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1. Introduction 

Leukemia (from the Greek “leukos” (white) and “haima” (blood) is a type of cancer of the 
blood or bone marrow, characterized by an abnormal increase of white blood cells. 
Leukemia is a broad term, covering a spectrum of hematologic diseases, which can be 
distinguished by peculiar clinical and pathological characteristics. The first distinction is 
between acute and chronic forms. Moreover, according to which kind of blood cell is 
affected, leukemias are subdivided into lymphoblastic (a terminology limited to address the 
acute forms), lymphocytic and myeloid leukemias. Combining these two classifications 
provides four main categories: Acute Lymphoblastic Leukemia (ALL), Chronic Lymphocytic 
Leukemia (CLL), Acute Myeloid Leukemia (AML) and Chronic Myeloid Leukemia (CML). 
These broad categories are further subdivided into several subcategories, classically 
identified through morphological criteria (Greer et al., 2008). 
During the last thirty years, the widespread introduction of molecular biological concepts 
and methods in oncology has provided the important notion that cancer cells are mutants. 
These cells sometimes carry somatic mutations. In other cases they bear either amplified or 
inactivated tumor-related genes. These latter effects can be also caused by epigenetic 
mechanisms, instead of mutation events per se. However, the picture is considerably 
complicated by the observation that aberrant extracellular signals can promote oncogenesis 
even in a benign cell physiological context. In other words, the most malignant neoplastic 
phenotypes do not arise in a strictly cell autonomous manner, and their manifestation 
cannot be understood solely based on tumor cell genomes. The ability of malignant cells to 
proceed along the invasion-metastasis pathway may be acquired, at least in certain cases, 
through their interaction with the tumor microenvironment, without the requirement to 
undergo additional mutations beyond those that were needed for primary tumor formation 
(Hanahan & Weinberg, 2011). 
This scenario also applies to hematologic malignancies, where analysing the genes 
comprising the expression signature has provided important insights into the biology of 
leukemias. This has led to reshape the classification criteria for subcategories identification 
and risk stratification, as well as develop novel drugs addressing leukemia-specific 
processes. Further insights came from the discovery that the strict relationship between 
leukemia cells and the bone marrow microenvironment strongly determines malignancy 
and response to therapy. This relies on the fact that bone marrow cells emit survival signals 
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that strongly determine the development of the leukemic disease. CML has been for long, 
and is still, the “poster child” of translational medicine. The discovery of the Philadelphia 
chromosome and the subsequent finding of the BCR-ABL chimeric gene led to a unique 
understanding of the biology of the disease that spurred the development of targeted 
therapy, as well as methods for the molecular monitoring of the disease. These 
achievements have shaped a therapeutic framework that is the envy of oncology (American 
Society of Hematology ASH Education Program Book, 2010). CLL, despite being the most 
common leukemia with a clinical description dating back to the mid-nineteenth century, still 
remains a rather enigmatic disease. Nonetheless, considerable progress in understanding 
the biology of CLL occurred in the last few years. In particular, important advances have 
been made in identifying inherited and acquired genetic mutations, the role of B-cell 
receptor signaling and the tumor microenvironment. CLL resulted to be a disease 
dependent on the interplay of inherited, environmental and host factors (ASH, 2010). The 
picture is even more complex in acute forms, where different types of gene alterations, 
mainly translocations, have been observed that often lack a clear biological and clinical 
interpretation (ASH, 2010). ALL is the most common childhood leukemia form, and its 
therapy has improved substantially with the use of risk-directed treatment and improved 
supportive care. Current ALL trials have focused on improving the outcome of a few 
subtypes that remain refractory to treatment, such as infant ALL with specific gene 
translocations, MLL rearrangements, hypodiploid ALL, or poor early responders (ASH, 
2010). By contrast, most of the AML cases continue to pose a therapeutic challenge. AML 
forms show marked differences in survival following intense chemotherapy based on age, 
blast cell morphology and cytogenetic abnormalities. However, although therapeutic 
advances have lagged over the past two decades, recent work has provided an array of new 
prognostic factors in AML, which is driving our understanding of the disease biology and 
the development of new therapeutic targets (ASH, 2010). 
Here, we review the growing experimental and preclinical evidence that indicates that ion 

channels should be included among the genes whose expression is altered in leukemias. 

Channel dysfunction can have a strong impact on hematopoietic cell physiology and 

signaling, with ensuing effects on the onset and progression of the leukemia disease. These 

effects depend on the widespread roles of ion channels in modulating cellular functions that 

contribute to determine the clinical features and the therapeutic responses of hematologic 

diseases, such as proliferation, differentiation and apoptosis. In addition, many ion channels 

are at the same time effective sensors of extracellular signals and transducers of these signals 

into cellular regulatory cascades. From a pharmacologic standpoint, because ion channels 

are membrane proteins, they can be easily accessed by extracellular ligands or peptides 

(toxins), which offers clear advantages for treatment. For these reasons, we believe that ion 

channels represent promising targets for cancer therapy, which may open a novel 

pharmaceutical and clinical field.  

2. Overview of the relevant ion channel and aquaporin types 

Ion channels are integral membrane proteins that provide an aqueous pathway for ions to 
cross the energetically unfavourable barrier constituted by the plasma membrane. Ion 
channels are generally either permeable to cations or anions. Moreover, they can be more or 
less specific for different ions. The main stimuli for channel opening (activation) are either 
change in membrane potential (voltage-gated channels) or ligand binding (ligand-gated 
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channels). In the following paragraphs, we summarize the main structural and physiological 
features of the channel types that will be mentioned subsequently. 

2.1 Voltage-gated cation channels (VGC) 

VGCs belong to a large molecular family that comprises KV (Voltage-gated K+ channels), 
NaV (Voltage-gated Na+ channels) and CaV (voltage-gated Ca2+ channels). The K+ channel 
types are named KV1 to KV12, with subtypes named KV1.1, etc. (Gutman et al., 2005). They 
are tetrameric channels, with each subunit containing six transmembrane domains (S1 to 
S6). S4 is rich of amino acid residues with alkaline side chains and is thought to be the 
voltage sensor (Böriesson & Elinder, 2008). S5 and S6 are linked by the so-called pore (P) 
loop, which gives a fundamental contribution to ion selectivity and contains the K+ channel 
‘signature’ GYG (Alam & Jiang, 2011). Both the N- and C-termini are intracellular. The 
cytoplasmic domains contain consensus sequences for phosphorylation and the N-terminus 
determines interaction with regulatory proteins and other subunits. Besides the classical role 
in mediating the repolarizing phase of action potentials, many other functions have been 
found to be exerted by KV channels, which are a very diversified molecular family. These 
functions cannot be reviewed here, but a few relevant examples will be described later. The 
structure of NaV and CaV is similar to that of KV, except that the four independent subunits 
observed in KV are instead four homologous repeated domains of the same polypeptide. The 
main physiological role of NaV channels is shaping the rising phase of action potentials, 
whereas CaV channels control Ca2+ entry during action potentials, exocytosis, muscle 
contraction and the many other physiological processes that are modulated by [Ca2+]. In all 
voltage-gated channels, auxiliary subunits regulate the channel properties and control both 
membrane targeting and interaction with other proteins (Catterall, 1992, 2000). 

2.2 Inward rectifier K
+
 channels (KIR) 

These channels preferentially carry inward K+ currents, because the outward currents are 

blocked by intracellular cations obstructing the pore, particularly cytosolic polyamines and 

Mg2+. Block is increasingly more effective as Vm depolarizes. KIR channels are tetrameric 

proteins structurally related to the VGC family. However, each subunit only contains two 

transmembrane domains (M1 and M2). These are respectively homologous to S5 and S6 and 

are connected by a P-loop (Nichols & Lopatin, 1997). KIR channels contribute to regulate the 

resting Vm in a range not too far from the K+ equilibrium potential, thus controlling for 

example excitability in resting conditions, the cardiac action potential repolarization and the 

extracellular K+ buffering exerted by glial cells. 

2.3 Ca
2+

-activated K
+
 channels (KCa) 

These tetrameric K+ channels are formed by subunits collectively named KCa and 
structurally related to KV, with the typical S1-S6 module (Wei et al., 2005). In KCa1.1, a 
transmembrane segment named S0 precedes the S1-S6 module. KCa1.1 are also named BK 
(‘Big’) because of a particularly high single-channel conductance. BK are activated by both 
depolarization and [Ca2+]. KCa1.1 typically determines the Ca2+-dependent after 
hyperpolarization observed in certain neurons. KCa4 and KCa5 present similar overall 
features, but their precise physiological roles are still matter of debate. KCa4 channels are not 
voltage-dependent, because of S4 neutralization and are activated by Na+ instead of Ca2+. 
KCa2 (or SK, after Small conductance K+ channels) and KCa3 (or IK, after Intermediate 
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conductance K+ channels) are also not voltage-dependent, because of partial neutralization 
of S4. They are activated by [Ca2+] around 0.5 μM, through binding to the calmodulin 
proteins tightly associated with each subunit. These channels can regulate cell firing, the 
vascular tone and, as discussed below, are also implicated in cell proliferation and 
neoplasia. 

2.4 Transient Receptor Potential (TRP) channels 

TRP channels are homo- or hetero-tetramers of subunits structurally related to the VGCs, 
with the typical S1-S6, a P loop and cytoplasmic N- and C-termini. They are generally 
permeable to cations; the permeability to Ca2+ is extremely variable between subtypes. TRP 
are important sensors of the cell’s environment and can respond to many chemical as well as 
physical stimuli (including temperature). In mammals, six main subfamilies are known: 
TRPA, TRPC, TRPM, TRPV, TRPP and TRPML (Venkatachalam & Montell, 2007). TRP 
channels are widely distributed in mammalian tissues, and are implicated in a wide 
spectrum of functions (Nilius et al., 2007). Besides the classic roles as sensory transducers, 
increasing evidence implicates TRP channels in developmental functions. Ca2+ influx 
through these channels can in fact regulate axon guidance and neuronal survival (Talavera 
et al., 2008). 

2.5 Two-pore domain K
+
 channels (K2P) 

K2P channels were divided into six subfamilies: TWIK (tandem of pore domains in a weak 

inward rectifying K+ channel), TREK (TWIK-related K+ Channel), TASK (TWIK-related 

Acid-Sensitive K+ Channel), TALK (TWIK-related alkaline pH-activated K+ channel), THIK 

(tandem pore domain halothane-inhibited K+ channel) and TRESK (TWIK-related spinal 

cord K+ channel). The systematic nomenclature is KCNK followed by a specific number for 

each subtype. Each subunit is formed by intracellular N- and C-termini that comprise four 

transmembrane domains (TMS1-TMS4). Each subunit contains two P loops (which explains 

the name K2P), one between TMS1 and TMS2 and the other between TMS3 and TMS4. The 

functional channel is a dimer of two-pore domain containing subunits. K2P are believed to 

behave as background K+ channels, i.e. channels mostly open in resting conditions, and thus 

give a substantial contribution to Vrest. Accordingly, they present weak voltage-dependence 

and rectification. More specific physiological roles, including those in neoplastic cells, are 

still debated (Enyedi & Cziriák, 2010). 

2.6 Ionotropic purinergic receptors 

Purinergic receptors can be metabotropic or ionotropic receptors activated by adenosine (P1) 
or ATP (P2). In particular, P2 receptors comprise the ionotropic P2X receptors. Seven subunits 
have been identified (P2X1 to P2X7) that can form homo- or heterotrimeric channels typically 
activated by extracellular ATP. P2X receptors have intracellular N- and C-terminus and two 
transmembrane domains connected by a long extracellular loop involved in subunit 
association. The extracellular channel portion contains the ATP binding crevice plus 
modulatory sites. The C-terminus has very variable length and probably controls both the 
channel’s desensitization kinetics and receptor trafficking. The open channel is permeable to 
cations, including Ca2+. P2X receptors exert physiological functions in many tissues, 
including the adult and developing nervous system, the respiratory, gastrointestinal, 
cardiovascular and genitourinary systems (Köles et al., 2007). 
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2.7 Voltage-gated Cl
-
 channels 

These are ion channels permeable to anions and gated by membrane depolarization. Nine 
subunits (CLC-1 to CLC-7, plus ClC-Ka and ClC-Kb) are expressed in mammals. CLC-1, 
CLC-2, CLC-Ka, and CLC-Kb are certainly Cl- channels, activated by membrane 
depolarization and permeable to different anions. The native channel comprises two 
identical subunits and contains two independent pores. Each subunit contains 18 ǂ helical 
segments (A to R), with intracellular N- and C-termini. The segments A-I are homologous to 
J-R, but the two half-subunits have opposite orientation in the membrane. CLC channels are 
expressed in a variety of cells, where they regulate membrane excitability, cell volume, pH 
and transepithelial Cl- flux. They are also expressed in the organelles’ membranes. CLC-3, 
CLC-4 and CLC-5 are expressed on the membrane of intracellular vesicles and are thought 
to function as Cl--H+ antiporters. However, evidence about CLC-3 is controversial. The 
physiology of ClC-6 and ClC-7 is also unclear (Zifarelli & Pusch, 2007). 

2.8 Interplay between channels expressed in the plasma membrane and intracellular 
compartments: The role of CRAC 
Ion channels are also widely distributed in intracellular organelles and vesicles, where they 
control transmembrane fluxes implicated in neurotransmitter loading into synaptic vesicles, 
cytoplasmic Ca2+ homeostasis (and the related physiological processes), mitochondrial and 
nuclear function. Ion transport across the intracellular membranes is tightly coupled to the 
fluxes between the cytosol and the extracellular space. The CRAC channels (Ca2+ release-
activated Ca2+ channels) have a pivotal role in such interplay in that they mediate calcium 
influx from the extracellular compartment depending on the state of intracellular Ca2+ 
stores. The full physiological response of CRAC channels depends on interaction between 
the plasma membrane protein ORAI1 (or CRACM1), which forms at least part of the Ca2+ 
pore, and STIM1 (stromal interaction molecule 1), which is expressed in the endoplasmic 
reticulum membranes. When Ca2+ decreases in the intracellular stores, STIM1 and ORAI1 
form a complex that stimulates Ca2+ influx from the extracellular space. This process is 
implicated in the cellular processes that are regulated by Ca2+ and the related pathologies. 
For review see Parekh (Parekh et al., 2010). 

2.9 Aquaporins 

Aquaporins (or water channels) are integral membrane proteins that form a specific 
transmembrane pathway for water. Several aquaporins subtypes are known in mammals, 
formed by subunits named AQP0-AQP12, with different tissue distribution. They form 
tetrameric channels, with each subunit containing 6 transmembrane domains and one pore. 
Both the N- and C-termini are intracellular. Aquaporins control osmotic fluxes in a variety of 
physiological conditions, from cell volume alteration to transepithelial flux. Some subtypes 
form selective water channels, with scarce selectivity for ions and other small solutes. 
However, recent evidence shows that other AQP subtypes are also permeable to small solutes 
different from water, such as glycerol, urea, CO2, NO, NH3 and others. This considerably 
extends the range of possible functions of these membrane channels (King et al., 2004). 

3. Expression and function of ion channels in leukemia cells 

Work carried out in the early eighties led to the discovery of ion channels in lymphocytes 

and suggested specific channel roles in lymphocyte activation and function (Fukushima & 
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Hagiwara, 1983; DeCoursey et al., 1984; Matteson & Deutsch, 1984; Fukushima et al., 1984; 

Chandy et al., 1984). In particular, work done in M. Cahalan’s research group indicated that 

K+ channels could regulate mitogenesis, in T cells. Subsequent work from this and other 

groups clarified the differential expression of K+ channels in T lymphocyte populations and 

how they control T cell activation (Cahalan et al., 1985; Beeton & Chandy, 2005; Krasznai, 

2005). These cells turned out to express delayed rectifying K+ channels (Kv1.3) and 

intermediate conductance Ca2+-dependent K+ channels (KCa3.1) (Douglas et al., 1990; 

Logdson et al., 1997; Wulff et al., 2000). The K+ channel-dependent hyperpolarization 

facilitates the Ca2+ influx induced by antigen binding. The consequent stimulation of 

intracellular Ca2+- and PKC-dependent pathways triggers proliferation (reviewed in 

(Chandy et al., 2004)). A similar scheme may apply to transformed cell lines. K+ currents 

seem often to be necessary during proliferation, although which kind of channel is involved 

depends on the cell type and the stimulus inducing leukemia cell entry into the mitotic 

cycle. Early evidence was obtained in the myeloblastic leukemia cell line ML-1. When 

proliferating, these cells express functional K+ channels sensitive to 4-amino-pyridine (4-

AP), which are instead suppressed after inducing macrophage differentiation (Lu et al., 

1993). Treatment with 4-AP makes ML-1 cells arrest in G1, with no evidence of cell 

differentiation (Xu et al., 1996). Therefore, K+ channels in ML-1 cells appear to be strictly 

linked to the cell cycle control. Consistently, K+ currents are inhibited when cells are arrested 

in G1 by serum deprivation, and restored on serum re-addition or EGF application (Wang et 

al., 1997). The process depends on channel phosphorylation (Xu et al., 1999). The possible 

effects of K+ channel activation on Ca2+ fluxes have not been tested in ML-1 cells, but were 

demonstrated in a rat basophilic leukemia cell line, RBL-1, which expresses KIR channels. 

These probably maintain a favourable driving force for Ca2+ influx through CRAC channels 

(Straube & Parekh, 2002), in agreement with the early hypothesis based on work in T cells. 

Besides CRAC channels, other Ca2+ permeable channels have been studied in leukemia, and 

their role in still under study. For example, K562 cells, i.e. a human cell line obtained from a 

patient with CML in blast crisis, have been recently shown to co-express TRPV5 and TRPV6, 

two channel proteins that physically interact in these cells (Semenova et al., 2009). The same 

two channels were also detected in the lymphoblastic leukemia Jurkat cell line. Their 

expression pattern and high Ca2+ permeability indicate an important role in controlling Ca2+ 

homeostasis and probably in malignant transformation of blood cells (Vasil’eva et al., 2008). 

In other cases, the relation between K+ channels and Ca2+ flux is more complex, with Ca2+ 

producing feedback on K+ currents themselves. For example, the human Daudi cell line, a 

model of B-lymphoma, expresses functional Kv1.3 and KCa3.1. Specific block of KCa3.1 

inhibits cell cycle, whereas the opposite occurs when these channels are up regulated by 

serum addition (Wang et al., 2007).  

An extensive study of the K+ channel transcripts in primary lymphocytes and leukemias as 
well as several hematopoietic cell lines has been carried out by Smith and colleagues (Smith 
et al., 2002). In particular, they tested Kv1.3, Kv10.1, Kv11.1 and Kv12.2. Among these, only 
Kv11.1 turned out to be significantly up regulated in cancer cells. Expression was however 
not related to proliferation per se, because it was not observed in proliferating noncancerous 
lymphocyte types such as activated tonsillar cells, lymphocytes from Sjögren's patients and 
Epstein-Barr virus-transformed B cells. Conversely, our group has found the Kv11.1 
transcript and the corresponding channel protein (Kv11.1, better known as hERG1) and 
currents (IhERG1) in AML cell lines and in a high percentage of primary blasts from AML 
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patients. In this case, the block of IhERG1 , by applying specific hERG1 blockers, led cells to 
pause in G1. However, this was not the sole effect of hERG1 blockers; in fact, hERG1-
blocking drugs also impaired AML cell migration through fibronectin. Hence, hERG1 also 
regulates cell migration and invasiveness in myeloid leukemias. This effect was mediated by 
a signaling mechanism triggered by cell adhesion, centered on Akt and modulated by 
hERG1 channel activity (Pillozzi et al, 2007). Similar results were obtained in childhood B-
acute lymphoblastic leukemia (B-ALL) (Pillozzi et al., 2007). Both B-ALL cell lines and 
primary B-ALL cells expressed functional hERG1 channels, and hERG1 inhibition impeded 
the bone-marrow induced, integrin-dependent, protection against chemotherapeutic drugs, 
thus restoring a substantial apoptotic cell death. The hERG1 role in cancer cell biology is 
thus very complex. Mechanistic hypotheses based on current evidence are discussed later. 
Another member of the same Kv family, Kv 10.1 or EAG1, has long been related to cancer 
biology. Although the physiological expression of EAG1 is restricted to the brain, this 
channel is frequently and abundantly expressed in many solid tumors (Stühmer & Pardo, 
2010). Until recently, it was assumed that EAG1 was not expressed in hematologic 
malignancies; however, Pardo and coworkers found a significant EAG1 expression in 
myelodisplastic syndromes, CML and almost half of a cohort of AML samples. In these cells, 
EAG1 blockade inhibited both proliferation and migration, both in AML cell lines and 
cultured AML primary samples (Agarwal et al., 2010). 
The regulatory complexity is considerably increased by the fact that, in other contexts, the 

effects of K+ channels directly modulate cell differentiation, instead of cell cycle. This was 

formerly observed in Friend erythroleukemia cells (MELC), which express Ca2+-dependent 

K+ channels (BKCa) (Arcangeli et al., 1987a, 1987b). These are transiently activated when 

differentiation is stimulated by cell adhesion onto fibronectin (Arcangeli et al., 1991; 

Becchetti et al., 1992), or by application of classical inducers of erythroid differentiation 

(Arcangeli et al., 1989). Similar effects were observed in THP-1 human monocytic leukemia 

cells. Undifferentiated THP-1 cells express KDR channels. When differentiation to 

macrophages is induced by phorbol esters, KDR expression is turned off, whereas BKCa and 

IRK are turned on (DeCoursey et al., 1996). hERG1 was also shown to be relevant to mediate 

ostecoclastic differentiation in a pre-osteoclastic leukemia cell line, FLG 29.1 cells. In these 

cells differentiation may be induced by integrin-mediated adhesion to fibronectin as well as 

by treatment with phorbol esters. In both cases, the hERG1 blockade inhibited cell 

differentiation, which in these cells is witnessed by the increased expression of the calcitonin 

gene and by the up regulation of the v3 integrin, both markers of osteoclastic 

differentiation (Hofmann et al., 2001). A full discussion of the K+ channel effects on 

differentiation is outside the scope of the present review. We limit ourselves to exhort the 

reader to keep in mind the possible complementary effects exerted by channel modulation 

on the proliferation and differentiation branches of cell signaling. 

While no study is available on K+ channel expression in true hematopoietic stem cells 
(HSCs), KIR currents have been observed in primitive hematopoietic precursor cells (HPCs) 
(CD34+ CD38-) stimulated with the combination of interleukin-3 (IL-3) and stem cell factor 
(SCF) (Shirihai et al., 1996). The biophysical features of whole cell currents suggested that 
several KIR channel types were co-expressed. In fact, later work showed that both strongly 
rectifying (KIR 4.3) and weakly rectifying (KIR 1.1) channels are present in these cells. The 
expression of both KIR types seems essential for the generation of committed progenitors in 
vitro, as inhibition of the expression of either suppresses the generation of progenitor cells 
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from IL-3 and SCF-stimulated umbilical cord blood CD34+ CD38– cells (Shirihai et al., 1998). 
More recently, the Kv11.1 transcript was detected in circulating CD34+ cells upon cell cycle 
induction by IL3 (interleukin 3), GM-CSF (granulocyte-macrophage colony-stimulating 
factor), G-CSF (granulocyte colony-stimulating factor) and SCF (Pillozzi et al., 2002). As 

illustrated in more detail below, Kv11.1 (i.e. hERG1) associates with the 1 integrin in cord 
blood CD34+ cells. This interaction is essential for proper BM engraftment of these HPCs. 
Finally, the Kv11.1 transcript was recently detected in CD34+/CD38-/CD128 (high) leukemic 
cells (Li et al., 2008), i.e. in the stem cell population that is critical for perpetuation of the 
leukemia disease (Li et al., 2008). On the whole, it is conceivable that Kv channels, and in 
particular hERG1, is relevant for normal and leukemic hematopoietic stem cells.  
A novel player in this field is represented by the family of aquaporins (AQPs). A member of 

the family, AQP5 turned out to be overexpressed in CML cells, where it promotes cell 

proliferation and inhibits apoptosis, perhaps through an effect on cell volume control. In 

addition, the AQP5 expression increased with the emergence of imatinib mesylate resistance 

(Chae et al., 2008) (see also the paragraph below). Another member of the family, AQP9, has 

been shown to play a role in drug uptake and modulation of drug sensitivity in leukemia 

(Bhattacharjee et al., 2004) (see Chapter 6). Another channel, which has been recently 

reported to be expressed in the Jurkat cell line (Pottosin et al., 2008), is the TWIK-related 

spinal cord K+ (TRESK) channel, belonging to the double-pore domain K+ channel family. 

As detailed in the general session on ion channels, P2X7 receptors are widely distributed in a 

variety of cell types and are involved in diverse biological effects. A sustained high level of 

extracellular ATP was detected in a tumor microenvironment which implied the 

involvement of abnormal signaling in tumour cells mediated by P2 family receptors. Besides 

being detected in solid tumors (Solini et al., 2008), high expression of the P2X7 receptor was 

observed in B-cell CLL (Adinolfi et al., 2002), acute leukemias and myelodisplastic 

syndromes (Zhang et al., 2004; Chong et al., 2010). Moreover, a series of P2X7 polymorphisms 

have been discovered, and their impacts on P2X7 functions and prognosis were studied  (see 

also paragraph 3.2). For example, a N187D substitution was found in the J6-1 leukemia cell 

line, which displayed a lack of P2X7-mediated calcium response upon BzATP stimulation 

(Zhang et al., 2004). It was also shown that K562 leukemia cells bearing this hyposensitive 

mutant displayed a proliferative advantage over wild-type P2X7, both in vitro and in a nude 

mouse model. Furthermore, an increased angiogenesis and intratumoral inflammation 

could be detected in tumor masses formed by K562 cells bearing this mutant (Chong et al., 

2010). Finally, P2X7 receptors were also functionally expressed in murine erythroleukemia 

cells, and the activation of these receptors seems to be important in the induction of 

apoptotic death and release of microparticles by these cells (Costantinescu et al., 2010). 

An interesting debate, partially solved by the work of Huber’s group (Kasinathan et al., 
2007), involves chloride channels, and in particular ClC-3 channels. In this work, 
fluorescence microscopy revealed an intracellular localization of ClC-3 protein in K562 cells. 
Oxidation, on the contrary, increased the expression of ClC-3 protein into the plasma 
membrane, suggesting a role of plasma membrane-inserted ClC-3 in the oxidation-
stimulated anion current observed in these cells (Kasinathan et al., 2007). Oxidation not only 
affects anion currents in K562 cells but also activates the non-selective cation channel 
TRPM2, resulting in an increase of intracellular free Ca2+ concentration, which in turn 
activates SK4 K+ channels on the plasma membrane and may trigger apoptosis. An 
oxidation-induced co-activation of the ClC-3-dependent anion permeability results in loss of 
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KCl (and osmotically obliged H2O) and thus in cell shrinkage, suggesting that the ClC-3-
dependent anion permeability per se may generate apoptotic volume decrease. Another 
intriguing role of anion conductance emerged from the work of Soriani and coworkers 
(Renaudo et al., 2007). In particular, they studied the relationships between sigma receptors 
and volume-regulated chloride currents (VRCC). Sigma receptors are intracellular proteins 
that were first postulated as opioid receptors on the basis of pharmacological and 
behavioural studies. Sigma-1 receptors were functionally coupled with membrane 
potassium channels in the pituitary (Aydar et al., 2002; Soriani et al., 1999a). Subsequently, it 
was reported that the activation of sigma-1 receptors by highly selective ligands provoked 
the arrest of the cell cycle progression in the G1 phase, in cancer cells. This effect was partly 
linked to the inhibition of voltage-dependent potassium channels (Renaudo et al., 2004). 
More recently, they also demonstrated that the sigma-1 receptor modulates VRCC and cell 
volume regulation properties in leukemic cells leading to an alteration of cell proliferation 
and apoptosis (Renaudo et al., 2007). 

4. Genetics and epigenetics of channel expression in leukemias 

It is clear that most human neoplastic cell types show altered expression of a variety of ion 
channels and that these exert different functional roles. However, there does not seem to be 
a specific channel-tumor correlation. This conclusion is in broad agreement with current 
genetic evidence, because no clear cancer-related mutation in any channel-encoding gene 
has been reported so far. Therefore, it would appear that ion channels are not so much 
involved in tumor causation, but are implicated in the different stages of neoplastic 
progression. A partial exception is KCNRG, which encodes a K+ channel-regulating protein 
that has been proposed to be a tumor suppressor gene (Ivanov et al., 2003). A missense 
mutation at the codon 92 of KCNRG is often present in human hepatocellular carcinomas, 
positive for the Hepatitis B virus (Cho et al., 2006). In B cell-CLL KCNRG has been detected 
in the minimal common deleted region (CDR) of the 13q14 chromosomal deletions. The 
latter is the most common abnormality in CLL (Liu et al., 1997; Dohner et al., 1999); 
deletions at 13q14.3 are associated with the longest survival. Rearrangements and/or 
deletions in the region of 13q14.3 are also found in other types of hematopoietic 
malignancies, including mantle cell lymphomas (Rosenwald et al., 1999) and multiple 
myelomas (MM)(Harrison et al., 2003; Elnenaei et al., 2003). In the majority of these non-CLL 
cases, 13q14 deletions are associated with a poor chemotherapy response profile. The CDR 
encompasses an area containing DLEU1, DLEU2, RFP2, and KCNRG as well as microRNAs 
miR-15a and miR-16-1 (Liu et al., 1997; Tyybakinoja et al., 2007; Kapanadze et al., 1998; Calin 
et al., 2002; Baranova et al., 2003) KCNRG is located within the 3′ end of the largest transcript 
of RFP2 (Ivanov et al., 2003). Due to its effect of interfering with the normal assembly of the 
K+ channel proteins by binding to their tetramerization domain, thereby, causing the 
suppression of Kv currents, it has been hypothesized that KCNRG may exert a tumor 
suppressor effect relevant to CLL and MM. Another frequent genetic alteration in leukemia 
is represented by translocations. The RUNX1 (previously known as AML1 or CBFA2) gene, 
located on chromosomal band 21q22, encodes the alpha subunit of the heterodimeric core-
binding factor (CBF). Located at the C-terminus of RUNX1, a transcriptional regulation 
domain is required for the transcriptional activation or repression of genes relevant to 
myeloid and lymphoid development. RUNX1 acts as a key regulator of hematopoiesis and 
is frequently targeted by mutations and chromosomal translocations in leukemias (Redaelli 
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et al., 2004). The t (1;21)(p22;q22) was first reported in a case of a possible therapy-induced 
leukemia (Rosenwald et al., 1999); in this case the partner gene of RUNX1 was identified in 
the CLCA2 gene, which then resulted to be a novel fusion partner of RUNX1 in adult 
patients with a therapy-related AML. 
The frequent overexpression of channel-encoding genes in human cancers seems to be often 
caused by gene amplification. This has been demonstrated for KCNK9, in breast (Mu et al., 
2003) and colorectal cancers (Kim et al., 2004), and CACNA1E (Cav 2.3), in Wilms’ tumours 
(Natrajan et al., 2006). In other cases, epigenetic mechanisms have been invoked. Among 
these, a paradigmatic example is aberrant promoter methylation of the growth regulatory 
genes. This mechanism is probably a common alternative to gene inactivation, in human 
cancers. Evidence along this line is available for channel-related genes, such as CLCA2, 
whose promoter region is frequently inactivated by hypomethylation, in breast cancer (Li et 
al., 2004). Moreover, methylation of KCNH5 is observed in about 80% of NSCLC tissue, but 
only in 14% of non-cancerous tissue (Feng et al., 2008). Finally, inactivation of CACNA1G by 
aberrant methylation of its 5' CpG island has been reported in AML, gastric cancers and 
colorectal cancers (Toyota et al., 1999). More puzzling remain the genetic mechanisms 
underlying AQP5 overexpression in CML. No genomic amplification was detected, whereas 
methylation analysis of the AQP5 promoter region suggested that promoter demethylation 
might be relevant, although this fact was proven in head and neck and lung cancer cell lines, 
while validated data are still lacking in leukemias. 
Another genetic mechanism that could explain the alterations of ion channel encoding genes 
in leukemias, involves micro (mi) RNAs. MiRNAs are naturally occurring 18- to 25-
nucleotide RNAs that are cleaved from 70- to 100-nucleotide hairpin precursors by a 
complex protein system that includes the RNase III Drosha and Dicer, members of the 
Argonaute family. Mature microRNAs typically hybridize to the 3’untranslated regions of 
protein-coding messenger RNAs (mRNAs) and cause their post-transcriptional repression 
and/or degradation (Ambros, 2004; Bartel, 2009). MiRNAs regulate normal cell homeostasis 
and are involved in many physiologic processes, including hematopoiesis  (Garzon & Croce 
2008; Vasilatou et al., 2010; Havelange & Garzon, 2010). Recently, dysregulation of miRNAs 
has been shown in many types of solid tumors and leukemias (Calin & Croce, 2006). Direct 
involvement of miRNAs in cancer has been suggested by a study demonstrating that several 
miRNAs are localized in genomic regions associated with cancer, such as breakpoint regions 
in chromosome aberrations involving oncogenes or tumor suppressor genes, minimal 
regions of loss of heterozygosity, minimal regions of amplification, and at loci close to 
fragile sites and integration sites of the human papilloma virus. Several functional studies 
confirmed the important role of miRNA deregulation in hematologic malignancies, mainly 
B-CLL and AML. Ion channel encoding genes are among the target genes of miRNAs: for 
example two miRNAs often dysregulated in CLL, miR15a and miR16-1 have, among their 
target genes, genes encoding Kv and water channels, in particular KCNH8 (i.e. Kv12.1) and 
aquaporin 11, respectively. KCNH3 (i.e. Kv12.2 or elk-2), another Kv encoding gene strictly 
related to KCNH8 and functionally similar to Kv11.1, is also one of the target genes of 
miR221, often deregulated in CLL. Kv11.1 is also negatively regulated by miR133, which is 
one on the miRNAs down-regulated in a specific clinicopathological subgroup (t (8:21)) of 
AML. This fact could explain the frequent increased expression of Kv11.1 transcript in AML. 
Growing evidence also suggests that tumors tend to express splice variants or alternative 

transcripts of channel-encoding genes, although the significance for cancer progression is 

still uncertain. The hsloBK splice variant of gBK has been detected in gliomas (Olsen et al., 
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2005) and the herg1b alternative transcript of Kv11.1 is overexpressed in human leukemias 

and neuroblastomas (Pillozzi et al., 2007; Crociani et al., 2003). Another splice variant of the 

Kv11.1 transcript, which encodes for a C-terminus deleted Kv11.1 protein, named herg1bUSO, 

is also overexpressed in several leukemias cell lines, and exerts a post-translation control on 

the plasma membrane expression of the full length Kv11.1 protein (Guasti et al., 2008). 

5. Ion channels in primary leukemias: A novel biomarker? 

As better detailed in chapter 1, leukemia is a disease with marked heterogeneity in both 

response to therapy and survival. Cytogenetic, age, and performance status have long 

determined prognosis and therapy. The advent of molecular diagnostics has heralded an 

explosion in new prognostic factors: microarray technology can now identify unique gene 

expression signatures associated with prognosis. Similarly miRNA expression, single 

nucleotide polymorphism arrays, and DNA methylation signatures have recently described 

important new prognostic subgroups in the single leukemia cathegories. We may be close to 

a time when we will be able to use these prognostic factors and technologies to identify new 

targets for therapy and to determine who may benefit from that therapy, and ultimately 

change how we treat individual patients with leukemia. It is mandatory at this time, to 

transfer these concepts to the ion channels, after a 20 years work mainly focused to study 

ion channel expression and function identification. Indeed some recent papers aim at 

delineating the impact of single ion channels, or of an “ion channel signature” as biomarkers 

in leukemias. Following are some examples: KV11.1 expression was correlated with a more 

aggressive AML phenotype both in vitro and in vivo. In a cohort of patients affected by AML, 

Kv11.1 expression was associated with a higher probability of relapse and a shorter overall 

survival (Pillozzi et al., 2007). This was one of the first clinical and prognostic applications of 

an expression screening for a Kv channels. Subsequently, EAG1 was found to be expressed 

in myelodisplastic syndromes, CML and AML. Interestingly, channel expression in AML 

patients strongly correlated with increasing age, higher relapse rates and a significant 

shorter overall survival. Multivariate Cox regression analysis revealed EAG expression 

levels in AML as an independent predictive factor for reduced disease-free and overall-

survival; such association further stresses the impact of Kv channels of the EAG family as 

biomarkers in AML (Agarwal et al., 2010). Moon and co-workers (Chae et al., 2008) found 

evidence that AQP5 might be associated with the progression of CML. Indeed, CML 

patients diagnosed at accelerated or blast crisis phase showed significantly higher level of 

AQP5 expression than those diagnosed at chronic phase, while CML patients who gained 

imatinib mesylate resistance at chronic phase exhibited significantly higher level of AQP5 

expression than those who gained resistance at accelerated or blast crisis phase. 

Furthermore, AQP5 expression increased with the appearance of imatinib mesylate 

resistance (see also chapter 7.2). A recent paper reported the results of a study in which the 

expression of P2X receptors in blood mononuclear cells from Chinese pediatric leukemias 

patients was determined. P2X1, P2X4, P2X5 and P2X7 were simultaneously over expressed in 

leukemias compared to controls. The co-expression of P2X4 and P2X7 was a common feature 

of leukemic samples, and the highest expression of P2X7 was detected in relapsed patients, 

whereas a concomitant decrease of P2X4, P2X5 and P2X7 was observed after chemotherapy 

(Chong et al., 2010). This aspect has a clear relevance also for the chemoresistance, which is 

described in chapter 6. 
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Some studies also reported altered expression of ion channels and transporters in primary 
lymphomas. For example upregulation of KCNN3 (KCa2.3) was observed in germinal center 
B-like diffuse large B cell lymphoma (DLBCL), whereas KCNA3 (Kv 1.3) was upregulated in 
activated B-like DLBCL (Alizadeh et al., 2000). Moreover, in the lymphoma cell line Daudi, 
expression of KCa3.1 has been described and its activity may account for cell malignant 
growth and proliferation (Wang et al., 2007). Data obtained by a microarray study in 
pediatric brain tumors indicate a marked deregulation of ion channels and transporters. 
Hence, we suggest to focus on the “ion channels and transporters” term when analyzing 
microarray gene expression data (Masselli et al., unpublished). 

6. Outline of the functional role of ion channels in cancer 

Ion channels are generally involved in many processes necessary for cell proliferation, 
adhesion to substrate and motility. For example Ca2+ fluxes control the cell cycle machinery 
and the secretion of cytokines and growth factors. Moreover, ion channels participate in 
regulating the cell volume changes that normally occur during mitosis, cell migration, etc. 
However, altered expression or function of different channel types are also thought to 
determine more specific aspects of malignancy. In leukemic cells, these alterations 
contribute to determine the poorly differentiated phenotype, invasiveness, transendothelial 
migration and chemoresistance (Arcangeli et al., 2009). In this context, a common occurrence 
is ion channel involvement in the signaling pathways that are related to the modulation of 
cell adhesion to the extracellular matrix.  

6.1 Vm in cancer cells 

As is well known, proliferating cells tend to be depolarized as compared to non cycling cells. 
Such a difference may depend on regulated channel expression. For instance, developing 
glial cells generally express outward rectifying KV, subsequently substituted by inward 
rectifier K+ channels that, in mature cells, determine the typical hyperpolarized state of adult 
glia (Sontheimer et al., 2008). Why expression of different K+ channels produces such a 
different effect on Vm? The reason is that proliferating and tumor cells usually undergo slow 
and low amplitude Vm changes, compared to excitable cells. Therefore, what matters more 
are the steady state K+ channel properties, which determine the fraction of open channels at 
a certain stable Vm. During the neoplastic transformation, the process exemplified by glia 
differentiation often reverts in that cancer cells tend to express a variety of K+ channels that 
either carry little current at strongly negative Vm, such as Kv10.1 and Kv1.3 (unless they 
undergo overexpression, see below) or channels whose maximal steady state probability of 
being open is obtained at relatively depolarized Vm (e.g. -40 mV for KV11.1). In some 
instances, the neoplastic condition seems a partial reversion to a state normally occurring 
during development, but the evidence about this is still limited.  
However, considering the average Vm is simplistic, because oscillations are observed in 
either the expression or regulation of several ion channel types during the cell cycle phases, 
with ensuing alterations in Vm (Arcangeli & Becchetti, 2006). In general, it is unclear if these 
Vm changes regulate the downstream signals or are by products of alterations in channel 
activity/expression that the cell controls for reasons not necessarily linked to Vm. For 
example, specific channel subtypes can exert specific signaling roles. Current evidence 
indicates that there is probably no unique explanation. Several examples suggesting a 
spectrum of possible mechanisms are illustrated below. 
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6.2 Hyperpolarization can stimulate Ca
2+

 influx 

Intracellular Ca2+ signals are known to regulate cell cycle in both normal and cancer cells. 

Ca2+ channels are in fact widely expressed in cancer cells, in which they are also likely to 

modulate cell movement and migration. Original work in T lymphocytes indicated that a 

hyperpolarization produced by increased K+ channel function facilitates the Ca2+ influx 

necessary for T cell activation. Analogous results were more recently obtained in breast 

cancer cells, where growth factors applied in G1 can lead to such an over-expression of 

Kv10.1 to lead to cell hyperpolarization and G1-S transition. Such a hyperpolarization 

triggers a positive feedback in that Ca2+ influx stimulates KCa3.1, which maintains a tonic 

hyperpolarization that further sustains the Ca2+ signal that regulates the cyclins and the 

cyclin-dependent kinases (Ouadid-Ahidouch & Ahidouch, 2008). 

6.3 Control of cell volume and motility 

Mammalian cells undergo oscillatory volume changes during both cell cycle and migration 

(Habela & Sontheimer, 2007; Boucrot & Kirchausen, 2008). The interplay of K+ and Cl- 

channels is very important in the early phases of cell volume regulation. A full review of this 

topic cannot be given here (Chandy et al., 2004; Nilius, 2007) but it is clear that altered 

control of these processes may affect proliferation as well as tumor invasiveness, as has been 

shown in gliomas. 

6.4 Ion channels and intracellular signaling 

Ion channels are also implicated in different aspects of leukemia malignancy, such as the 

lack of differentiation, invasion and transendothelial migration, chemoresistance (see also 

Table 1). The role of ion channels in such processes can be attributed to signaling 

mechanisms, which are often related to the modulation of adhesive interactions with the 

extracellular matrix. 

6.4.1 Signaling mechanisms 

Cell proliferation in mammalian cells can be triggered by growth factor (GF) binding to 
specific receptors, usually protein tyrosine kinases that autophosphorylate upon ligand 
binding. This process typically turns on a kinase cascade that converges onto 
phosphorylation of the extracellular signal-regulated protein kinase 2 (ERK2) mitogen-
activated protein (MAP) kinase. Once activated, this protein translocates to the nucleus and 
phosphorylates an array of specific transcription factors (Arcangeli & Becchetti, 2006). A 
similar mechanism is also triggered by cell adhesion. In particular, the integrin-mediated 
cell adhesion to the extracellular matrix modulates, in proper context, cell migration, 
proliferation, differentiation and prevents apoptosis (Juliano, 2002; Arcangeli & Becchetti, 
2006). The integrin linked kinase (ILK) and the focal adhesion kinase (FAK) are pivotal 
factors in these cascades. Once activated, they recruit further signaling components, thus 
leading to the activation of MAP kinases, of the phosphoinositide-3 kinase (PI3K), and small 
GTPases such as Rho A, Rac 1 and CDC42 (Arcangeli & Becchetti, 2006). Adhesion signals 
greatly overlap with those activated by GF and cytokine receptors. In some cases, such an 
overlap depends on the formation of macromolecular complexes between integrins and the 
other membrane receptors, to form signaling platforms at the adhesive sites. These 
platforms can also include ion channels, with ensuing crosstalk between the different 
components (Arcangeli & Becchetti, 2006). For example, T lymphocyte activation leads Kv1.3 
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channels to associate with  integrins and activate them (Levite et al., 2000), an interaction 

also observed in melanoma cells (Artym et al., 2002). A macromolecular complex between 1 
integrin subunit and hERG1 (Kv 11.1) forms in several neoplastic cells (Cherubini et al., 

2005). The 1/hERG1 complex localizes at the adhesion sites, probably within 
caveolae/lipid rafts, and recruits FAK, Rac1 and PI3K. FAK phosphorylation, Rac1 and 
PI3K activities turned out to depend on hERG1 currents (Cherubini et al., 2005). Moreover, 
we noticed that in AML cells the ǃ1/hERG1 complex also includes the VEGF receptor 1 (Flt-
1). The macromolecular complex regulates signaling downstream to Flt-1 (MAP kinase and 
PI3K) and thus AML proliferation and migration (Pillozzi et al., 2007). In childhood B-ALL, 
the ǃ1/ hERG1 complex is triggered by adhesion onto human bone marrow stromal cells 
(MSC), and comprises the chemokine receptor CXCR4. We determined the signaling 
pathways activated by the components of the ǃ1 integrin/hERG1/CXCR4 complex in B-ALL 
cells and we found that ILK was the first effector to be activated after engagement of 
CXCR4, integrin activation and/or culture of leukemia cells on MSC. MAP kinase and 
PI3K/pAkt pathways (downstream effectors of ILK activity) were also activated in B-ALL 
cells cultured on MSC The activation of both signaling pathways depended on ǃ1 integrin 
activation, as it was inhibited by a blocking antibody. Importantly, both ILK activity and 
ERK1/2 and Akt phosphorylation were strongly reduced in B-ALL cells cultured on MSC 
after blocking hERG1 channels by two specific blockers. When cultured on MSC, leukemia 
cells are protected from apoptosis induced by chemotherapeutic drugs (see below). Another 
example, involves the Kv channels regulated by GFs in ML-1 myeloblastic leukemia cells (Xu 
et al., 1999; Guo et al., 2005), as well as for the VGSCs controlled by NGF (Brackenbury et al., 
2007) and EGF (Uysal-Ongonen et al., 2007; Ding et al., 2008). But signals can also flow in the 
opposite direction: for example the 4-AP-sensitive K+ channels control ML-1 proliferation 
through multiple signal transduction processes, such as phosphorylation of ERK 1/2 and 
Akt (Guo et al., 2005).  

6.4.2 Non-conductive roles 

As discussed above, some effects of ion channels on neoplastic progression are clearly a 
consequence of changes in ion fluxes. Less attention has been so far devoted to possible 
modulation of intracellular pathways by enzymatic roles of channel proteins or 
conformational coupling with their proteins, ultimately converging onto the transcriptional 
regulation of cancer-related genes. These mechanisms may well accompany the typical 
effects on ion flow. Some VGCs have been in fact shown to behave as bifunctional proteins 
that, besides gating ion fluxes as usual, exert an ion conduction-independent control of 
several intracellular responses (Iwasaki et al., 2008; Wang et al., 1999). An example with 
oncological implications is the voltage sensor-containing phosphatase (Ci-VSP) of Ciona 
intestinalis. This consists of an ion channel-like transmembrane domain, followed by a 
phosphatase domain highly homologous to PTEN, a tumor suppressor of human cancers 
(Iwasaki et al., 2008). Recent review of some of these non-conducting functions is found in 
(Levitan, 2006). Although a similar behaviour has not been clearly demonstrated to occur in 
cancers and leukemia, it could be relevant in prospecting new therapeutic strategies.  

7. Ion channels as therapeutic targets in leukemia 

Using extracellular ion channel blockers for oncologic therapy would limit harmful 
metabolic effects and allow relatively easy calibration of doses. Moreover, thanks to the 
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modern electrophysiological methods and recent insight into ion channel structure, the 
mechanism of action of channel blockers is often understood in depth, which facilitates 
rational therapy and design of new compounds. These can be tested both in heterologous 
systems and in vivo, which allows to predict or study some of the side effects. Although ion 
channels are very suitable targets for drug screening and rational therapeutic strategies, they 
are still scarcely used to target non excitable cells such as the neoplastic, because of the risk 
of serious side effects. A classical example is Kv11.1. As fully discussed elsewhere (Arcangeli 
et al., 2009), several indications suggest that Kv11.1 could be an effective target for cancer 
therapy. However, this channel type also regulates the repolarization phase of the cardiac 
action potential. Therefore, Kv11.1 block can lead to the so-called torsade de points (TdP), i.e. 
ventricular arrhythmia that may lead to lethal ventricular fibrillation (Witchel et al., 2000). 
Therefore, hERG1 blockers are generally considered unsafe for pharmacological treatment 
in humans.  Another drawback of the most common hERG1 blockers is that they act on the 
cytoplasmic face of the channel. 
However, even in cases as unfavourable as this, a way out of the trouble is provided by the 

availability of many different inhibitors that act with different mechanisms. More explicitly, 

several KV11.1 blockers are not torsadogenic, although the reasons for such differences 

between different compounds are still poorly understood. In general, recent work suggests 

several methods to obtain better tissue specificity even when selective blockers for channel 

subtypes are not available. Alternatively, ion channels can be targeted to deliver tracers or 

cytotoxic compounds. The following paragraph summarizes such evidence with a focus on 

leukemic cells. 

7.1 Targeting ion channels in leukemias: Experimental evidences 

As described above, different papers have reported that ion channels inhibitors can affect 

different biological aspects of leukemic cells, both in vitro and in vivo. Such evidences are 

summarized in Table 1, in which are shown the specific drug and ion channel targeted as 

well as the biological aspect of leukemia influenced. 

 

 

Table 1. Pharmacological and molecular modifiers able to affect ion channels involved in 
different biological aspects of leukemia disease. (AML: acute myeloid leukemia; CML: 
chronic myeloid leukemia; ALL: acute lymphoblastic leukemia; APL: acute promyelocytic 
leukemia). 
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Several types of K+ and Cl- channels have been shown to be potential targets for cancer 
treatment (Arcangeli et al., 2009). In leukemia cells, most of the relevant results concern EAG 
and hERG1, both of which belong to the KV channel family and share 47% of the amino acid 
sequence. They are expressed in different forms of leukemias and have been implicated in 
cell cycle progression and proliferation in these and other cancers (Arcangeli et al., 2009). 
Inhibition of these channels reduces proliferation both in vitro and in vivo, which indicates 
that modulating their activity could produce beneficial effects on patients. In fact, several 
studies on immunodepressed mice show that blocking EAG and hERG1 channels inhibits 
progression of the disease. In fact, we also determined whether hERG1 inhibitors could 
improve leukemia treatment in murine models of B-ALL. In a first set of experiments, NOD-
SCID mice were inoculated with 697 cells and treated daily with E4031 (20mg/Kg) for two 
weeks, starting one week after the inoculum. At the end of treatment, some of the mice 
were sacrificed and the degree of bone marrow, peripheral blood and extramedullary 
organs invasion by B-ALL cells was quantified. E4031 treatment significantly reduced the 
leukemia burden and the liver and spleen infiltration by leukemic cells, with significant 
prolongation of mice survival. In a second set of experiments, we tested the effects in vivo 
of the combined treatment with E4031 and dexamethasone on REH cells, which have been 
reported to be resistant to corticosteroids in vivo. Mice were treated for two weeks with 
dexamethasone, E4031, or both. E4031 reduced bone marrow engraftment of REH cells, 
similarly to what was observed for 697 cells. This effect was related to an increased 
apoptosis of B-ALL cells, and was higher than that produced by dexamethasone. 
Treatment with dexamethasone and E4031 together nearly abolished bone marrow 
engraftment while producing substantial apoptosis. A marked reduction in leukemic cell 
infiltration of the spleen in mice treated with dexamethasone plus E4031 was also 
observed. These data clearly indicate that hERG1 blockers can treat the leukemia disease 
in vivo, both alone and in combination with classical chemotherapeutic drugs and are 
capable of reverting drug resistance in vivo. These drugs also exerted clear antileukemic 
activity (see details below) and thus represent promising candidates for further studies 
aimed at paving the way to clinical trials.  
Because EAG and hERG1 channel are structurally related, any drug acting on EAG channel 

may also block hERG1 channels and thus have arrhythmogenic effects. Therefore, 

irrespective of whether one intends to use pharmacological blockers of EAG and hERG1, to 

avoid side effects it will be necessary to either develop specific inhibitors for different 

subtypes or carefully test each inhibitor for the effects on each channel type. These and other 

molecular tools have been already applied to specifically target Eag in cancer cells, and 

particularly 1) chemical blockers; 2) monoclonal antibodies; 3) small interfering RNA 

(siRNA). The challenge with the latter approach is designing an appropriate vehicle for 

transport and delivery of siRNA to the target organ, something that is currently the subject 

of intense research. All of these methods can be used in conjunction with chemotherapeutic 

agents or can be exploited to improve survival in chemoresistant diseases. 

As to Cl- channels, the activation and the subsequent hyperpolarization triggered by the 
antiparasitic ivermectin at low micromolar concentrations preferentially induces cell death 
in AML cell lines and primary patient samples compared to the normal hematopoietic cells. 
Ivermectin also delayed tumor growth in 3 independent mouse models of leukemia and 
synergized with cytarabine and daunorubicin, that also increase reactive oxygen species 
production. Although the specific channel activated by ivermectin has not been clearly 
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identified, the thorough knowledge about the toxicology and pharmacology of ivermectin, 
this compound could be rapidly advanced into clinical trial for leukemia. (Sharmeen et al., 
2010). 

7.2 Ion channels and leukemia chemoresistance 

Chemoresistance is recognized clinically as the development of tumor resistance to a wide 
variety of anticancer drugs following exposure to a single drug. Resistance to multiple drugs 
could arise from cellular defenses that broadly limit access of the agent to a cellular target, 
or prevent the cell from entering apoptosis following injury. The development of resistance 
to a wide spectrum of cytotoxic drugs frequently impedes the successful treatment of acute 
and chronic leukemias either at the initial presentation or following primary or subsequent 
relapses (O’Gorman et al., 2001). The majority of leukemias in fact respond to initial 
treatment; however, relapse is common, indicating resistance of leukemic cells to current 
therapies. Several mechanisms may account for this phenomenon, including failure of the 
drug to reach and/or affect its intracellular target or failure of the cell to undergo apoptosis 
in response to chemotherapy (Ross et al., 2000). There is emerging evidence that also 
extrinsic components mediated by the microenvironment play a pivotal role in survival and 
drug resistance of leukemic cells. It is believed that environment-mediated drug resistance is 
a transient state whereby leukemic stem cells are protected through signals from the niche, 
which eventually leads to the selection of secondary genetic changes and outgrowth of cells 
that acquired multiple mechanisms of pharmacologic resistance (Meads et al., 2009).  
In addition to the direct relationship between transporters and drug substrates, indirect 
mechanisms may also modulate chemosensitivity. For example, transporters and channels 
can affect chemosensitivity by providing nutrients to cancer cells or modulating the 
electrochemical gradient across membranes, thereby, modifying apoptosis pathways or the 
efficiency of drug diffusion along electrochemical gradients into cells (Huang et al., 2006). 
Several genes that encode subunits of Na+, Cl-, K+, and other cation channels correlated with 

drug activity, confirming that ion channels can modulate drug response—possibly by 

affecting the cell’s resting potential or by providing key metal ion cofactors. We do not 

know at this point whether these gene products mediate drug transport directly or affect 

sensitivity and resistance by indirect mechanisms. Ion channels modulate electrochemical 

gradients generated by ion pumps and ion exchangers. Maintenance of a strong 

electrochemical gradient is vital to the cell and a potentially strong influence on drug 

activity. K+ and Cl− leakage currents tend to polarize cells, whereas Ca2+ and Na+ channels 

depolarize them. These two types of flux would be expected to have opposite effects on 

drug equilibration across cell membranes. However, Ca2+ flux is also important in apoptotic 

signaling, as noted above, so the net effect on drug potency is difficult to predict.  

The main ion channels whose activity is related to the establishment of chemoresistance in 
leukemia cells are mitochondrial voltage-dependent anion channels (VDAC), aquaporins 
and hERG1. The VDAC, located at the outer mitochondrial membrane, play a central role in 
the regulation of apoptosis. VDAC is the constituent of the mitochondrial permeability 
transition pore (PTP), which mediates the release of apoptogenic factors such as cytochrome 
c from the intermembrane space into the cytosol (Shimizu et al., 1999). Three VDAC genes 
have been identified in human, VDAC1, VDAC2 and VDAC3. VDAC1 binds to Bcl-2 and its 
homologues, such as Bax, Bak and Bcl-XL to regulate the opening of PTP (Abu-Hamad et al., 
2009). Cells deficient in VDAC2 but not cells lacking the more abundant VDAC1 are more 
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susceptible to apoptotic death. VDAC has been suggested to be one of the biological targets 
of arsenic trioxide (As2O3), an anticancer drug for acute promyelocytic leukemia (APL) 
(Zheng et al., 2004). One member of the aquaporin family, AQP9, has been shown to play a 
role in drug uptake and modulation of drug sensitivity in leukemia (Bhattacharjee et al., 
2004). AQP9 has broad transport specificity, including water, glycerol, urea, carbamides, 
purines, and pyrimidines, but its physiological function is still unknown. Increased 
expression of AQP9 in leukemic cells K562 and HL60 increases uptake of and sensitivity to 
As (III) and Sb (III), the trivalent arsenic drug trisenox. Moreover primary APL cells 
expressed AQP9 significantly (2-3 logs) higher than other AML, which might explain their 
exquisite As2O3 sensitivity. AQP7 also transports As (III) and Sb (III), but to a lesser extent 
than AQP9. Arsenic drugs often cause significant toxicity during treatment, showing 
marked individual variability. Individual variability in expression of AQP7 and AQP9 may 
partly explain the differential response and toxicity to arsenic therapy (Liu, 2002). Based on 
these observations, we suspect that AQP5 may be conferring a growth advantage in the 
process of CML progression. Furthermore, it has been reported that AQP5 may play a role 
in developing imatinib mesylate resistance, irrespective of other known major resistance 
mechanisms such as bcr-abl mutation or amplification (Chae et al., 2008).  
As anticipated in paragraphs 6.4.1 and 7.1 our group studied the molecular mechanisms 
underlying the protection by MSC in B-ALL. We evidenced that coculture with MSC 
induced the expression of a plasma membrane signaling complex in B-ALL cells, constituted 
by hERG1 channels, the ǃ1 integrin subunit and the chemokine receptor CXCR4. Interaction 
of integrins with their ligands on MSC layers is critical to the formation of the complex. We 
next tested the effects of coculturing B-ALL cell lines with MSC on chemosensitivity and the 
role of the ǃ1 integrin/hERG1/CXCR4 complex. B-ALL cell lines cultured with or without 
MSC were exposed to doxorubicin, prednisone and methothrexate, drugs commonly used to 
treat ALL. Classical hERG1 blockers, E4031 or Way 123,398, were tested on cells cultured on 
MSC and treated in combination with each drug. It emerged that MSC protected B-ALL 
from the apoptosis induced by all the drugs tested, although to different degrees depending 
on the drug and cell line. MSC-induced resistance was almost completely abrogated when 
ALL were treated with hERG1 blockers. We also tested the effects of sertindole (an 
antipsychotic) and erythromycin (an antibiotic), which are known to block hERG1 channels 
but do not cause cardiac arrhythmia and can be used clinically. The two drugs were added 
to B-ALL cells cultured on MSC, along with doxorubicin. Both drugs reverted MSC-drug 
induced chemoresistance in all the B-ALL cell lines tested, at levels even greater to those 
obtained with the hERG1 blockers E4031 and Way 123,398. Hence, the activity of hERG1 
channels inside the ǃ1 integrin/hERG1/CXCR4, whose activation is triggered by culture on 
MSC, mediates the MSC- induced drug resistance to apoptosis, and that different hERG1 
blockers can overcome drug resistance. These results were corroborated by the studies in 
murine models of B-ALL reported above. We can conclude that hERG1 channels are 
upstream regulators of the MSC-triggered pro- survival signals in B-ALL, and that 
administration of hERG1 blockers could improve chemotherapy responses in patients with 
ALL (Pillozzi et al., 2011).  

8. Conclusion 

The evidence we have reviewed shows that certain ion channel types exert important 
regulatory roles in leukemic cell physiology. These functions are implicated in the neoplastic 
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progression and thus appear to be potential target for therapy, as is also suggested by recent 
work in murine models. For the reasons discussed above, particularly the possibility of 
serious side effects, ion channels are still somewhat neglected as pharmacologic targets in 
oncology. However, we believe they should receive more attention because they present 
considerable advantages in terms of thorough mechanistic understanding and clinical 
potential, not only for leukemias. In fact, clinical trials are currently in progress for testing 
the efficacy of targeting specific channel types in several tumors such as glioblastoma and 
urinary bladder carcinoma. Therefore, more widespread efforts should bring novel 
pharmacological applications of ion channel for treating oncohematologic diseases as well as 
other cancers 
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