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1. Introduction 

Up to date, a systemic treatment of cancer is based mainly on the use of chemotherapy. 
However, in the majority of cases, chemotherapy is not a radical treatment. In initially 
identified tumors there already exist cells that are resistant to toxic drug action, due to their 
biochemical properties. Furthermore, the proportion of such cells is progressively increased 
throughout the treatment period because they receive selective growth advantages over the 
cytotoxic drug-susceptible cells. It should also be noted that cytotoxic action of 
antineoplastic drugs is not selective: the drugs affect not only tumor, but also normal cells. 
Hence, there may be serious side effects of chemotherapy, which, by themselves, may be 
life-dangerous and frequently requiring further medical interventions. An appearance of the 
drugs with selective cytotoxic activity seems improbable in the near future because the vital 
biochemical processes in tumor and normal cells are similar in their basis.  
Nevertheless, tumor cells are distinguished from normal ones by quantitative and 
qualitative expression on their surfaces of potentially immunogenic structures (antigens). It 
is generally accepted that the immune responses induced by these structures can cause 
destruction of tumor cells, and that reactivity of the immune system can define an outcome 
of disease. All of the tumor-associated antigens (TAA) can be divided into two groups: the 
first one involves the differentiation antigens that can be expressed in not only tumor, but 
also normal cells, whereas the second one comprises of the products of mutated or viral 
genes, which can be expressed exclusively in malignant cells. The vast majority of TAA 
belongs to the first group. These TAA can be expressed in a variety of tumors, due to 
commonality in the intracellular mechanisms involved in malignizeition of various types of 
cells. There is considerable interest in developing therapeutic vaccines for cancer, as they 
hold the promise of delaying or preventing cancer recurrence, particularly in early-stage 
disease patients. However, there exists a general problem with cancer vaccine application, 
because most of the TAA are represented by self, nonmutated proteins which are poorly 
immunogenic for the immune system [reviewed in 1]. Hence, overcoming the immune 
tolerance toward TAA is indeed a key task of cancer immunotherapy. The use of vaccines 
based on xenogenic TAA seems to be a promising approach to resolving this problem. Since 
TAA are typically evolutionarily conservative molecules, there is a strong homology 
between human and animal TAA. On the other hand, small interspecific structural 
differences of TAA can be advantageously used in constructing cancer vaccines because 
xenoantigens may potentially represent an “altered self”, with sufficient differences from 
self-antigens to render them immunogenic, but with sufficient similarities to allow reactive 
T cells to maintain recognition of self [1]. 
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2. Xenovaccinotherapy in animal models  

The majority of studies concerning xenogenic vaccines have been carried out on animals 
with melanoma, the tumor that expresses a whole number of potentially immunogenic 
antigens. There is compelling evidence that xenogenic melanoma- associated antigens are 
much more effective in inducing antitumor immune responses in mice than are their murine 
analogs. For example, multiple immunizations of mice with human glycoproteins gp75 and 
gp-100 were reported [2-6] to be effective in preventing the growth of the syngeneic 
melanoma cells expressing the appropriate mouse analogs [6]. Interestingly, the murine 
gp75 being initially non-immunogenic became immunogenic in mice when it was 
administered in the form expressed on a membrane of insect cells [7]. This suggests that the 
membrane-bound xenoantigens that are not related to tumorogenesis are capable of 
contributing to self TAA-driven immune responses. The related melanosomal antigens 
appear to differ in immune response patterns which they induce. For example, the DNA 
vaccination of mice with human tirosinase-related protein-1 (TRP-1/gp75) induced 
antibody- mediated responses and autoimmune depigmentation, whereas the DNA 
vaccination with human TRP-2 resulted in the generation of tumor-specific CD8+ cytotoxic 
T lymphocytes (CTL) and failed to elicit depigmentaion [8]. 
As surgery is essential for any melanoma treatment, experiments have been performed to 
evaluate antitumor effects of xenovaccination in the postoperative period. It was shown that 
the postoperative DNA vaccination of mice with human TRP-2 could prevent the 
development of melanoma metastasis in the lungs [4]. These data suggest that 
xenovaccinotherapy can be the most effective when applied in addition to surgical 
treatment.  
The polyantigenic vaccination has apparent advantages over the monoantigenic one in 
achieving clinically relevant antitumor responses, thank to its ability to simultaneously 
induce immune reactions directed against different TAA. We demonstrated that the survival 
in the melanoma-bearing mice vaccinated with destroyed human melanoma cells was 
noticeably superior than that in the control mice immunized with murine tumor cells. 
Surprisingly, the antitumor effect in this experimental model was associated with the rise of 

serum interleukin (IL)-4, but not interferon (IFN)-γ [9].  
As already mentioned, the differentiation antigens are expressed not only in tumor but also 

in normal cells. This raises the possibility of obtaining such antigens from normal tissues in 

which they are highly expressed. Placenta is well known to express a whole range of 

differentiation antigens, including those shared by different tumors including melanoma 

[10]. Therefore, placental tissue, could be a suitable source of the xenoantigens applicable for 

breaking the immunological tolerance to a number of TAA. In fact, the mice that received 

the soluble proteins derived from the porcine placenta as a vaccine, demonstrated the 

immune protection from melanoma where both CD4+ and CD8+ T lymphocytes were 

involved [10]. 

The xenovaccination aimed at breaking the tolerance to a melanosomal antigen gp 100 has 
been applied in the treatment of 34 melanoma dogs [11]. Canine melanoma cells 17CM98 
transfected with a DNA fragment encoding human gp 100 were used as a vaccine. With 
such vaccinotherapy, a complete or partial response was achieved in 17% animals, and 
disease stabilization with a duration of not shorter than 6 weeks was recorded in 35% 
vaccinated dogs. The clinical responses correlated with delayed-type hypersensitivity (DTH) 
skin reactivity to vaccinal antigens but was independent both of the functional activity of 
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vaccine-specific CTL and of the serum level of antivaccinal antibodies [11]. In this study the 
animals that responded to vaccination, survived significantly longer compared to those 
which did not [11]. An objective antitumor effect in certain dogs with the stage IV melanoma 
could be also achieved by their vaccinating DNA encoding human tyrosinase [12,13]. This 
effect was immediately related to occurrence of canine tyrosinase-binding antibodies in the 
sera [14]. No autoimmune complications and serious side effects of the xenovaccinotherapy 
were noted in the dogs [12,13]. Noteworthy is also that this therapy could be effectively 
used in combination with surgical treatment [15].  
The ability of xenovaccination to break the immunological tolerance to TAA has been 
demonstrated in a murine model of breast cancer [16]. Protooncogene HER-2/neu is a self-
antigen expressed by tumors and nonmalignant epithelial tissues. DNA vaccination of mice 
with human HER-2/neu was found to overcome the immunological tolerance to that 
protein and to induce the antibody-mediated, immune responses directed against both 
cancer and normal breast cells [16]. Yet, vaccinations of mice with a fragment of human 
HER-2/neu (435-443) induced generation of the CTL able to effectively recognize the 
syngeneic, HER-2/neu-positive tumor cells. Importantly, the CTL generation in these 
experiments depended on the age of vaccinated mice [17].  
Survivin, a member of the inhibitors of apoptosis, is considered as an ideal vaccinal TAA, 
due to its broad expression pattern in many types of human malignancies. Dendritic 
vaccination of mice with human survivin was shown to induce the T-helper 1-mediated, 
immune responses, which were markedly enhanced by depleting CD25 +, Foxp3+, CD4 + 
regulatory T cells. Noteworthy is that the generation of survinin-specific CTLs lacked in this 
model [18]. The antitumor effect of administrating human survinin in mice was also 
reported in the models of lymphoma [19], glioma [20, 21], and pancreatic cancer [19]. 
A high expression of epidermal growth factor receptor (EGFr) is attributable to different 
tumors including lung carcinoma and breast cancer [22]. It is likely that EGFr may be 
involved in autocrine and paracrine stimulation of tumor cell growth. Vaccination of mice 
with DNA encoding a extracellular part of EGFr was found to break the tolerance to murine 
EGFr and to induce immune responses directed against EGFr –positive tumor cells. The 
antitumor effect observed in this model was mediated both by IgG antibodies and by CTL 
and associated with elevation of the serum concentration of IFN-γ , as well as of IL-4 [22].  
Prostate-specific membrane antigen (PSMA) is a prototypical differentiation antigen 
expressed on normal and neoplastic prostate epithelial cells, and on the neovasculature of 
many solid tumors]. Immunizations of mice with human recombinant PSMA or DNA 
encoding PSMA were shown to induce the production of antibodies able to bind to murine 
PSMA; an effective vaccination was also demonstrated with administrating the 
xenoantigens prepared from the tumor prostate [23, 24].  
A high expression of mesothelin is attributed to pancreas cancer. Therapeutic vaccination of 
mice with human mesothelin was found to result in inhibition of pancreatic cancer 
disseminating. Such a antitumor effect was associated with the rise in serum antimesothelin 
antibodies, as well as with an increase in the functionality of mesothelin-specific CTL [25]. 
Glioma membrane proteins (HGP) are typically expressed in the cells of malignant glioma. 
Therapeutic vaccination of rats with human HGP was demonstrated to result in the glioma 
growth inhibition that was mediated by the HGP-specific Th1 cells and characterized by a 
pronounced infiltration of tumor tissues with CD4+ and CD8+ T cells. In contrast to the 
human HGP, its murine analog lacked any antitumor activity [26]. 
Alfa-fetoprotein (AFP) is highly expressed in liver cancer. Vaccination with the recombinant 
rat, but not mouse AFP was found to provide a significant prolongation of survival in 
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hepatocarcinoma -bearing mice. The antitumor effect of such vaccination depended on 
functional activity of both CD4+ and CD8+ Т-lymphocytes [27]. 
Unlike other cancers, the neuroendocrine tumors, such as a gastrinoma, insulinoma, and 
medullar thyroid carcinoma, do not demonstrate any clear association with expression of 
defined classes of membrane-bound TAA. Therefore, for generating antitumor immune 
responses in such cases, the approach has been offered based on breaking the immune 
tolerance to tumor-derived, soluble products. In a model of thyroid carcinoma it was 
demonstrated that therapeutic vaccination of mice with the human (but not murine) 
calcitonin resulted in a significant inhibition of tumor growth. The antitumor affect of this 
vaccination was associated with infiltrating the tumor by calcitonin-specific CTLs, as well as 
with a sharp decline in the serum level of calcitonin [28].  
Tumor development requires neoangiogenesis. Therefore, the therapeutic approaches aimed 
at preventing growth of tumor-feeding vessels are in the focus of experimental and clinical 
studies. Theoretically, breaking the immunological tolerance to molecules involved in 
angiogenesis could restrain tumor growth. A fibroblast growth factor receptor-1 (FGFr-1) is 
one of such molecules. Vaccination of mice with recombinant chicken FGFr-1 was reported 
to be able to overcome the tolerance to endogenic FGFr-1, eliciting production of FGFr-1-
specific, IgG autoantibodies [29].  
Matrix metalloproteinase-2 (MMP-2) is well known to play an important role in 
angiogenesis and to promote tumor cell expansion in the body. Immunizations of mice with 
the LLC or CT26 tumor cells expressing chicken MMP-2 was found found to induce 
antiangiogenic immune responses, resulting in the appearance of MMP-2- binding 
autoantibodies [30, 31]. 
Endoglin is a marker of angiogenesis in solid malignancies, including liver cancer. 
Therapeutic vaccination of mice with an extracellular portion of porcine endoglin was 
shown to induce immune responses directed against colorectal and lung cancers. The 
generation of such responses depended on functional activity of CD4+ T-lymphocytes and 
resulted in the appearance of endoglin-binding autoantibodies [32, 33]. A significant 
enhancement of antitumor effect was achieved when protein vaccination was combined 
with DNA vaccination. Such a combined vaccination induced not only the synthesis of 
endoglin-binding autoantibodies, but also the generation of endoglin-specific CTL [34]. An 
antitumor effect of DNA vaccination with porcine endoglin was also demonstrated in a 
murine model of liver cancer. This effect was mediated by both cellular and humoral 
immune reactions [35]. 
Tie-2 is an endothelium-specific receptor tyrosine kinase known to play a key role in tumor 

angiogenesis. Therapeutic vaccination of mice with human Tie-2 was found to be capable of 

exerting a negative effect on the growth of melanoma and hepatic cancer. This effect was 

dependent on functional activity of CD4+ T-lymphocytes and mediated by antibodies 

binding murine Tie-2 [36].  

A pronounced antiangiogenic effect can be induced by vaccination with xenogenic  
whole endothelial cells [37]. This effect may be associated with overall tumor growth 
inhibition [38].  
An antiangiogenic effect can be also achieved by inactivating soluble angiogenic molecules. 
For example, the vaccination of 9 dogs with spontaneous sarcomas by human endothelial 
cell growth factor (VEGF) resulted in the production of autoantibodies capable of binding 
both human and canine VEGF. The antitumor effect was observed in 3 (30%) vaccine-treated 
dogs. No complications of the vaccinotherapy were noted [39] .  
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It appears that antiangiogenic immunotherapy can be effectively combined with breaking 
the tolerance to differentiation antigens in order to induce clinically relevant antitumor 
responses. For example, the administration of DNA encoding tumor endothelial marker 8 
(TEM8) was able to enhance the tumor immunity in melanoma mice, induced either by rat 
neu or by human tyrosinase-related protein 1 (TYRP1/hgp75) [40]  

3. Clinical application of xenovaccinotherapy  

Prostate cancer, melanoma, colorectal cancer and renal cancer are usually resistant to the 
standard cytotoxic therapy, including highly toxic combinations. On the other hand, all of 
these cancers express TAA which are capable of inducing antitumor immune responses. 
Hence, immunotherapy has to become the mainstay in treating those cancers.  
Prostatic acid phosphatase (ǾАǾ) is a differentiation antigen expressed by normal and 
malignant cells of prostate. Patients (n=21) with metastatic prostate cancer were multiply 
vaccinated with autological dendritic cells loaded with mouse PAP. Such vaccinations were 
found to be safe to use, with no serious side effects being observed. An increased Т-cell 
reactivity to murine ǾАǾ was observed in all of the vaccine-treated patients. Only 8 of 21 
evaluable patients exhibited enhanced immune responses to human PAP. These responses 
associated with the enhanced production of IFN-γ and tumor necrosis factor (TNF)-α, but 
not IL-4 [41] 
Immunologic effects of DNA vaccination with mouse tyrosinase have been assessed in 18 
patients with melanoma, and the generation of tyrosinase-specific ǿD8+ memory Т cells 
was found in 7 of them No serious complications of such a treatment were noted [42] 
It should be noted that immunizations with one or several tumor-associated, antigenic 
peptides frequently fail to control overall tumor development, creating favorable conditions 
for growth of the tumor cell clones lacking vaccinal determinants. Moreover, due to a high 
lability of cancer genome, there is an antigenic diversity even in tumor cells of the same 
origin [43]. Since whole tumor cells express a variety of TAA and are able to elicit a broad 
spectrum of immune responses, they could be more applicable to constructing cancer 
vaccines, compared to a single or just few antigenic peptides. However, immunizations with 
unmodified homologous (autological or allogeneic) tumor cells have demonstrated only 
limited therapeutic success in cancer patients. There are two major reasons for the low 
immunogenicity of homologous cell vaccines. Firstly, most of the homological TAA 
represents self-antigens, which are not inherently immunogenic. Secondly, antigen-
presenting cells do not recognize the homologous tumor cells as potentially pathogenic 
targets that should be internalized and their antigens processed [43].  
From the aforesaid, we favor a xenogenic cell-based vaccine . Because of their structural 
distinctions from homologous analogs, the xenoantigens are capable of effectively 
overcoming the immune tolerance to self-antigens, including TAA. Yet, all humans possess 
natural (preexisting) antibodies, which provide an acute rejection of any non-primate cells 
and function as a major barrier for the transplantation of animal organs to humans [44]. A 
significant part of these antibodies represents the Ig G specific to the a-gal epitope that is 
expressed abundantly on glycoproteins and glycolipids of non-primate mammals and New 
Word monkeys [45]. In our point of view, by the opsonization of xenogenic tumor cells, the 
natural antibodies could promote internalization of tumor material in antigen-presenting 
cells via a Fc-receptor-mediated mechanism, and thereby enhance greatly the immunogenic 
presentation of TAA to tumor-specific T lymphocytes. This proposition is consistent with 
the published data indicating a critical role of the FcR-receptors in generating an effective 
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tumor immunity [46], as well as with the findings showing that the rejection of alpha-Gal 
positive tumor cells can efficiently boost the immune response to TAA present in alpha-Gal 
negative tumor cells [47].  
A xenogenic polyantigenic vaccine (XPV) under study is composed of disrupted murine B16 
melanoma and LLC carcinoma cells. The XPV is stored in the form of frozen-dried 
preparation and is suspended in physiological salt solution immediately before its 
administration. Since the XPV includes a wide spectrum of melanoma- and carcinoma-
associated antigens, our opinion is that it may be applicable for treating different cancers.  
The study with xenovaccination was performed in exact accordance with the protocol 
approved by the Scientific Council and Ethics Committee at the Institute of Clinical 
Immunology (Novosibirsk, Russia). Informed consent was obtained from every subject who 
underwent xenovaccinotherapy. Eligibility criteria included histologically proven, measurable 
disease, no prior immunosuppressive therapy for a minimum of 4 weeks, a good performance 
status (Karnofsky scale, 70% or more) and adequate marrow, renal and hepatic functions.  
An inducing vaccinal course consisted of 10 subcutaneous immunizations (5 at weekly and 5 
at fortnight intervals) and took about 3 months. Each vaccinal dose contained 75 x 106 (B16 + 
LLC) dead cells. Twenty-four hours following each of the first 5 vaccinations, a part of the 
patients was given subcutaneously a low dose of a non-oxidated recombinant IL-2. Since, 
when combined with XPV, IL-2 had no any significant effect on XPV-induced long-lasting 
immunoreactivity, its administration in the above- indicated way was recognized 
unpractical. Following an inducing course of the treatment each of the patients received 
supporting vaccinations monthly or less frequently. Throughout follow-up time the trial 
patients received no any systemic therapy other than immunotherapy. 
A total of 152 patients with advanced forms of melanoma, colorectal or renal cancers have 
completed an inducing vaccinotherapy consisting of 10 immunizations and had adequate 
follow-up to monitor toxicity, immune responses and survival. No III-IV grade systemic 
toxicity associated with the vaccine administration was noted. During 24-to-48 h post 
vaccination only nearly 10% patients exhibited an influenza-like syndrome in the form of a 
small body temperature rise and musculoskeletal discomfort, which were usually self-
limiting. Irritations at the injection sites were developed in the most patients in response to 
vaccination. Local manifestations usually disappeared within 72 h following vaccine 
injection. There were no treatment- related hospitalizations or mortalities. 
Cell and biochemical blood parameters, as well as renal and hepatic functions, remained 
within the initial ranges throughout the inducing vaccinotherapy. Also there were no 
significant changes in subpopulation composition of PMBCs tested by immunofluorescence 
for expression of CD3, CD4, CD8, CD 20, and CD16 surface markers. 
The development of systemic autoimmune disorders could not be excluded initially in XPV-
treated patients because of the broad range of different antigens present in XPV. However, 
XPV-treated patients exhibited no evidence of any systemic autoimmune disorders. Their 
serum concentrations of a rheumatoid factor, but also of antibodies specific to DNA, 
cardiolipin, thyroglobulin, microsomal fraction of thyrocytes remained in the initial ranges 
throughout the inducing vaccinotherapy. 
An inducing vaccinotherapy was found to increase detectably the serum concentrations 
both of IFN-γ and of IL-4. Yet it should be noted that an increase in the IFN-γ level was 
more common and greatly pronounced in the XPV-treated patients, compared with that in 
IL-4 level [48,49].  
With inducing vaccinations, a remarkable increase in both T cell- and antibody-mediated 
immunoreactivity to vaccinal antigens was found in the majority of assessable patients. An 
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important aim of our study was to determine whether or not murine TAA would be capable 
of contributing to the generation of immune responses specific to human TAA. Indeed, our 
data clearly indicated that inducing vaccinations were able to significantly enhance T cell-
mediated reactivity to human melanoma-associated antigens, while not affecting that to the 
control alloantigens [50, 51] 
In our study an overall survival in the XPV-treated patients (n=51) with metastatic 
melanoma was evaluated through 7 year follow-up period. The control group was 
composed retrospectively of the patients who received conventional therapy, and had the 
initial clinical characteristics similar to those of the trial group. The characteristics of the trial 
and control patients are presented in Table 1. If it was reasonable and possible, both trial 
and control patients underwent a cytoreductive palliative surgery. As shown in Figure 1, the 
median survival in the XPV-treated patients was significantly longer than that in the control 
patients (14 vs. 6 months, respectively; p< 0.05). Of note is that almost all of those trial 
patients, who have survived for 2 years after immunotherapy initiation, further survived as 
long as 7 years and longer. The overall 7-year survival rate in XPV-treated and control 
patients was 20% and 0%, respectively. More impressing results were obtained when a long-
term overall survival has been analyzed in the stage III melanoma patients (n=48; 26 females 
and 22 males aged from 22 to 76 years). The control group was composed retrospectively of 
the clinically comparable patients (n=27; 12 females and 15 males aged from 35 to 77 years). 
Initially, each of assessable patients had a high risk of disease recurrence. As shown in 
Figure 2, an overall 6 year survival rate in the trial group was 54%, whereas that in the 
control group only 25%. It is important to note that a better survival in melanoma patients 
was associated with their increased DTH to the vaccinal B16 melanoma antigens [49,50]. 
 

Characteristic Trial Control 

Number of patients 
Males/females 

51 
25/26 (49%/51%) 

32 
10/22 (31%/69%) 

Age, years (median, range) 51.8±2.4 (18-72) 48,2±2,3 (24-77) 

Site of metastases: 
Lung 
Liver 
Lymph node, skin/soft tissue 
Other organs  

 
16 (31%) 
10 (20%) 
34 (67%) 
8 (15%) 

 
6 (19%) 
7 (22%) 

26 (81%) 
8 (25%) 

Table 1. Characteristics of stage IV melanoma patients assessable for survival. 

We also evaluated a long-term overall survival in the 35 XPV-treated patients with stage IV 
colorectal cancer. The control group was composed retrospectively of the patients (n=35) 
who received conventional therapy. Since the trial patients were very heterogenous in their 
clinical characteristics, each control patient was randomly selected to be a clinically 
comparable counterpart of a trial patient, thus control and trial groups were evenly 
balanced by both prognostic and clinical parameters. The characteristics of colorectal cancer 
patients are presented in Table 2. As shown in Figure 3, the median survival in the XPV-
treated patients was significantly longer when compared with that in the control patients (18 
vs 8 months, respectively; p< 0.05). An overall 2-year survival rate in the trial and control 
group was 27% (10 patients) and 3% (1 patient), respectively. However, patients in the trial 
group almost completely lost their survival advantages as early as at 3.5 years after the 
immunotherapy initiation. 
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Fig. 1. Survival in the patients with stage IV melanoma. See text for further details. 

 

 

Fig. 2. Survival in the patients with stage III melanoma. See text for further details. 
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Characteristic Trial Control 
Number of patients
Males/females 

35
19/16 (54%/46%) 

35 
19/16 (54%/46%) 

Age, years (median, range) 61.1 ± 1.4 ( 38- 79) 55.6 ± 1.7 ( 30 - 80) 
Site of metastases:
Lung 
Liver 
Lymph node,skin/soft tissue 
 
Other organs  

7 (20%) 
25 (71%) 
17 (48%) 

 
11 (31%)

 
6 (17%) 

19 (54%) 
15 (43%) 

 
8 (23%) 

Table 2. Characteristics of stage IV colorectal cancer patients assessable for survival 

 

 

Fig. 3. Survival in the patients with stage IV colorectal cancer. See text for further details. 

Figure 4 characterizes a long-term overall survival in the 16 XPV-treated patients (5 females 
and 11 males aged from 54 to 76 years) with stage IV renal cancer. The control group was 
composed retrospectively of clinically comparable patients (5 females and 11 males aged 
from 49 to 77 years) . The median survival in the trial patients was found significantly 
longer when compared with that in the control patients (20 vs 8 months, respectively; 
p<0.05). Noteworthy is that patients in the trial group maintained the certain survival 
benefits from the immunotherapy throughout 5 year follow-up period.  
Overall, our results point out that the XPV-based therapy is safe for clinical use, and has no 
toxicity that is attributable to current standard treatments for cancer. It is also important that 
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the XPV-treated patients exhibited no evidence of systemic autoimmune disorders, of which 
a risk of development could significantly limits clinical application of polyantigenic 
xenovaccination . 
 

 

Fig. 4. Survival in the patients with stage IV renal cancer. See text for further details. 

It appears that the xenogenic antigens, not only tumor-associated, but also those inherent to 
normal cells, can be involved in XPV-induced immune responses. As evidenced by both 
cell- and antibody-mediated reactions [50,51], the immune-mediated sensitization to murine 
TAA observed in the XPV-treated patients was detectably greater than that to murine spleen 
cells antigens. This may imply that the antigens associated with tumor cell phenotype might 
be more significant in generating XPV-driven immune processes than those being only 
expressed in fully differentiated cells. 
Our data demonstrated that the xenovaccinations resulted in serum level elevations of not 
only of IFN-γ, but also of IL-4, suggesting intensification of both T helper 1- and T helper 2-
mediated immune responses in XPV-treated patients [48, 49]. These findings are of great 
importance in the light of previously reported data that indicate a critical role for cooperating 
T cell- and antibody-mediated mechanisms in generating tumor cytotoxicity in vivo [46].  
According to our experience [50, 51], the xenovaccinotherapy can result in generating 
complete or partial clinical responses in a certain portion of cancer patients. Nevertheless, 
stabilization of the disease appears to be the most common outcome of effective 
immunotherapy in advanced cancer patients. The XPV-based therapy is not an exception in 
this regard. Unlike the cytotoxic chemotherapy, tumor vaccine-based approaches may 
permit the host to reach a state of balance with the tumor, in which the net result of tumor 
growth and destruction is zero. That might lead to more significant survival benefits than a 
rapid destruction and rapid regrowth of the tumor following cytotoxic therapy. 
Actually, our results suggest that the polyantigenic xenovaccinotherapy can significantly 
affect survival in cancer patients. It should be noted that the majority of patients entered into 
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our investigations were with very advanced (stage IV) disease. It is reasonable to anticipate 
that, as with other immunotherapies, the XPV-based therapy might be maximally effective 
when being applied as early as possible following surgical resection of the prime tumor. 
Consistent with this assertion, the most survival benefits from immunotherapy were noted 
in the group of stage III melanoma patients when xenovaccinotherapy was initiated before 
appearing distant metastasis lesions.  

4. Сonclusion  

From the data mentioned above it appears that there are two main ways of using cancer 
xenovaccinotherapy: the first approach is directed on activation of the immune system 
against membrane-bound and soluble TAA, and the second one is aimed at overcoming the 
immune tolerance to the proteins that promote tumor progression. The most antitumor 
effects are likely to be expected when vaccinal xenogenic TAA elicitit both cellular and 
humoral immune reactions. The present paper is the first demonstration of the positive 
effect of polyantigenic xenovaccinotherapy on a long–term survival patients with advanced 
cancers. Although the results are extremely encouraging, they must be interpreted with 
caution because they are based on a small number of patients with very advanced disease. 
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