile and injected directly into the 
HPLC. The HPLC system consisted of a Waters 717plus autosampler, a Waters 1525 Binary 
HPLC pump, and a Waters 2487 dual wavelength absorbance detector with Waters Breeze™ 
software (Milford, Massachusetts, USA). A Brownlee (Wellesley, Massachusetts, USA) C-18 
reversed-phase Spheri-5 μm column (220 x 4.6 mm) with a C-18 reversed phase 7 μm guard 
column (15 x 3.2 mm) by Perkin Elmer® was used with the UV detector set at a wavelength 
of 215 nm. The mobile phase for NTX was 70:30 ACN: 0.1% TFA with 0.065% 1-octane 
sulfonic acid sodium salt, adjusted to pH 3.0 with TEA, and samples were run at a flow rate 
of 1.5 ml/min with a run time of 5 min.  

2.4.3 In vitro data analysis 

The cumulative quantity of drug collected in the receiver compartment was plotted as a 
function of time. The flux value for a given experiment was obtained from the slope of the 
steady state portion of the cumulative amount of drug permeated plotted over time. 
Apparent permeability coefficient values were calculated from Fick’s First Law of 
diffusion: 

 
1

s p

dM
J K C

A dt

     
 

 (1) 

where Js is the flux at steady state (nmol/cm2/h), M is the cumulative amount of drug 
permeating through the skin, t is time, A is the area of the skin (0.95 cm2), Kp is the effective 
permeability coefficient in cm/h, and ΔC is the difference in concentrations of NTX in the 
donor and receiver components. Sink conditions were maintained in the receiver solution 
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for the duration of the experiment; thus ΔC was approximated by the initial drug 
concentration in the donor compartment.   

2.5 In vivo hairless GP and human studies 
2.5.1 Transdermal protective covering patches and dosing regimen 

The transdermal covering was prepared as described by Wermeling et al. (Wermeling et al., 
2008). Briefly, the transdermal occlusive protective covering patches of NTX·HCl (6.7 cm2) 
were fabricated by sandwiching a rubber ringed barrier to create a reservoir between a drug-
impermeable backing membrane (Scotchpak™ #1109 SPAK 1.34 MIL Heat Sealable Polyester 
Film, 3M Drug Delivery Systems, St. Paul, MN, USA) and an ARcare® 7396 adhesive around 
the edge of the nitrile spacer (Adhesive Research, Inc., Glen Rock, PA, USA). The impermeable 
backing laminate was adhered to the FDA approved medical grade nitrile retaining ringed 
barrier from Ilene Industries (Shelbyville, TN, USA) with ARcare® 7396. Finally, ARcare® 7396 
was placed on the bottom of the rubber ringed barrier to maintain intimate contact with the 
skin and prevent evaporation of the 500 µL gel formulations. The protective patch was placed 
on a release liner composed of Scotchpak™ 9742 (3M Drug Delivery Systems, St. Paul, MN, 
USA). Human subjects were dosed with a total of 400 MN insertions and 2 g of gel. That is, the 
dose per patch was 0.5 mg gel and 100 MN insertions (Wermeling et al., 2008). MN arrays 
were applied manually to humans by only one clinician, after training to reproducibly apply 
with the same force. The same procedure was followed for the control subjects without the 
application of microneedle arrays. The gel patch systems were left in place on the skin for 72 
hours, during which plasma samples were collected for LC-MS analysis of NTX and its active 
metabolite, NTXOL. The above described system was utilized on hairless GP (n=4) with only 
15 MN insertions and 1 gel patch assembly system for 72 hours. For these studies, the insertion 
of MN was manual by applying gentle finger pressure followed by instantaneous removal. 
As in the human studies, only one researcher applied MN arrays to GP manually to 
reproducibly apply with the same force. The gel patch system was applied on the dorsal 
region of the hairless GP. Bio-occlusive tape was applied over the patches followed by a 
protective stocking. Samples were collected for LC-MS analysis. All plasma samples were 
stored at -70°C until analyzed. 

2.5.2 Plasma sample extraction procedure 

Samples were prepared and analyzed as described by a modified method as described by 
Paudel et al. (Paudel et al., 2005). One-hundred µL of plasma was extracted with 500 µL of 
ethyl acetate. The mixture was vortexed for 30 s and centrifuged at 10,000 x g for 20 min. 
The pellet and supernatant were placed in a -20°C freezer for 15 minutes to freeze the 
aqueous pellet. The supernatant was pipetted into a 3 ml glass test tube and evaporated 
under nitrogen at 37°C. The residue was reconstituted with 100 µL of ACN and sonicated 
for 15 min. The samples were transferred into autosampler vials containing low volume 
inserts, and 20 µL was injected onto the HPLC column.  

2.5.3 Liquid chromatography  

Chromatography was performed on a Waters Symmetry® C18 (2.1 x 150mm, 5 µm) column at 

35°C with a mobile phase consisting of ammonium acetate (2 mM) containing 0.01 mM of 

ammonium citrate:ACN (65:35 v/v) at a flow-rate of 0.25 ml/min.  
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2.5.4 Mass spectrometry 

The system consisted of HPLC with mass spectrometry detection (LC-MS) equipped with a 

Waters Alliance 2695 pump, Alliance 2695 autosampler, and a Micromass ZQ detector 

(Milford, MA) using electrospray ionization (ESI) for ion production. Selected ion 

monitoring (SIM) was performed in positive mode for NTX, m/z 324 [M+H] + and NTXOL, 

m/z 344 [M+H] +. Capillary voltage was 4.5 kV and cone voltage was 30 V. The source block 

and desolvation temperatures were 120°C and 250°C, respectively. Nitrogen was used as a 

nebulization and drying gas at flow rates of 50 and 450 L/h, respectively.  

2.5.5 In vivo data analysis 

The pharmacokinetic analysis of NTX plasma concentration versus time profiles after MN 
treatment and gel patch application was carried out by fitting the data to a non-
compartmental model with extravascular input (WinNonlin Professional, version 4.0, 
Pharsight Corporation, Mountain View, CA). The data generated were analyzed to 
determine peak concentration (Cmax), steady state concentration (Css), lag time to steady state 
concentration (tlag), and area under the plasma concentration time course from 0 to 72 h 
(AUC 0-72). The steady state plasma concentration of NTX after the application of patches 
was calculated by using the equation: 

 Css= AUC0-t/time  (2) 

2.5.6 In vitro/In vivo correlation 

The predicted steady state plasma concentrations of NTX in the GP following the 
application of the TTS patch was calculated from the in vitro steady state flux by using the 
following equation:  

 
J AssCss
CL

  (3) 

where ‘Css’ is the predicted steady state plasma concentration (ng/ml); ‘Jss’ is the steady 
state flux across human or GP skin; ‘A’ is area of the applied patch (26.8 or 6.7 cm2 in 
humans or GP, respectively); ‘CL’ is the total body clearance in humans or GP.  
Statistical analysis of the in vivo data obtained after the transdermal application of the 
patches was performed by one-way ANOVA using SigmaStat. 

3. Results  

3.1 16.0% NTX·HCl gel characterization 

All of the release testing and stability testing of the 16.0% NTX·HCl gel was performed in 
Coldstream Laboratories, Inc. in accordance to cGMP regulations set forth by the FDA and 
the standard operating procedures of the facility. All curves generated for HPLC standard 
analysis of the gel had an average correlation value (r2) of 0.999 ± 0.001 and precision for the 
assay had a % RSD of 0.67%. The solubility determined prior to formulation scale-up of 
NTX·HCl was 171.9 mg/ml. Thus, a 16% gel would be approximately 93.7% of the 
saturation limit, providing a satisfactory driving force according to Fick’s first law of 
diffusion. The percent label claim of the gel at the product release testing, 1.5 months, and 5 
months at 25°C/60% relative humidity was 97.0 ± 0.7%, 105.6 ± 3.5%, and 97.8 ± 1.7%, 
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respectively. All of the HPLC results were within the 90.0 – 110.0% of the specifications for 
label claim. The gel was clear, colorless and transparent, and over time a yellowish tint was 
observed. The pH was measured at 4.96 ± 0.03 and the viscosity was 16,859 ± 437 cP. 
Overall, the formulation was within percent label claim, had a pharmaceutically elegant 
appearance, excellent consistency to maintain intimate contact with the skin, and a skin 
compatible pH.  

3.2 In vitro diffusion studies 
3.2.1 HPLC validation 

Calibration plots were prepared using NTX standards with the final concentrations over a 
range of 0.1-25 µg/ml. The correlation coefficient (r2) obtained was 0.9997 for standard 
curves. The lower limit of quantification (LLOQ) was 0.1 µg/ml and the limit of detection 
(LOD) was 0.05 µg/ml.  

3.2.2 In vitro diffusion studies across full thickness hairless GP skin 

From cumulative permeation profiles the flux could be ascertained from the linear portion 
(apparent steady state). Extrapolation of this linear curve to the x-axis gives the lag-time to 
steady state. Figure 2 shows a cumulative NTX profile from 16% NTX·HCl gel on full 
thickness GP skin with 15 MN insertions and control intact GP skin that had no MN 
treatment. Table 1 shows the fluxes observed with 15 MN insertions as well as fluxes 
obtained from intact GP skin. Permeability coefficients and solubility are also reported. As 
observed in Table 1, a significant difference was observed (p < 0.05) in both flux and 
permeability parameters. 
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Fig. 2. Cumulative amount of NTX·HCl permeated through 15 MN treated and intact GP 
skin. 
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In vitro Study 
MN treatment 

 
Flux 

(nmol/cm2/h) 
Kp 

(x 105cm/h) 

GP Skin No MN 1.1 ± 0.9 0.26 

 † MN treated 6.0 ± 1.5 1.4 

Human Skin No MN 0.13 ± 0.01 0.03 

 †† MN treated 39.0 ± 13.1 9.2 

† GP skin treated with 15 MN insertions for in vitro study. 

†† Human skin treated with a total of 100 MN insertions for in vitro study 

Table 1. In vitro permeation of a 16.0% NTX·HCl gel through human and GP skin 

3.2.3 In vitro diffusion studies across full thickness human skin 

Flux values and permeation profiles of NTX in human skin can be observed in table 1 and 
figure 3, respectively. Again, as shown in GP skin, a significant increase in flux (p < 0.05) 
was observed when comparing MN treated skin (39.0 ± 13.1 nmol/cm2/h) to intact full 
thickness skin (0.13 ± 0.01 nmol/cm2/h). Flux and permeability coefficients from MN 
treated skin were enhanced 300-fold when compared to intact full thickness human skin. As 
seen in figure 3, there is also a reduction in lag time when the skin is exposed to MN.  
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Fig. 3. Permeation profile of cumulative amount of NTX·HCl permeation through 100 MN 
treated and intact full thick human abdominal skin. 
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3.3 In vivo MN assisted transdermal studies 
3.3.1 LC-MS Validation 

In the current method, modification of the assay reported by Valiveti et al (Valiveti et al., 

2004b) was validated to ensure proper sample analysis. Both NTX and NTXOL standards 

were first prepared in individual acetonitrile stock solutions. A standard curve of 0.5, 1, 

2.5, 5, 7.5, 10, 15, and 25 ng/ml was generated after dilution of the stock solution for 

analysis of NTX and NTXOL containing 40 ng/ml naloxone as an internal standard. The 

retention times for NTX, NTXOL and naloxone were 4.3 ± 0.02 minutes, 3.1 ± 0.03 

minutes, and 5.4 ± 0.2 minutes, respectively. The LOD and LOQ determined for NTX was 

0.5 ng/ml in acetonitrile, however the LOQ was determined to be 1.0 ng/ml in plasma, as 

plasma interference made the blank plasma and 0.5 ng/ml plasma standards 

indistinguishable by LC-MS. The standard curve correlation coefficient for NTX in 

acetonitrile was 0.995 as compared to 0.979 for NTX extracted from plasma. However, 

both of these standard curves had values greater than r2 = 0.95, the minimum value 

needed. The LOD and LOQ determined for NTXOL was 0.5 ng/ml in acetonitrile. The 

LOQ was determined to be 0.5 ng/ml as well in the plasma as plasma interference from 

the blank did not have an overlapping effect. The standard curve correlation coefficient 

for NTXOL in acetonitrile was 0.996, as compared to 0.987 for NTXOL extracted from 

plasma.  The average extraction efficiency of NTX from plasma as compared to NTX in 

acetonitrile was 86.0 ± 6.8 %. Plasma standards (5 and 10 ng/ml) were placed in a -70°C 

freezer and allowed to freeze. The samples were then warmed to room temperature, and 

this freeze-thaw was repeated a total of three times over a 3 hour period. The samples 

were then extracted and analyzed. The three 5 ng/ml freeze-thaw standards had an 

average standard to internal standard ratio of 0.08 ± 0.002 with a %RSD of 2.7%. The 

average ratio of freeze-thaw samples was compared to the ratio of 0.08 ± 0.006 from 6 

freshly extracted plasma standards (5 ng/ml) suggesting no degradation was occurring. 

The three 10 ng/ml freeze-thaw standards had an average standard to internal standard 

ratio of 0.13 ± 0.01 with a %RSD of 11.1 %. The average ratio of freeze-thaw samples was 

compared to the ratio of 0.14 ± 0.008 from 6 freshly extracted plasma standards (10 ng/ml) 

suggesting no degradation was occurring.  Six replicate plasma samples of 5 and 10 

ng/ml each were extracted as described above and injected in duplicate. The average ratio 

of standard to internal standard for the 5 ng/ml was 0.08 ± 0.006 with a %RSD of 7.8%. 

The reproducibility of extraction was in good confidence with a low %RSD. The 10 ng/ml 

ratio of NTX standard to internal standard was 0.14 ± 0.008 with an even lower %RSD of 

5.6%. The average internal standard area for NTXOL throughout the day was 40,966 ± 

3,462 with a %RSD of 8.5%.  

3.3.2 In vivo hairless GP studies 

GP pharmacokinetic data from 15 MN insertions from a section of 5 MNs (Figure 1) and one 
6.7 cm2 occlusive protective patch containing 0.5 g 16.0% NTX.HCL gel can be observed in 
table 2 and plasma profiles of NTX are shown in figure 4. 
The plasma concentration rapidly reached a steady state level and maintained an average 
plasma level of about 2.6 ng/ml for 48 hours. Conversely, without the aid of MN insertions 
no detectable levels of NTX were observed after placement of one 6.7 cm2 patch containing 
16.0 % NTX·HCl gel. 
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Fig. 4. Plasma NTX concentration profile from 16% NTX·HCl gel with 15 MN insertions in 
hairless GP. 

 
 

 Healthy Human Subjects(*) GP 

PK parameters 
NTX 

MN treatment 
NTXOL 

MN treatment 
NTX 

MN treatment 
NTX 

No MN treatment 

Css (ng/ml) 2.5 ± 1.0 0.6 ± 0.5 2.6 ± 0.6 ND 

Tlag (h) 1.8± 1.1 1.4 ± 1.4 4.0 ± 0.0 ND 

 
AUC (ng/ml*h) 

142.9 ± 43.9 39.7 ± 25.9 158.2 ± 63.5 ND 

Cmax (ng/ml) 4.5 ± 2.4 1.9 ± 1.3 8.0 ± 1.8 ND 

Tmax (h) 8.8 ± 7.6 37.5 ± 31.3 0.3 ± 0.0 ND 

Clast (ng/ml) 1.8 ± 1.0 0.4 ± 0.6 0.0 ± 0.0 ND 

(ND) NTX was not detected in the control (no MN) animals therefore PK parameters were not 

established. 

(*) Human pharmacokinetic parameters are values obtained from earlier human study (Wermeling et 

al., 2008). 

Table 2. Pharmacokinetic analysis of 6 healthy subjects and hairless GP treated with MN 

arrays and a 16.0% NTX·HCl gel patch. 
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3.3.3 In vivo human studies 

We recently completed a human study with MN assisted transdermal delivery of NTX 

(Wermeling et al., 2008). Volunteers in the study wore four gel patch systems and were 

treated with a total of 400 MN insertions with an MN array as described by Wermeling et 

al.(Wermeling et al., 2008). Subjects reported no pain, only a sensation of pressure upon 

insertion of the MN arrays into each subjects upper arm region. As shown in table 2 the data 

exhibit a rapid increase in plasma NTX concentration above 2.5 ng/ml (therapeutic goal) 

within 2 hours and this level appears to remain for at least 48 hours. The average steady 

state concentration observed was 2.5 ± 1.0 ng/ml with 4 patches and a total of 100 MN 

insertions per patch (Wermeling et al., 2008).  

3.3.4 In vitro/In vivo correlation 

The average steady state plasma concentrations in GP and humans were estimated from 

equation 3 and were compared with the observed concentrations in vivo (Table 3). The 

average predicted steady state concentration in GP was 2.7 ± 0.7 ng/ml and the actual 

observed steady state concentration was 2.6 ± 0.6 ng/ml, using a clearance value of 5.65 L/h 

and a patch area of 6.7 cm2 (Paudel et al., 2005). These two values were within 96% 

agreement with each other and there was no significant difference between the estimated 

and observed Css values (p > 0.05). Similarly, a good correlation was seen upon comparing 

human skin and healthy human individuals in vivo. The predicted and observed steady state 

concentrations in human skin and humans was 1.9 ± 0.7 ng/ml and 2.5 ± 1.0 ng/ml 

(Wermeling et al., 2008), respectively, using a clearance of 3.5 L/min and a patch area of 26.8 

cm2 (Vivitrol®). 

 
Healthy Human Volunteers Hairless GP 

(ng/ml) No MN MN No MN MN 

Css Observed ND* 2.5 ± 1.1* ND 2.6 ± 0.6 

Css Predicted 0.01 ± 0.0 1.9 ± 0.7 0.5 ± 0.4 2.7 ± 0.7 

     

(nmol/cm2/h)     

Jss Observed 0.13 ± 0.01 39.0 ± 13.1 1.1 ± 0.9 6.0 ± 1.5 

Jss Predicted ND 51.9 ± 20.2 ND 5.8 ± 1.3 

% Correlation NC 76.0 NC 96.7 

(ND) No NTX detected in plasma 

(NC) No correlation due to absence of NTX in plasma 

(*) Results obtained from previous human study (Wermeling et al., 2008). 

Table 3. In vitro/in vivo observed and predicted steady state fluxes and plasma 

concentrations of NTX in humans and hairless GP. 
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4. Discussion 

4.1 In vitro diffusion studies 

4.1.1 In vitro diffusion studies across full thickness hairless GP skin 

Treatment of the GP skin with as little as 15 MN insertions caused an increase in flux and 

permeability compared to MN untreated skin. Permeability increased as the resistance from 

intact to MN treated skin decreased. Even with a minimal number of insertions, permeation 

was enhanced to a level that would be predicted to be observable in the hairless GP in vivo. 

Flux enhancement was 5.4 times higher with 15 MN insertions as compared to that of intact 

skin. Based on results from these experiments and previous other trials reported, the 

hairless GP model is a good choice for in vitro screening of transdermal candidates (Valiveti 

et al., 2004a; 2005).  

4.1.2 In vitro diffusion studies across full thickness human skin 

As observed with GP skin, an increase in both flux and permeability coefficient was 

observed in MN treated human skin compared to intact full thickness skin. Earlier work 

with 100 MN insertions in human skin gave a flux enhancement ratio of 8.3 in contrast to 

our 300 fold enhancement in flux and permeability coefficient (Banks et al., 2008). 

Differences between the formulations and concentration (10% vs. 16%), excess solid, and 

viscosity can definitely influence the NTX flux in the presence of MN micropores. A 

reduction in lag time when the skin is exposed to MNs is a strong indication that there has 

been a change in the diffusivity and/or permeation pathway. Thus, not only can flux 

indicate a change in the route of diffusion and resistance of the skin, but also the lag time is 

a good indicator of the drug re-routing. 

It is well established that a 2.5 ng/ml NTX plasma concentration in humans provides 

approximately an 85% narcotic blockade of a 25 mg IV injection of heroin (Verebey et al., 

1976). It was predicted that an area of 26.8 cm2 would be required to obtain a therapeutic 

NTX plasma level, based on the flux information presented in table 1 and figure 3, and the 

gel formulation used. Thus, a four patch 16% NTX.HCl gel system with 100 MN insertions 

per patch was proposed to determine the feasibility of MN assisted delivery in humans 

(Wermeling et al., 2008). 

4.2 In vivo MN assisted transdermal studies 

4.2.1 In vivo hairless GP studies 

Of importance in GP studies was a rapid increase in NTX plasma concentration to steady 

state and that Css remained reasonably constant for at least 48 hours after 15 MN treatment. 

Steady state concentrations remaining constant for 48 hours compares with earlier work, 

where NTXOL plasma concentrations, transepidermal water loss, and microscopic staining 

and visualization of pores over time were also consistent for 48 hours (Banks et al., 2010). No 

detectable levels of NTX were observed in GP without MN insertions. As expected, one 

would not likely see quantifiable amounts in vivo due to the lack of a significant amount of 

pore pathways, such as sweat glands or follicles, through which hydrophilic NTX could 

permeate. However, even with as little as 15 MN insertions to the skin a rapid increase in 

flux is observed and the MN created aqueous pores remain open. The steady-state profile of 

NTX concentrations in the plasma prior to 48 h when the pores begin to close suggests that 
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once treated with an MN array a constant flow is created for a substantial period. These 

micropores could theoretically create a more precise and controlled release of drug delivery, 

as compared to passive delivery systems that rely on inter-individual variations in stratum 

corneum lipid bilayer resistance. As well, the initial “burst” observed in the plasma 

concentrations could be caused from a rapid influx of the drug followed by the attainment 

of the equilibrium steady-state flow through the aqueous channels and constant permeation 

rates. The “burst” effect in the plasma concentration profile circumvents one of the major 

complaints about transdermal delivery, the typically long lag times. Drug therapies like 

transdermal fentanyl could benefit from a “burst” effect as a bolus dose, followed by 

maintenance therapy for at least 48 hours. Thus, the MN gel patch assembly appears to be a 

successful candidate for the transdermal delivery of NTX in the GP model.  

4.2.2 In vivo human studies 

As previously described, there are limited successful treatments for opiate and alcohol 
abuse with NTX (Vivitrol®; PDR, 1996). In a recent study, a therapeutic approach to MN 
transdermal delivery of NTX in healthy human volunteers was completed (Wermeling et al., 
2008). As seen in the GP experiment, there was a rapid initial increase in the plasma drug 
concentration followed by controlled release of NTX in these human volunteers. For opiate 
and alcohol abusers, a fast acting form of NTX is desirable and achieving a steady-state 
permeation of NTX and maintaining that rate for an extended time will benefit addiction 
therapy. Cmax, an important PK parameter, was rapidly achieved in all six subjects (4.5 ± 2.4 
ng/ml), and this onset was observed within a relatively short time (8.8 ± 7.6 h) (Wermeling 
et al., 2008). No plasma levels were observed in human non-MN controls. NTXOL plasma 
levels were lower than NTX, but the same overall permeation profile shape was observed as 
compared to NTX. In vivo human data including Css and other PK parameters in table 2 had 
very little subject to subject variability (Wermeling et al., 2008). Conversely, after oral 
administration, there appears to be a much higher degree of variability in humans, as much 
as eight-fold (Meyer et al., 1984; Rukstalis et al., 2000). Not only did the study prove that a 
water soluble molecule could be delivered through an MN-created pore, but delivery rates 
were in a therapeutic range for a poorly bioavailable NTX (Wermeling et al., 2008). 

4.2.3 In vitro/in vivo correlation 

Using equation 3 to predict the steady state concentration in vivo or the steady state flux in 

vitro, a correlation can be made to determine the likeness of the in vitro model to actual in 

vivo pharmacokinetic evaluation of a compound. During this research both the in vitro and 

in vivo studies proved to be highly successful. There was no significant difference between 

the estimated and observed Css values in GP. The GP in vitro skin model, therefore, is an 

excellent in vitro based set up to screen potential candidates for MN enhanced transdermal 

delivery. Previous studies from our group has shown GP as a good model for NTX 

prodrugs and other highly lipophilic compounds for passive delivery (Valiveti et al., 2004a; 

2005). However, this is the first time a study has shown good in vitro and in vivo correlation 

in GPs for MN assisted transdermal delivery. The percent correlation between human and 

human skin was 76%, which showed an under estimation for the in vitro studies. This could 

be due in fact to the location of the patches worn by volunteers compared to the area of skin 

used for in vitro studies. The patches were placed on the upper region of the arm as 
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compared to the full thickness abdominal skin used for in vitro permeation studies. Another 

reason may be the enzymatic activity differences in human skin in vitro and in vivo. It may 

also be possible that polar NTX also has significant diffusion through follicular routes in the 

skin in vivo. Overall, however, a good correlation between the in vitro and in vivo studies 

was observed in both GP skin and GP as well as in human skin and healthy human 

volunteers. Either skin type could be utilized with confidence when screening compounds 

for MN enhanced permeation studies in vitro.  

5. Conclusion 

In the present study, the aim was to evaluate the transdermal delivery efficiency of 

NTX·HCl salt via MN enhancement of skin in both in vitro and in vivo studies. In human and 

GP skin, excellent MN enhancement was observed as compared to intact skin. The same 

trend was observed in vivo and it was shown that a therapeutic plasma level could be 

achieved and maintained for at least 48h in human subjects, whereas no plasma levels were 

observed in either human or GP non-MN treated controls. Overall, an excellent IVIVC was 

observed between humans and human skin, as well as GP and GP skin.  Thus, both human 

and GP in vitro models are excellent cost saving and predictive models for MN enhanced 

transdermal candidate screening. In regards to future applications, the work lies in 

developing a patch system that is patient friendly and cost effective for the treatment of 

alcoholism. Such work is ongoing in the lab of Dr. Audra Stinchcomb to develop a 

microneedle and patch system that can be effectively transitioned to the market for the 

treatment of alcohol abuse. 
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