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1. Introduction  

1.1 The problematic of hydration status in the kidney disease patient 

Dry weight corresponds to the body weight of a person with normal extracellular fluid 

volume [1]. In the context of hemodialysis, dry weight is the weight reached at the end of 

the dialysis session by patients who will remain free of orthostatic hypotension or 

hypertension until the next session. Clinicians are thus obliged to estimate the appropriate 

dry weight each individual patient should reach at the end of a dialysis session. If this 

weight is underestimated, the patients are at risk of various incidents ranging from simple 

yawning to death. Low dry weight also carries a permanent risk of hypotension, cramps, 

nausea, vomiting or ischemia. If this weight is overestimated, chronic hyperhydration can 

cause acute events including pulmonary edema, or hypertension, but also long-term 

consequences affecting cardiovascular morbidity and mortality [2]. This important notion of 

dry weight is however quite problematic because it corresponds to a transient state, making 

it necessary to anticipate weight gain between two dialysis sessions and thus to reach a 

certain degree of dehydration at the end of each hemodialysis session. 

The many methods proposed for measuring dry weight and body composition are still 

under investigation. The difficulty encountered in establishing a reliable comparative tool 

for measuring these parameters arises from inevitable physiological, anatomical and 

physical variability. Most approaches remain empirical, relying on feedback from trial 

and error [3]. 

In practice, dry weight is estimated clinically [4]. Physical examination is a classic but 

limited tool. Solid evidence-based analysis of specific physical findings such as systolic 

blood pressure, orthostatic blood pressure, or the presence or not of edema is lacking. Such 

clinical symptoms can also be related to conditions other than a dry weight or body 

composition problem. Several tests have been proposed to assess the dry weight of 

hemodialysis patients [5]. Echocardiographic inferior vena cava diameter and biochemical 

markers are available but results exhibit high variability and poor correlation with extra-

cellular volume; there are also unserviceable in detecting volume depletion.  

Bioimpedance spectroscopy measurement has been demonstrated as a potentially useful 

method to determine the physiological status of living tissues [6]. Disease-related alterations 

are associated with variations in essential tissue parameters such as physical structure or 

ionic composition that can be detected as changes in passive electrical properties. 
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Bioimpedance spectroscopy can be used as a diagnostic tool reflecting the overall status of a 

patient or of an individual organ. The range of applications derived from this method is 

wide making this non-destructive and non-invasive approach a promising technique for the 

characterization of the physiological status of the human body. 

This chapter presents the use of bioimpedance spectroscopy as a tool for measuring the dry 

weight of the hemodialysis patient. The first part summarizes the basic fundamentals of the 

method, describing the underlying electrical and biological principles and the potential 

interest for applications in hemodialysis. Techniques and models are presented and 

discussed. The second part discusses clinical results obtained at the hemodialysis center of 

the Nancy University Hospital, with focus on patient-related parameters influencing or 

limiting measurements and their interpretation. 

1.2 Basic principles of bioimpedance spectroscopy 
1.2.1 Physical principles 

The bioelectrical properties of the human body depend on the nature of the biological 

tissues composing it and their relative conductivities. These properties lead to the notion of 

impedance of a biological medium which varies as a function of the frequency of an 

electrical current applied across it. This in turn leads to the notion of bioimpedance 

spectroscopy. 

Impedance is a complex quantity (Z) describing, in compliance with Ohm’s law (assuming 

sinusoidal voltage), the relationship between the voltage difference across the medium and 

the amplitude of the electrical current. Because of the capacitive nature of biological media, 

all impedance measurements of the human body involve a phase shift between the voltage 

and the current, yielding complex values. Biological media are weak conductors due to the 

dissipation (or loss) of energy in the media and can be considered as energy-loosing 

dielectrics. The quantities of interest can thus be defined using a schematic representation of 

a biological suspension placed between two electrodes (Fig. 1). 
 

 

U 

I

Electrodes

Biological 

medium 
 

Fig. 1. Basic principle of bioimpedance spectroscopy  
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U and I are sinusoidal quantities with phase shift  

 j t j( t )U  Uo e ;  Io e   I  (1) 

The impedance of a biological medium is thus the relationship between the voltage 
difference across the medium and the current amplitude as described by Ohm’s law:  

U = Z I where Z is the complex impedance expressed in Ohms (). In Cartesian form this 

gives Z = R + jX where R is the resistance, X is the reactance, both expressed in Ohms, and j 

the imaginary unit, j = 1  

Setting Z = 2 2R X and  = arctg (X/R) gives the polar form Z = Z ej  

The bioelectric impedance Z describes the inertia of a biological medium opposing passage 

of a sinusoidal current with intensity I and pulsation  (rad/s). Along the lines of the 

electrical current, this impedance generates a difference of potential U. Bioelectrical 

impedance can be represented in a complex plane. It is perfectly defined by knowledge of 

either its real and imaginary components (R and X), or by its module and its argument, Z 

and . 

For an isotropic, homogeneous, linear medium, impedance is a function of the medium’s 

electrical properties, conductivity and permitivity, but also depends on the geometric 

features of the measurement cell. This so-called bioimpedance is a well-known tool for 

characterizing different physiological water compartments [7]. Because of the complexity 

and highly heterogeneous nature of living tissues, a global approach is used, considering the 

whole body as a suspension of cells in water and electrolytes [8]. 

1.2.2 Biological basis 

Biological tissues cannot be considered as ideal conductors. They are ionic conductors with 

heterogeneous structures. If we limit our considerations to the sole electrical aspect of 

interest here, biological tissues can very schematically be considered as a combination of 

two components: i) a free water medium called the extracellular fluid, within which are 

suspended ii) cells surrounded by a membrane containing and thus limiting a volume of 

intracellular fluid (Fig. 2). The cell concentration can vary greatly, depending on the nature 

of the tissue. 

The fluid components (extracellular fluid, plasma and intracellular fluid) can be 

considered as electrolytic suspensions of ions whose concentration, electrical charge and 

mobility, taking into account the viscosity of the medium, will essentially determine the 

impedance of the suspension, mainly arising from resistive type resistance. Cell 

membranes however constitute a more complex component. Cole demonstrated that cell 

membranes can be likened to capacitors [9, 10, 11]. This divides biological media into two 

basic components, resistors (R) and capacitors (C), which when connected in parallel 

produce an electrical equivalent model as described by Fricke [13] (Fig. 2). This simplified 

model (Re, Ri and C are not ideal) enables an interpretation of observed biophysical 

phenomena. 

Theoretically, tissue impedance, like any electric impedance, can be measured. The mass of 

tissue to study simply has to be delimited and linked to a measurement device via a system 

of electrodes. In practice however, measuring the electrical characteristics of biological 

tissues raise many specific problems. It is useful to recognize the electrical properties of 
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biological tissues and their components because of their interest both in medicine, where 

many diagnostic methods are based on electrical principles, and in fundamental physiology, 

where these same properties contribute to the structural analysis of cell organization, the 

study of cell excitation mechanisms, or to the analysis of protein molecules. Debye, Cole-

Cole and Maxwell-Wagner models have been developed to represent the theoretical 

interpretations of these phenomena. These models can be used to demonstrate important 

factors characterizing biological tissues [12]. 
 

 
Cellular Membrane 

Intracellular 

medium

Extracellular 

medium

Ce 
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Ri
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current 

Low frequency
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Fig. 2. Electrical equivalent model (Fricke’s model) of a biological cell in suspension in the 
extracellular fluid. Ri : intra-cellular resistance, Re : extra-cellular resistance, Ce : capacitance 

Capacitance and resistance can be combined either in series or in parallel, leading to several 

variants of the Fricke model. Resistivity (charge accumulation) and conductivity 

(conduction of electrical current) are however two independent processes for which the 

parallel model has been found to be more representative. Formulas used for biological 

tissues are thus all based on the Fricke model [13]. Applying these models to bioimpedance 

spectroscopy curves allows a quantification of value differences corresponding to the 

intracellular fluid and the extracellular fluid and thus their corresponding masses. The 

interest for hemodialysis is obvious. 

1.3 Usefulness of bioimpedance for the kidney disease patient 

Much research has been devoted to the determination of body hydration status and fluid 

compartments, particularly in hemodialysis patients [14]. Work has focused on various 

physiological parameters with different modalities to study individual segments of the body 

or the whole body [15, 16, 17] using multiple or unique frequencies [18]. One of the goals is 

to improve predictive equations and to identify the effect of different parameters on the 

measures obtained [19, 20]. In dialysis for example, it has been shown that fluid is removed 

predominantly from the extracellular and peripheral (arms, legs) compartments [21]. Thus, 

different biofluid models have been proposed to describe the whole body or individual 

organs. Basically, applying the bioimpedance method to determine body composition 
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consists in placing electrodes conveniently on the arms and legs in order to impose an 

electrical current and measure the voltage it induces across the body. For a reasonable 

current density, the behavior is linear so that Ohm’s law remains valid. Intra- and extra-

cellular fluids are mainly resistive, whereas cell membranes act as an insulator between 

these two compartments. Rare bioimpedance spectroscopy studies conducted in kidney 

graft recipients have shown a trend towards improved hydration after transplantation. We 

have been unable to find any study evaluating hydration changes in patients with acute 

kidney disease. 

2. Theoretical and experimental models  

2.1 Principles of bioimpédance in hemodialysis 

Many different instruments have been marketed using algorithms based on different 

equations predicting body composition from impedance measurements [22, 23, 24, 25]. The 

validity of these different equations remains a question of debate since most have been 

established empirically. Moreover, the equations actually used by the algorithms of 

commercial microcomputers are not readily accessible, making it rather difficult to discuss 

their validity or make necessary corrections. The voltage produced by the current is 

measured to calculate the impedance. The relationships between impedance and other 

variables such as body water volume have been established using statistical correlations 

observed in specific populations rather than on a real biophysical basis. Actually, the 

theoretical basis can be summarized by the following statement: the human body is a 

complex conductive volume composed of heterogeneous tissues and intra- and extra-

cellular compartments in perpetual movement.  

Basically, the algorithms applied are based on regression laws used as a tool predictive of 

the relationship between two or more body variables constituting a database. Thus for total 

body water (TBW) the regression equation is written as [26](with H: Height): 

 2TBW  a . H /  R  b . weight  c . Age  d     (2) 

TBW is measured in a large population using a gold standard, e.g. isotopic dilution (Fig. 3). 

The statistical software then uses regression analysis to establish the best fitting equation 

describing the relationship between TBW and the different measurements, e.g. height, 

weight, age, gender, resistance… For subsequent resistance measurements, a software 

inserts the recorded data into the accepted formula and delivers the results as TBW (Fig. 4). 

2.1.1 Prediction of total body water 

2.1.1.1 Historical background 

One of the most commonly cited relationship is the cylinder model where the volume of a 

conductive cylinder is function of its length (L) and its resistance (R). High frequency 

current penetrates into the cell and runs across body fluids. A TBW value can thus be 

obtained by modeling the human body as a sum of cylinders. Devices applying this method 

are calibrated by dilution techniques. These devices rely on the following relationship:  

  TBW  a.H² /R c   (3) 
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Fig. 3. Correlation between isotopic dilution and bioimpedance (BIS) 
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Fig. 4. Exemple of bioimpedance analysis block diagram [23] (R : resistance, X : Reactance) 

Thomasset [27, 28] was the first, in 1963, to use two frequencies (1 et 100 kHz), to measure 
extracellular and total water respectively using the Cole-Cole model (Fig.5). Subsequently, 
several different formulas have been proposed based on regression equations. 
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Fig. 5. Cole-Cole model 
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2.1.1.2 Theories used 

Three techniques are generally described, using multiple frequencies, high and low 
frequencies, and a unique 50 kHz frequency. 
The multifrequency mode is the most widely studied. It is based on the Cole-Cole model 
and allows differentiation between intra- and extra-cellular volumes. But the relationship 
between resistance and water volume is not linear, so that the multifrequency mode is 
associated with Hanaï theory, which takes into account the non-conductive element, 
connected in a parallel, to distinguish the different compartments. The parallel model 
described by Fricke takes into account the conductive elements exhibiting a certain degree of 
resistance connected in parallel and isolated by a cell membrane. This method has been 
validated by Van Loan [29, 30, 31]. At high and low frequencies, the Hanaï theory takes into 
account the presence of non-conductive elements connected in parallel. The measurement 
improvement mainly concerns the extracellular compartment [32, 33]. At the unique 50 kHz 
frequency, the theory enables a measurement of TBW (and lean body mass) [28]. Many 
different formulas have been published, using the term: H²/R50, where H is the subject’s 
height in cm and R50 the wrist-ankle resistance. These methods have not been validated and 
generally cannot detect small volume changes. This limitation may be related to the relative 
uniformity of tissue elements considered in the formulas which do not take into 
consideration changes in tissue composition. Simple calculations allow extrapolations for 
extracellular water [34].  
These different theories can then be applied to measure body segments or the whole body 
[35, 36, 37, 38]. For segmental measures, the mathematical models remain empirical and 
actual measures remain dependent on electrode position. Differences appear in comparison 
with whole body measures with a trend to underestimate water loss during a dialysis 
session compared with a segmental measurement, particularly in the event of hypotension 
[39]. One advantage is that the segmental technique would be less sensitive to changes in 
patient position from one measure to the next [40]. 

2.1.1.3 From theory to measure 

The problem is then to transform a resistance measurement into a calculation of body 
composition. Geometry plays an important role. As seen in Figure 6, three objects with a 
constant height exhibit the same resistance from top to bottom, despite their different 
volumes [41]. 
 

 
 
 
 
 

 
1 
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Fig. 6. Complexity of the body geometry-measurement relationship 
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Thus in many models, the human body is considered to be the sum of five compartments 
(Fig. 7) (the four limbs and the trunk), with a dimension homogeneity factor Kb. 
 

 

Z 

Z
Z

Z Z

 

Fig. 7. The 5-compartment human body model 

The homogeneity factor is calculated from the resistance of a cylinder (R) which is function 

of its resistivity (, its length (L) and its cross-section (A) [42] 

 
L

R
A

   (4) 

Then, by calculating the volume of the cylinder, and separating, arms, legs and trunk, the 
following formula is established with l for leg, t for trunk and a for arm:  

 t al
2 2 2
l t a

L LL
R 4 .

C C C

 
      

 
 (5) 

This formula, together with the classical formula for the volume of a cylinder, yields the 
dimension homogeneity constant, KB, which represents a characteristic anthropometric 
parameter independent of the electrical parameters. 

 
2

B
L

V K
A

   (6) 

 2 2 2t al
b a a 1 1 t t2 2 2 2

l t a

L L1 L
K . (2L C 2L C L C )

L C C C

 
      

 
 (7) 

2.1.1.4 Formula validity and limitations 

When these formulas are applied to measure body composition, the result is always 
significantly different from gold standard measurements. Thus Fenech [43] and Jaffrin [44] 
proposed a direct calculation of TBW using the same method as for extracellular water, 
assuming that TBW is a homogeneous quantity of fluid. The mean resistivity of this TBW 
was validated by comparison with body composition data obtained using the DEXA 
method. Jaffrin then raised the question of extrapolating total body resistance from the 
resistance value measured at 50 kHz [45], using a proportional intermediary multiplier. 
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Finally, the superiority of multifrequency impedance over the monofrequency impedance 
has not been demonstrated. Similarly no one formula has been found superior to the others. 

2.2 Available clinical applications 

Several studies have been conducted in hemodialysis patients. Three approaches have been 
particularly fruitful, the nomovolemia/hypervolemia curves established by Chamney [46, 
47, 48, 49], the resistance/reactance curves by Piccoli [50, 51, 52] and Zhu’s continuous 
curves [53, 54]. Although essential, these approaches will not be detailed here. Readers may 
usefully refer to the cited references. 

2.2.1 Problems and solutions 

2.2.1.1 Changes of body position 

It has been shown that resistance/reactance curves are modified reversibly by changes in 
body position (reclining, sitting, upright position). Physical studies have demonstrated a 
modification in the lines of current passing through the body with changes in body position. 
In addition, length and resistance measures vary [55]. In the healthy subject, comparison of 
whole body and segmental measures shows an increase in resistance in all sectors 
(peripheral and central compartments) when moving from the upright to the reclining 
position [56, 57]. This is logical for the peripheral sector, related to the decrease in water in 
this sector which is redistributed to the central sector by cancelation of the gravity effect. 
However, surprisingly, resistance increases in the trunk, despite the increase in water. One 
explanation is that impedancemetry poorly evaluates the central sector. In the dialysis 
patient, and using the segmental mode, resistances vary with electrode position. The 
volumes calculated using the segmental mode are much higher than with the whole body 
mode and than with the anthropometric formulas [58]. In conclusion, segmental measures 
are insufficient to eliminate artifacts related to changes in body position. 

2.2.1.2 Underestimation of extracellular volume variations in dialysis patients 

These calculations are made from variations in plasma sodium content, accepting the 

hypothesis of zero sodium exchange between intra- and extra-cellular compartments or 

with the dialysis solute (obviously a false assumption). These results show that the 

contribution of the extracellular volume is superior to that measured by impedancemetry, 

with certain aberrant results [59, 60]. Conductivity variability is well known in dialysis 

and is most likely responsible for these problems of fluctuating resistivity for different 

compartments during dialysis. 

3. Experimental materials and methods 

3.1 Tanita (TBF-300) 

Tanita (TBF-300) is a device for measuring body impedance between the two legs. It is 
simple to use and does not require electrodes. Manufactured in Japan, the devise presents as 
a weight scale with a built-in body composition analyzer which calculates TBW, total body 
fat and fat-free body mass [61]. The National Institute of Health has not validated the 
results. For these measurements, the person stands barefoot on a four-point platform. 
Impedance measurements are made using a high frequency (50kHz) and low intensity (500 
µA) current between the feet. (formula are not known) 
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3.2 Body composition monitor 

The body composition monitor (BCM) was developed by Fresenius® Medical Care. BCM is 
a rapid non-invasive 4-electrodes method for monitoring body composition by measuring 
the electrical impedance response to a multifrequency signal (50 frequencies from 5 kHz to 1 
MHz). The Cole-Cole model is applied, with Hanaï mixture theory, to distinguish 
extracellular water (ECW), intracellular water (ICW) and total body water. Integrated 
software can also display over-hydration status. The device has been validated in healthy 
people, in comparison with reference methods (isotopic dilution).  
The advantage of this device is to provide a quantitative diagnosis of over-hydration. The 
model is based on tissue hydration constants observed in the healthy individual which can 
then be applied to quantify excess water in kidney disease patients. The validation study, 
based on gold standard methods (bromide dilution for the extracellular compartment, 
deuterium dilution for TBW, potassium dilution for intracellular compartment and DEXA 
for fat mass), included 500 healthy subjects. The measures were then compared with the 
hemodialysis patient, before and after dialysis. This technique assumes that intracellular 
water, fat-free mass, and fat mass remain unchanged during the course of the dialysis 
session despite the ultrafiltration [62]. 
 

OH 

LTM 

ATM 

 
ECW 

 
 

 
 

ICW 

ICW 

ECW 

ECW 
 

Fig. 8. Physiological  model used by the body composition monitor (BCM) to determine the 
hydration constant of tissues and thus overhydration (OH). ATM: adipocyte tissue mass; 
LTM: lean tissue mass 

The novel aspect of this model is the introduction of a third compartment corresponding to 
the excess fluid (Fig. 8) or over-hydration (OH) in comparison with the healthy individual. 
This over-hydration is considered to concern the extracellular compartment exclusively. 
Lean body mass contains exactly 73.2% water and includes the intra- and extra-cellular 
compartments, the intracellular compartment predominating. Lean body mass includes 
protein (muscles) and mineral (bone) matter. The sum of the intracellular compartment plus 
the protein mass defines the cell mass. Adipose tissue mass, or fat mass, contains 26.8% 
water, the extracellular compartment predominates. The notion of a third compartment 
avoids the problems related to the fact that the ratio between the extracellular and 
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intracellular water is not constant. Comparing total and extracellular water measurements 
obtained in the healthy population and in the dialysis population defines the notion of over-
hydration. Time-course curves of the different compartments provide a picture of the 
evolving state of hydration. 
In Figure 9, the notion of hydration status in the dialysis patient is combined with systolic 
blood pressure. Four sectors are defined. I: over-hydration and hypertension, II: normo-
hydration and hypertension, III: normo-hydration and normo-tension IV: over-hydration 
and normo- or hypo-tension. Trends can be plotted. 
 

Blood Pressure 
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140 

IV 

I II 
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Fig. 9. Hydration reference 

3.3 Experimental works and results 
3.3.1 Hemodialysis patients 

3.3.1.1 Elaborating a dry-weight index using Tanita 

We first used the Tanita TBF-300 analyzer to obtain bioimpedance measures in 238 
hemodialysis sessions. The mean total body water (TBW) was 41.9±7.9 kg before sessions 
and 39.6±7.3 kg after sessions. Mean body weight was 76.6±18.2 kg before and 74.2±17.1 kg 
after. Statistically, body weight remained stable during this study and was thus valid for 
assessing reliability. This enabled the definition of patient populations used to hypothesize 
the pathophysiology of hyperhydration, dehydration and normohydration state based on a 

body-weight index (Fig.10). Change in weight (W) and TBW (TBW) was noted and 
compared with ultrafiltration. In theory, these three variables should be similar, because 
during dialysis sessions, the ultrafiltration applied corresponds to a subtraction of water, 
and consequently to the change in w or TBW before and after the water depletion. But net 

ultrafiltration and W correlated poorly (c=0.62) with TBW. This led to the definition of a 

dry-weight index,  It was hypothesized that this Index would be 0 when patients reach 

their dry weight: I = W– TBW 
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Fig. 10. Pathophysiology of hydration state. upper panel: hyperhydration; middle panel: 

dehydration; lower panel: normo-hydration. TBW = total body water, W = body weight. 

Dry-weight index : I = ΔW– ΔTBW 
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3.3.1.2 Body composition monitoring of the elderly hemodialysis patients 

Body composition was monitored for a 1.5-month period under standardized conditions in 

10 hemodialysis patients aged over 80 years with the BCM. The data collected (Table 1) 

showed that these elderly patients exhibited a different water distribution pattern during 

ultrafiltration and also different refilling behavior. Thus ultrafiltration did not fully reflect 

changes in over-hydration. The only valid and clearly coherent measures were those 

recorded before the dialysis session. While the Cole-Cole model remained valid, implanted 

devices or specific clinical situations such as heart failure affected the impedance results. 

Pacemaker behavior (patient n° 8) was unaffected by the very small current used, but the 

presence of conductive metal (orthopedic prosthesis in patient 10) modified the 

bioimpedance measures. In such patients, change in weight and ultrafiltration followed a 

similar pattern, but TBW recordings were obviously incorrect in light of the weight loss 

(Table 1) and the over-hydration diagnosis (Table 2). 

 

 ∆ Weight (kg) UF (l) ∆ TBW (l) ∆ ECW (l) ∆ ICW (l) 

 mean SD mean SD mean SD mean SD mean SD 

patient 1 2,03 0,36 2,1 0,59 2,5 0,96 2,07 0,47 0,47 0,47 

patient 2 1,22 0,2 1,22 0,32 1,26 0,41 1,12 0,19 0,16 0,29 

patient 9 1,43 0,68 1,76 0,72 1,53 0,46 1,2 0,62 0,3 0,82 

patient 3 1,58 0,3 1,3 0,23 0,78 0,43 0,55 0,06 0,23 0,46 

patient 5 1,52 0,51 1,28 0,31 0,46 1,46 0,82 0,48 -0,3 0,17 

patient 6 2,9 0,29 2,8 0,15 1 0,71 1,85 0,35 -0,95 1,06 

patient 10 1,3 0,99 1,52 0,55 0,77 0,75 0,6 0,36 0,17 0,42 

patient 4 1,33 0,22 1,18 0,16 2,7 0 1,7 0,17 0,97 0,15 

patient 8 2,63 0,43 2,34 0,34 6,83 2,48 1,5 0,53 5,43 2,94 

patient 7 1,53 2,19 0,72 0,19 0,78 0,57 1 0,68 -0,25 0,17 

Table 1. Participation of fluid compartments during ultrafiltration (UF) 

Four patient profiles could be identified from the data presented in Table 1. 

 Patients 1, 2 and 9 exhibited good correlation between weight loss, applied 

ultrafiltration, and TBW variation during dialysis sessions.  

 Patients 3, 5, 6 and 10 exhibited a different type of behavior. The decline in TBW from 

the beginning to the end of the dialysis session was underestimated as compared with 

the variation in weight or applied ultrafiltration. 

 Inversely, for patients 4 and 8, the decline in TBW during dialysis was overestimated, 

compared with the very similar variations in weight or ultrafiltration.  

 In one patient (n° 7), ultrafiltration and TBW correlated well with each other, but not 

with weight loss. 

As expected, dialysis-related water depletion mainly involved a reduction of the 

extracellular compartment compared with the intracellular compartment. This well-known 

phenomenon is called refilling. In three patients (n° 5, 6 and 7), the bioimpedance measures 

predicted fluid overload in the intracellular compartment, with a smaller fall in TBW than in 

extracellular water. This might be related to a “reverse refilling” phenomenon. For patient 
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n° 8 who had a pacemaker, fluid removal seemed to occur exclusively from the intracellular 

compartment.  

 

 OH before (l) OH after (l) 

 mean SD mean SD 

patient 1 0,1 0,49 -1,77 0,55 

patient 2 1,7 0,21 0,72 0,13 

patient 3 0,78 0,11 0,53 0,21 

patient 4 0,98 0,29 -0,17 0,12 

patient 5 0,72 0,33 -0,1 0,39 

patient 6 2,6 0,71 0,57 0,15 

patient 7 0,62 0,63 -0,15 0,77 

patient 8 0,5 1,59 1,63 0,8 

patient 9 0,84 0,65 -0,2 0,26 

patient 10 -0,6 0,12 -0,97 0,21 

Table 2. Body composition monitoring (BCM) diagnosis of over-hydration (OH) status 

The over-hydration data presented in Table 2 show that, according to the BCM findings, all 
patients except two (n° 8 and 10), were over-hydrated at dialysis onset and underhydrated 
at dialysis end. Comparing the clinical diagnosis of over-hydration established by the 
nephrologist programming the ultrafiltration at the beginning of the session (Table 1) with 
the over-hydration status diagnosis established by BCM before dialysis (Table 2) revealed 
different trends. The nephrologist tended to overestimate over-hydration before dialysis 
while the BCM tended towards an underestimation. At the end of the ultrafiltration six of 
the patients were dehydrated, but not far from their dry weight, with a difference of ≤0.5 
liters from normo-hydration. 

3.3.2 Body composition monitoring in living-donor transplant recipients 

We prospectively studied five transplanted patients who had received a living-donor graft 
after a period of hemodialysis. These five patients had exhibited particularly rapid recovery 
of normal renal function after transplantation. We took bioimpedance measures before 
surgery and several times during a mean 2-months period after transplantation. Our 
findings produced a bell-shaped curve showing weight gain with increasing over-hydration 
followed by weight loss with normo-hydration, in correlation with the normalization of 
kidney graft function (Table 3). 
 

BCM diagnosis Day 1 post-transplantation Day 50 post-transplantation 

Over-hydration 1.04±0.7 liters 0.56±0.3 liters 

Table 3. Over-hydration after kidney transplantation 

Clinically, the patients’ blood pressure improved and edema disappeared. For example, one 
patient weighed 48.4 kg on day 4 post-transplantation and 47.3 kg on day 10. There was a 
reduction of the hyperhydration, the Cole-Cole curves shifting to the right (Fig. 11), and an 
increase in maximal reactance (X) (from 50.6 to 62.5 Ohm). The frequency at which this 
reactance reached its maximum also declined from 60 kHz to 50 kHz, a frequency which is 
commonly observed in normo-hydration subjects. 
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Fig. 11. Cole-Cole time curves after kidney transplantation. In blue at Day 4 post 
transplantation (OH +0.5), in red at Day 10 post transplantation (OH +0.6) 

3.3.3 Body composition monitoring in acute kidney failure  

We studied three patients with acute reversible kidney disease. Body composition 
monitoring was started at the time of the acute disease and continued to the recovery 
period. Results (impedance, reactance, phase shift, Cole-Cole curve) showed an over-
hydration period that disappeared with the normalization of kidney function. The time 
course of improved hydration status in this patient is represented in Figure 12. Over-
hydration and weight variations followed the same pattern, rising and declining in 
parallel. 
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Fig. 12. Hydration status time course in a patient recovering normal kidney function. 
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  Day 1 Day 11 

weight (kg) 86.2 82.3 

Over-hydration (Kg) 2.8 0.2 

Maximal reactance 25 37.7 

Resistance (Ohm) 410 540 

Frequency (kHz) 67 5O 

Table 4. Resistance and frequency values at maximal reactance 

 

 

Fig. 13. Cole-Cole curves with recovery of kidney function from Day 1 (blue) to Day 11 (red) 

Figure 13 also shows that the Cole-Cole curves shifted to the right as hydration status 
returned to normal. This right shift being the expression of lesser hyperhydration. On day 
1, the resistance levels at 0 and ∞ frequency went from 450 to 370 Ohms with a maximum 
reactance of 26 for a resistance of 410. By day 11, the curves had shifted to the right, 
corresponding to lesser hyperhydration, weight loss, and a diagnosis of lower over-
hydration. These values ranged from 590 to 480 Ohms and maximal reactance of 37.7 with 
a corresponding resistance at 540 (Table 4). These physical elements also corresponded to 
clinical reality since blood pressure levels returned to normal with involution of lower 
limbs edema. 

4. Conclusion 

Bioimpedance is an easy-to-use tool providing a useful evaluation of patients’ dry weight. 
The method remains limited due to the lack of standards of normality. Moreover, changes in 
electrolytes, red cells, protein, body temperature or implanted devices affect bioimpedance 
measures, further compromising use of bioimpedance for determining the dry weight or 
normal hydration level of hemodialysis patients. Nevertheless, measurable values such as 
impedance, reactance, or phase shift enable the identification of patient groups and the 
description of trends. Impedance, reactance and phase shift can be used to identify 
population groups with similar behavior patterns useful for determining dry weight or 
detecting hydration disorders. Analysis of correlations between physical data and clinical 
findings is another point of interest discussed in this chapter. 
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