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1. Introduction   

Endophytic fungi are ubiquitous fungi that reside inter- or intracellularly in plant parts for 
at least a portion of their lives without causing apparent symptoms of infection (Petrini, 
1991) and represent a large portion of fungal species. Endophytic fungi can be biotrophic 
mutualists, benign commensals, decomposers or latent pathogens (Promputtha et al., 2007). 
According to Rodriguez et al. (2009), all plants in the natural environment can shelter 
endophytic fungi, including algae, mosses, ferns, conifers and angiosperms. This fungal 
group appears to significantly influence the lifestyle of its host. Taxonomically, most of the 
endophytic fungi belong to the phylum Ascomycota and its associated anamorphs, while 
some species belong to the phyla Basidiomycota and Zygomycota (Huang et al., 2001). There 
have been many studies on the diversity, ecology and biotechnological applications of 
endophytic fungi in grasses and wood plants in temperate environments. However, there is 
limited information about the diversity of endophytic fungal communities in tropical 
forests, which are endowed with a rich biodiversity of flora. Dreyfuss & Chapela (1994) have 
estimated that approximately 1.3 million species of endophytic fungi remain to be 
discovered. This diverse fungal group could impact the ecology, fitness and shape of plant 
communities, conferring resistance to abiotic (temperature, pH, osmotic pressure) and biotic 
(from bacteria, fungi, nematodes and insects) stresses (Rodriguez et al., 2001). Endophytic 
fungi are an important source of bioactive molecules. These bioactive metabolites have a 
broad range of biological activities and could be the starting materials for pharmaceuticals 
or lead structures for the development of pharmaceutical or agrochemical products. The 
substances produced by endophytic fungi originate from different biosynthetic pathways, 
including isoprenoid, polyketide and amino acid and belong to diverse structural groups, 
such as terpenoids, steroids, xanthones, quinones, phenols, isocoumarins, benzopyranones, 
tetralones, cytochalasins and enniatins (Schulz et al., 2002). Indeed, these bioactive 
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molecules represent a chemical reservoir for discovering new compounds, such as 
antibiotic, antioxidant, immunomodulating, anticancer and antiparasitic compounds, for use 
in the pharmaceutical and agrochemical industries. 

2. Neglected tropical diseases 

The neglected tropical diseases (NTDs), a group of chronic, debilitating and poverty-
promoting parasitic, bacterial, viral and fungal infections, are among the most common 
causes of illness in the poorest people living in developing countries (Hotez et al., 2008). 
NTDs cause over 500,000 deaths annually and are estimated to result in a greater number of 
lost disability-adjusted life years than malaria and tuberculosis (Hotez et al., 2006, 2009). 
These diseases flourish in areas where water supply and sanitation are inadequate, nutrition 
is poor, literacy rates are low, health systems are rudimentary, and insects and other disease 
vectors are constant household and occupational companions. Not surprisingly, these 
diseases cluster together and frequently overlap where these conditions occur. In fact, the 
link with poverty is so strong that the prevalence of these diseases serves as an indicator of 
the level of a country’s socioeconomic development (WHO, 2006). 
The NTDs have some common features. They occur in impoverished settings and are 
chronic conditions; victims can harbour NTDs for years or decades, frequently resulting in 
disability, disfigurement and stigmatisation. Not only are these diseases of poverty, but they 
also promote poverty because of their effects on child development, cognition and education 
as well as on adult agricultural worker productivity (Hotez & Yamey, 2009). These diseases 
have also been neglected by research and development. There is little incentive for 
industries to develop drugs and vaccines for markets that cannot pay. When inexpensive 
and effective drugs already exist and are available, delivery fails because patients cannot 
pay and health systems are weak or non-existent (WHO, 2006). 
The most important bacterial NTDs are trachoma, leprosy, and some of the bacterial 
zoonoses, especially leptospirosis (Hotez et al., 2008). Interruption and default of therapies 
against bacterial NTDs are still important obstacles to disease control in many endemic 
countries, with consequences for both patients and control programs; low adherence results 
in potential remaining sources of infection, incomplete curing and irreversible complications 
and may lead to multidrug resistance (Heukelbach et al., 2011).  
Several mycoses, such as paracoccidioidomycosis (PCM), are also responsible for major public 
health and economic hardships in Latin America (Hotez et al., 2008). The drugs most 
commonly used for treating patients with paracoccidioidomycosis (PCM) are sulphonamides, 
ketoconazole, itraconazole and amphotericin B. Extended periods of treatment are necessary, 
and there are increasing concerns about drug toxicity, the cost of treatment, and unacceptable 
rates of noncompliance with these therapies (Travassos et al., 2008). 
The most important viral NTDs are dengue and yellow fevers (Hotez et al., 2008). Tropical 
climates have experienced a great resurgence in dengue fever in recent years, and it appears 
to be spreading to new areas (Carroll et al., 2007). The WHO reports that two-fifths of the 
world's population is at risk of dengue infection, with an increase in the annual number of 
cases (Murrell et al., 2011). There is no specific treatment for dengue fever. Dengue fever is 
an increasing concern because of the lack of a licensed vaccine that protects against all four 
dengue serotypes (WHO, 2006). The increase in dengue infections and the prevalence of all 
four circulating dengue serotypes has contributed to a rise in the incidence of dengue 
haemorrhagic fever (Murrell et al., 2011). 
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Yellow fever originated in Africa and was imported to Europe and the Americas as a 
consequence of the slave trade between these continents (Gardner & Ryman, 2010). An 
inexpensive live attenuated vaccine against yellow fever (the 17D vaccine) has been 
effectively used to prevent yellow fever for more than 70 years. Interest in developing new 
inactivated vaccines has been spurred by the recognition of rare but serious and sometimes 
fatal adverse events following live virus vaccination (Hayes, 2010). 
Leishmania (Trypanosomatidae) are protozoan parasites that cause high morbidity and 
mortality levels and are recognised by the WHO as a major tropical public health problem 
(Asford, 1997). There are currently no vaccines for leishmaniasis; although the drugs 
available for leishmaniasis treatment are toxic, expensive and sometimes ineffective, they 
are the only effective way to treat all forms of the disease (Croft & Coombs, 2003). Chagas 
disease (American Trypanosomiasis) is caused by the haemoflagellate protozoan Trypanosoma 
cruzi and is transmitted to humans either by blood-sucking triatomine vectors, blood 
transfusion or congenital transmission. The geographical distribution of human T. cruzi 
infection extends from the southern United States and Mexico to southern Argentina (WHO, 
1991). According to Reyes & Vallejo (2005), there is evidence that trypanocidal drug 
treatment with nitrofuran and imidazole compounds can treat acute T. cruzi infection, but 
further studies are needed to develop new trypanocidal drugs.  
Helminths are parasitic worms that are the most common agents of human infection in 
developing countries and include the NTDs schistosomiasis, cysticercosis and 
onchocerciasis. There are two major phyla of helminths, which include the major intestinal 
worms, filarial worms that cause lymphatic filariasis and onchocerciasis and 
platyhelminthes such as the schistosomes and the agent of cysticercosis (Hotez, 2008). Only 
the drugs albendazole, oxamniquine, praziquantel and ivermectin are available to treat 
helminthiasis (Hotez, 2008). New advances in helminth biology, particularly molecular 
techniques, have led to the identification of new targets for the discovery and development 
of anthelmintic drugs. 

3. Diversity of tropical endophytic fungi 

Dreyfuss & Chapela (1994) have estimated that there are 1.3 million species of endophytic 
fungi alone, the majority of which are likely found in tropical ecosystems. This estimate is 
supported by various studies that have sought to characterise the fungal communities 
associated with tropical plants. Fungal endophytic communities are divided into two basic 
groups: generalists (which are found in high abundance among different plant species) and 
singletons (which are found in low abundance and in a specific plant host). Tropical plants 
are expected to shelter a highly diverse population of endophytic fungi, but few tropical 
plants have been screened for their presence. Studies have shown that tropical plants shelter 
a great diversity of singleton species. 
According to Hawksworth (2004), the magnitude of fungal diversity in tropical forests is 
unclear, and new species remain to be described. The greatest fungal diversity probably 
occurs in tropical forests, where a highly diverse population of angiosperms is present 
(Arnold et al., 2000). In support of this proposal, a large number of fungal endophytic 
species have been described in association with plants in Asia, Australia, Africa, Central and 
South America, Mexico and some Pacific and Atlantic Islands. However, the diversity of 
endophytic fungi can vary across different biomes of a tropical forest. Suryanarayanam et al. 
(2002) showed that the endophytic fungal assemblage of a dry tropical forest had much less 
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endophyte diversity than a wet tropical forest. Endophytic fungi can be passive residents or 
act as an assemblage of latent pathogens in their host (Ganley et al., 2004). Arnold et al. 
(2000) suggested that endophytic fungi are hyperdiverse and that 1.5 million species may be 
an underestimate of their magnitude. In addition, the taxonomic placement of tropical fungi 
has been confounded by misidentifications made in comparison with temperate fungal 
communities, including the endophytic fungal community present in the leaves of tropical 
plants (Arnold et al., 2001). 
In general, endophytic fungi have been categorised into two main groups based on 
differences in evolution, taxonomy, plant hosts and ecological functions: clavicipitaceous, 
which are able to infect only some species of grasses, and nonclavicipitaceous, which are 
found in the asymptomatic tissues of bryophytes, ferns, gymnosperms and angiosperms 
(Rodriguez et al., 2001). Clavicipitaceous endophytes belong to the family Clavicipitaceae 
(Hypocreales; Ascomycota), many species of which are known to produce bioactive molecules 
(mainly of the genera Cordyceps, Balansia, Epichloë/Neotyphodium, Claviceps and 
Myriogenospora). In contrast, nonclavicipitaceous endophytes are a large group that have not 
been well-defined taxonomically, but the majority of the species belong to the phyla 
Ascomycota and Basidiomycota, represented by the genera Alternaria, Arthrobotrys, Aspergillus, 
Cladosporium, Colletotrichum, Coprinellus, Curvularia, Fusarium, Paecilomyces, Penicillium, 
Phanerochaete, Phoma, among others. Different species of these two endophytic groups have 
been investigated for their ability to produce various molecules, and species living in 
association with tropical plants have been shown to be significant producers of bioactive 
metabolites. 

4. Hosts of tropical bioactive endophytic fungal communities 

Tropical and temperate forests are considered to be the most diverse terrestrial ecosystems, 
with the greatest number and diversity of endophytic fungi (Strobel, 2002). The constant 
innovation present in ecosystems where the evolutionary race to survive is the most active 
may result in the production of a plethora of chemical molecules (Strobel, 2006). Tropical 
rainforests are an important example of this type of environment: there is great competition, 
resources are limited, and selection pressure is at its peak. Consequently, there is a high 
probability that fungi associated with tropical hosts may be a source of novel molecular 
structures and compounds that are active against neglected diseases. 
Endophytic relationships may have begun from the time that higher plants first appeared 
hundreds of millions of years ago. Evidence of plant-associated fungi has been discovered in 
fossilised tissues of stems and leaves (Taylor et al., 1999). As a consequence of these long-
term associations, some of these microorganisms may have developed genetic systems that 
allow the exchange of information between themselves and the higher plant. This exchange 
would allow the fungi to more efficiently cope with the environmental conditions and 
perhaps increase compatibility with the plant host. Moreover, the dependent evolution of 
endophytic fungi may have allowed them to better adapt to the plant such that the fungi 
could contribute to the relationship by performing protective functions against pathogens 
and insects (Petrini et al., 1992; Strobel & Daisy, 2003; Gunatilaka, 2005). To make these 
contributions to their plant hosts, endophytic fungi may produce secondary metabolites that 
have potential uses in agriculture, medicine and industry (Strobel & Daisy, 2003). 
Each of the approximately 300,000 known plant species may host at least one endophytic 
fungus. As tropical and subtropical regions harbour most of the world’s plant diversity, 

www.intechopen.com



Endophytic Fungi of Tropical Forests: A Promising 
Source of Bioactive Prototype Molecules for the Treatment of Neglected Diseases 

 

473 

endophytic fungal diversity in this climatic zone is also higher, and all vascular plant species 
examined to date possess an endophytic fungus. According to Strobel (2003), reasonable 
guidelines should govern the plant selection strategy for the discovery of bioactive 
endophytic fungi, which would include plants that are found in unique environmental 
settings, have ethnobotanical histories, or are endemic or growing in regions of high 
diversity. All of these selection strategies are applicable for the isolation of endophytic fungi 
from tropical and subtropical hosts, and these microorganisms can be obtained from the 
leaves, stems, petioles, barks and roots of many tropical angiosperms. 

5. Techniques for the isolation and identification of endophytic fungi 

The methods used to isolate endophytic fungi vary in the technique used for surface-
disinfection of the host plant tissue (leaves, stems, roots, bark, flowers, fruits and seeds) and 
the choice of culture media. The disinfection process can influence the detection of 
endophytic fungi; in general, the plant surface is disinfected with a strong oxidant or 
disinfectant agent for a specific period of time. The most commonly used agents include 1-
4% detergent, 3% H2O2, 2-10% NaOCl, or 70-95% ethanol. The culture medium is another 
important parameter. Commonly used media include potato dextrose agar, malt extract 
agar, yeast malt agar and Sabouraud agar, supplemented with antibacterial agents 
(chloramphenicol, penicillin, ampicillin, tetracycline and streptomycin, among others) to 
suppress contaminating bacteria and isolate endophytic fungi. 
 

 

Fig. 1. Mycelium of endophytic fungi emerging from the (a) leaves and (b) bark of the 
medicinal tropical Brazilian plant Stryphnodendron adstringens. 

After isolation, the endophytic fungi, including the bioactive species, must be identified 
correctly. Macro- and micromorphological cultural characteristics, molecular analyses and 
metabolite profiles are the main criteria that are used to identify endophyte fungal 
taxonomy. The identification of endophytic fungi relies significantly on the taxonomic 
expertise of the mycologist and frequently requires polyphasic taxonomy. In tropical 
regions, multiple endophytic fungal species are recovered and are commonly grouped 
based on similar culture characteristics into morphospecies (Figure 2), which represent a 
functional taxonomic unit for endophytic fungal species (Arnold et al., 2000). After 
characterisation as a morphospecies, endophytic fungi are submitted to molecular grouping 
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using microsatellite markers that are detected with (GTG)5, M13 or EI primers based on 
PCR-fingerprinting methods that amplify genomic segments different from the repeat 
region itself (Lieckfeldt et al., 1993). 
 

 

Fig. 2. Morphospecies of endophytic fungal isolates associated with the tropical plant 
Vellozia graminea. 

However, most endophytic fungi (about 50%) do not produce conidia or spores when 
cultured on common mycological media. In these cases, endophytic fungi can frequently be 
identified based on the sequence of the Internal Transcribed Spacer (ITS) region of the large 
subunit of the rRNA gene. Molecular techniques are a powerful tool for identifying the 
endophytic genera and species of non-sporulating fungi. After sequencing the ITS1–5.8S–
ITS2 region, the sequence of the endophytic fungus is compared with the sequences of other 
taxa deposited in public databases. The GenBank database is a major source of nucleotide 
sequences. 
In addition, endophytic fungi produce a large number of metabolites, and certain molecules 

are very consistent at the species level in some genera when cultured under standardised 

conditions. According to Larsen et al. (2005), fungal isolates of different species have 

different chemotypes, which can be differentiated or grouped by modern methods for 

dereplication analysis. The chemotaxonomic analysis begins with the preparation of the 

fungal extract, which typically requires the media potato dextrose agar (PDA), Sabouraud 

agar, malt extract agar (MEA), yeast extract sucrose agar (YES) or Czapek yeast autolysate 

agar (CYA). The chemical analysis includes techniques such as Thin Layer Chromatography 

(TLC), Gas Chromatography (GC), High Performance Liquid Chromatography (HPLC), 

Mass Spectrometry (MS), and Nuclear Magnetic Resonance (NMR), alone or in combination, 

in association with informatics tools. 

6. Fermentation techniques and crude extract production 

Secondary metabolites are compounds with varied and sophisticated chemical structures 
that are usually produced only during the stationary phase of growth (Robinson et al., 2001). 
These compounds do not have a physiological role during exponential phase, and their 
production starts when a key nutrient source, such as carbon, nitrogen or phosphate, is 
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exhausted (Barrios-González & Mejia, 1996). The last two decades have been a period of 
rapid discovery of new biological activities of these compounds, and appropriate modern 
strategies for identifying metabolites are essential (Petrini et al., 1992). 
Endophytic fungi must first be acquired in pure culture, and optimal media and growth 

conditions must be determined to begin microorganism fermentation and production of 

crude extracts. These extracts can then be separated by various chromatographic procedures 

to yield the substance of interest. Factors that can quantitatively and qualitatively affect the 

production of secondary metabolites include temperature, pH, medium composition, 

culture duration and the degree of aeration. These parameters can be manipulated and 

modified to improve the production of compounds of bioactive significance (Barrios-

González & Mejia, 1996). 

There are several media that can be used to cultivate endophytic fungi, such as potato 
dextrose agar (PDA), corn meal agar (CMA), oatmeal agar (OMA) and Czapek yeast 
autolysate agar (CYA). The medium is chosen based on the purpose and the species under 
investigation. Liquid media are usually used for physiological studies, but agar media are 
more convenient and practical for the rapid screening of plentiful isolates (Hölker et al., 
2004). To isolate endophytic fungal secondary metabolites, fermentation techniques such as 
Submerged fermentation (SmF) (or Liquid fermentation) and Solid-state fermentation (SSF) 
have become widely used (Table 1) (Barrios-González & Mejia, 1996; Pandey, 2003; Hölker 
et al., 2005). 
 

Characteristics Solid-State  Submerged 

Microorganism, substrate Static Agitated 

Water usage Limited Unlimited 

Oxygen supply by Diffusion Aeration 

Volume of fermentation Smaller Larger 

Energy requirement Low High 

Capital investment Low High 

Concentration of the end product High Low 

Sterility demands Low High 

Simulation of the natural environment Better  Worse 

Table 1. Comparison of the main characteristics of Solid-state fermentation and Submerged 
fermentation. 

Although the SmF and SSF techniques differ, both can be used to identify secondary 

metabolites produced by endophytic fungi. Figure 3 illustrates examples of SmF and SSF 

processes for obtaining these substances for screening programs. However, the 

appropriateness of a given technique should be evaluated based on the aim of the study and 

the available resources. In addition, optimal parameters for both techniques, such as 

incubation conditions, medium composition, agitation, temperature and pH, must be 

standardised to improve process efficiency and maintain reproducibility. 
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Fig. 3. Liquid fermentation and Solid-state fermentation processes for obtaining endophytic 
fungal secondary metabolites. 

7. Bioactive compounds against neglected diseases 

To date, fungal metabolites have primarily served as lead structures for the development of 
anticancer, antifungal and antibacterial agents. Although new drugs are needed to treat all 
aspects of leishmaniasis, the scientific literature on the bioprospecting of endophytic fungi 
of tropical rainforests is limited. Brazilian ecosystems are a potential source of endophytic 
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fungi that are able to produce bioactive prototype molecules for developing drugs to combat 
NTDs. Penicillium janthinellum was isolated as an endophytic fungus from the fruit of Melia 
azedarach (Meliaceae), a plant collected in Brazil. Methanol extract fractionation furnished the 
known polyketide, citrinin (Fig. 4), which was previously found in Penicillium citrinum and 
several Aspergillus species (Vrabcheva et al., 2000) and inhibited 100% of Leishmania mexicana 
at a concentration of 40 μg/mL (Marinho et al., 2005). 
 

 

Fig. 4. Citrinin. 

The endophytic fungus Edenia sp. was isolated from a mature leaf of Petrea volubilis 

(Verbenaceae), which was collected from the Coiba National Park in Panama. Bioassay-

directed fractionation of organic extracts of Edenia sp. led to the isolation of the 

antileishmanial compounds preussomerin EG1 [IC50 0.12 µM (Fig.5, 2)], palmarumycin CP2 

[IC50 3.93 µM (Fig. 5, 3)], palmarumycin CP17 [IC50 1.34 µM (Fig. 5, 4)], palmarumycin CP18 

[IC50 0.62 µM (Fig. 5, 5)], CJ-12,37 [IC50 8.40 µM (Fig. 5, 6)], palmarumycin CP19 [IC50 11.6 µM 

(Fig. 5, 7)] and 5-methylochracin (IC50 33.4 µM), which inhibited the growth of amastigote 

forms of Leishmania donovani. Preussomerin EG1 was the most active substance and 

inhibited growth of L. donovani with a potency similar to that of amphotericin B (IC50 0.09 

μM) (Martínez-Luis et al., 2009). 

 

 

Fig. 5. Preussomerin  EG1 (2), palmarumycin CP2 (3), palmarumycin CP17 (4), 
palmarumycin CP18 (5), CJ-12,37 (6) and palmarumycin CP19 (7) 
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The isolate UFMGCB 555, obtained from the plant Piptadenia adiantoides and identified as 
Cochliobolus sp., produces cochlioquinone A (Fig.6, 8) and isocochlioquinone A (Fig. 6, 9). 
Both compounds were active in an assay against L. amazonensis, with EC50 values of 1.7 µM 
and 4.1 µM, respectively (Campos et al., 2008). 
 

 

Fig. 6. Cochlioquinone A (8) and isocochlioquinone A (9) 

Grandisin (Fig. 7, 10), a tetrahydrofuran lignan isolated from Piper solmsianum (Piperaceae ) 

(Martins et al., 2003) and Virola surinamensis (Myristicaeae) (Lopes et al., 1996), has potent 

trypanocidal activity against the trypomastigote form of T. cruzi at 5 μg/mL (Lopes et al., 

1998). Biotransformation of this compound by the endophytic fungus Phomopsis sp., 

obtained from Viguiera arenaria, yielded a new compound, 3,4-dimethyl-2-(4’-hydroxy-3’,5’-

dimethoxyphenyl)-5-methoxy-tetrahydrofuran (Fig. 7, 11). The metabolite had trypanocidal 

activity (IC50 9.8 μmol/mL) similar to the natural precursor (IC50 3.7 μmol/mL) (Verza et al., 

2009). 

 

 

Fig. 7. Grandisin (10) and 3,4-dimethyl-2-(4’-hydroxy-3’,5’-dimethoxyphenyl)-5-methoxy-
tetrahydrofuran (11). 

Altenusin (Fig. 8) is a metabolite obtained from the organic extract of a broth culture of the 

endophytic fungus Alternaria sp. UFMGCB 55, which was isolated from a plant known to 

contain trypanocidal compounds, Trixis vauthieri. This fungus inhibited TryR enzymatic 

activity with an IC50 value of 4.3 mM (Cota et al., 2008). The endophytic fungus Diaporthe 

phaseolorum, recovered from Viguiera arenaria, displayed promising results by inhibiting the 

parasitic enzyme gGAPDH (95%) at 100 μg/mL (Guimarães et al., 2010). 
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Fig. 8. Altenusin. 

An organohalogen natural product (2-chloro-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-
dione) (Fig. 9, 13) and a quinone derivative (7-hydroxy-8-methoxy-3,6-
dimethyldibenzofuran-1,4-dione) (Fig. 9, 14) were obtained from the organic extract of 
Xylaria sp. PBR-30. This endophytic fungus was isolated from healthy leaves of Sandoricum 
koetjape (Meliaceae). These natural products had in vitro activity against P. falciparum (K1, 
multidrug-resistant strain), with IC50 values of 1.84 and 6.68 μM (Tansuwan et al., 2007). 
 

 

Fig. 9. 2-chloro-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione (13) and 7-hydroxy-8-
methoxy-3,6-dimethyldibenzofuran-1,4-dione (14). 

The yeast-like fungus Aureobasidium pullulans, which was isolated from a leaf of Culophyllum 

sp. collected in Narathiwat Province, Thailand (Isaka et al., 2007), produces the 

cyclohexadepsipeptides pullularins A-D (Fig. 10, 16-19). Pullularin A exhibited antimalarial 

activity (IC50 3.6 μg/mL) and moderate antituberculosis activity (MIC 25 μg/mL). Pullularin 

B exhibited considerable antimalarial activity (IC50 3.3 μg/mL), but this substance and 

pullularin C exhibited weaker activities in other assays when compared with pullularin A. 

The low lipophilicity of a deprenyl analogue of pullularin A may explain the inactivity of 

this substance in all of the assays (Isaka et al., 2007). 

Codinaeopsis gonytrichoides was isolated from Vochysia guatemalensis (Vochysiaceae), a white 

yemeri tree collected in Costa Rica. A new tryptophan-polyketide hybrid named 

codinaeopsin (Fig. 11, 20), which contains an unusual heterocyclic unit linking indole and 

decalin fragments, was isolated from the crude extract of this endophytic fungus. 

Codinaeopsin is active against the 3D7 strain of P. falciparum with an IC50 value of 2.3 

μg/mL (4.7 μM). Codinaeopsin has the same scaffold as the HIV integrase inhibitor 
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equisetin (Fig. 11, 21), the antifungal agent cryptocin (Fig. 11, 22), and the telomerase 

inhibitor UCS1025A (Fig. 11, 23). These compounds have a linear fragment joined to amino 

acids or N-methyl amino acids (Kontnik & Clardy, 2008). 

Stems of Melaleuca quinquenervia (Myrtaceae), collected from Toohey Forest, Australia, were 
examined for fungal content. Chemical investigations of a fermentation culture from the 
endophytic fungus Pestalotiopsis sp. yielded three caprolactams, which were named 
pestalactams A–C (Fig. 12, 24-26). Pestalactams A (Fig. 12, 24) and B (Fig. 12, 25) displayed 

modest in vitro selectivity against chloroquine-resistant (IC50 41.3 and 36.3 M, respectively) 

and chloroquine-sensitive (IC50 16.2 and 20.7 M, respectively) cell lines of the malaria-
causing parasite P. falciparum versus neonatal foreskin fibroblasts (NFF, IC50 20.2 and 12.8 

M, respectively), with both compounds yielding ~16–41% parasite growth inhibition at 25 
mM and ~12–64% NFF inhibition at 100 mM (Davis et al., 2010). 
 

 

 

Fig. 10. Pullularins A-D (16-19) 

Chalara alabamensis, an anamorphic fungus, was isolated from the host plant Asterogyne 

martiana (Arecaceae), which was collected in Costa Rica. The dichloromethane extract of this 

fungus inhibited PfHsp86, an essential protein-folding chaperone from P. falciparum, with an 

EC50 value of 24 μg/mL. The only active compound isolated from the extract was viridiol 

(Fig. 13), a steroidal furan with an EC50 value of 1.2 µg/mL (Cao et al., 2010). 
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Fig. 11. Codinaeopsin (20), equisetin (21), cryptocin (22) and UCS1025A (23). 

 

 
 

Fig. 12. Pestalactams A–C (24-26). 

 

 

Fig. 13. Viridiol. 
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Structurally related aromatic sesquiterpenes named phomoarcherins A-C (Fig. 14, 28-30) 
were obtained from the ethyl acetate extract of the endophytic fungus Phomopsis archeri, 
which was isolated from the cortex stem of Vanilla albidia Blume (Orchidaceae). The most 
active compound in the series was amphotericin B, which had antimalarial activity against 
P. falciparum (IC50 of 0.79 μg/mL) and contains a ketone function at C-3 and an aromatic 
lactone ring (Hemtasin et al., 2011). 
 

 

Fig. 14. Phomoarcherins A-C (28-30). 

Pestalopyrone (Fig. 15), 6-(1′-methylprop-1′-enyl)-4-methoxy-2-pyrone, which was isolated 

from a Costa Rican endophytic fungus, Phomatospora bellaminuta, had activity against P. 

falciparum in an assay with an IC50 value of 37 M and is a promising candidate for a 

prototype molecule for antimalarial drugs (Cao & Clardy, 2011). 

 

 
Fig. 15. Pestalopyrone. 
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fungal endophytes are in vitro and in vivo studies to maybe became new neglected disease 
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molecules, which only few of them can be obtained by chemical synthesis; (iii) there are a lot 
of different isolates of same species of endophytic fungi, which also have differences in their 
capability to produce bioactive compounds; (iv) tropical endophytic fungi preserved in 
culture collections can be growth in different conditions of nutrients, temperature, pH, 
agitation and aeration to optimize the recover the high amount of crude extracts, as well as 
bioactive pure compounds; (v) if the crude extract and fractions produced by endophytic 
fungi do not display toxic activities, they can be used as “mycotherapic” agents. In addition, 
the metabolites described in this review also may be used against non-neglected diseases, 
because they are able to act against eukaryotic cells such as cancer cells, immune system 
cells, cells infected with virus, some human pathogenic fungi, among others. Unexplored 
natural environments are an excellent source of bioactive compounds that can act as the 
scaffold for commercial drugs. By taking advantage of new genomic, proteomic and drug 
design techniques, endophytic fungal communities associated with tropical forest plants, 
with their high diversity of species and their diverse genetic and metabolic pathways, may 
be resources for intelligent screening for discovering new drugs to treat neglected diseases. 
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