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1. Introduction

According to data and statistics in a global summary of the Acquired immune deficiency
syndrome (AIDS) epidemic from The World Health Organization (WHO), by the end of 2007
an estimated 33 million people worldwide were living with human immunodeficiency virus,
HIV. That same year, some 2 million died of AIDS, and the number of people receiving
antiretroviral therapy (ART) was reported in 2.990.000, while an estimated of about 9.700.000
the people needing ART. In other words, globally, less than one person in five at risk of HIV
has access to basic HIV prevention services. The same study indicates a total 31% as the ART
coverage at that same period (WHO, 2007).
Highly Active Antiretroviral Therapy (HAART) has demonstrated to be effective at slowing
the progression of (HIV) infection to Acquired immune deficiency syndrome (AIDS) and,
subsequently, to improve quality of life for infected people. However, if on the one hand
the cocktail of drugs has been making possible to extend patient’s lives, on the other hand
the many problems associated with it and its high cost, particularly to poor people are a clear
indication that new approaches to address the situation are needed. Most efforts to control
HIV replication has been focused on developing and optimizing antiretroviral therapies.
The immune system of human beings contains different types of cells that help protect
the body from infections. One of these types of specialized cells are called Cluster
of Differentiation Antigen 4 (CD4) or T-cells, by the fact that CD4 is a glycoprotein
predominantly found on the surface of helper T cells. The Human Immunodeficiency Virus
(HIV) is a retrovirus and therefore it needs cells from a host so that it can make copies of itself.
The CD4 cells are receptors for HIV and they aid the virus to initiate its replication process by
enabling it to enter into its host. HIV is essentially considered as an infection of the immune
in the sense that this virus infects and damages CD4 during the virus replication process. The
more virus is produced by infected cells, the higher is the viral load and consequently, lower
will be the number of functioning CD4 cells. When this number of uninfected cells declines
below a critical value, the immune system is seriously deteriorated by HIV.
In section 2, it is shown the theoretical reference used to analyze the asymptotic behavior of
the solution to the nonlinear perturbed system. The analysis concerning the origin, x=0 as
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a stable equilibrium point. On the other hand, the functions that represent the perturbation
have the nonlinear dynamic and the function that force the localization of equilibrium point.
That function allows to characterize the behavior of the trajectory around origin, x=0. In
section 3 are analyzed the properties of the equilibrium in the origin that corresponds to the
infected state and the asymptotic behavior of the solution to the model of 3 EDO presented
by (Barao & Lemos, 2007; Perelson & Nelson, 1999; Santos & Middleton, 2008). The model is
used to characterize the dynamic infection of the disease. In the last section are made some
conclusions about exponential equilibrium and uniform boundedness of the model solution.

2. Perturbed system

Consider the following perturbed system

ẋ = h(t, x), (1)

where h : [0, ∞)× D → Rn is continuous and t is locally Lipschitz in x on domain D ⊂ Rn,
and D is an open connected set that contains the origin x = 0. Now, consider the right-hand
side of (1), then by adding and subtracting f (x) known as the nominal system around the
origin, we can rewrite the right-hand side as

h(t, x) = f (x) + [h(t, x)− f (x)],

and define
g(x) + d(t) = h(t, x)− f (x),

Hence, the perturbed system (1) can be written as

ẋ = h(t, x) = f (x) + g(x) + d(t)

ẋ = e(x) + d(t),
(2)

where f : D → Rn and g : D → Rn are locally Lipschitz in x on domain D ⊂ Rn, d(t) is a
uniformly bounded disturbance that satisfies |d(t)| ≤ δ for all t ≥ 0 and e(x) = f (x) + g(x).
The nominal system in f (x) could have a stable or asymptotically stable equilibrium point at
the origin. The approach of the Lyapunov method will allow us to draw conclusions about the
system when the nominal system is perturbed, whether such perturbation is an autonomous
or a non autonomous perturbation respectively.

2.1 Nonlinear autonomous perturbation

Consider the autonomous system
ẋ = h(x), (3)

where h : D → Rn is locally Lipschitz map from a domain D ⊂ Rn.
Suppose x̃ ∈ D is an equilibrium point of (3), that is h(x̃) = 0. The aim is to characterize the
stability for the case when the equilibrium point is at the origin, that is x̃ = 0. For autonomous
system, there is a convergence of the trajectory to a set, the same as the asymptotic stability of
the origin. A major concern in analysing the stability of dynamical system is the robustness
of various stability properties to uncertainties in the system’s model. In the following, it is
introduced the stability definition.
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Exponential Equilibria and Uniform Boundedness of HIV Infection Model 3

Definition 1. The equilibrium point x = 0 of (3) is

• Stable, if for each ε > 0, there is δ = δ(ε) ≥ 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0.

• Unstable, if not stable.

• Asymptotically stable if it is stable and δ > 0 can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0.

Let V : D → R be a differentiable function defined in a domain D ⊂ Rn that contains the
origin. The derivative of V(x) along the trajectories of (3), denoted by V̇(x), is given by

V̇(x) =
n

∑
i=1

∂V

∂xi
ẋi =

n

∑
i=1

∂V

∂xi
hi(x). (4)

The function V̇(x) is dependent on the system’s equation. Hence, if V̇(x) is negative, V(x)
will decrease along the solution of (3). The following lemma (Khalil, 2002) states Lyapunov’s
stability sense.

Lemma 1. Let x = 0 be an equilibrium point for (3). Let V : D → R be a continuously differentiable
function on a neighbourhood D of x = 0, such that

V(0) = 0 and V(x) > 0 in D − {0},

V̇(x) ≤ 0 in D.
(5)

Then, x = 0 is stable. Moreover, if

V̇(x) < 0 in D − {0}. (6)

Then x = 0 is asymptotically stable.

Proof. Given ε > 0, choose r ∈ (0, ε] such that

Br = {x ∈ Rn|‖x‖ ≤ r} ⊂ D.

Let α = min‖x‖=rV(x). Then, α > 0 by (5). Take β ∈ (0, α), and let

Ωβ = {x ∈ Br|V(x) ≤ β} .

The set Ωβ has the property that any trajectory starting in Ωβ at t = 0, stays in Ωβ for all t ≥ 0.
This follows from (5) since

V̇(x(t)) ≤ 0 ⇒ V(x(t)) ≤ V(x(0)) ≤ β, ∀t ≥ 0.

Since Ωβ is a compact set (is closed and bounded since it is contained in Br), the system in (3)
has a unique solution defined for all t ≥ 0, whenever x(0) ∈ Ωβ. Since V(x) is continuous
and V(0) = 0, there is δ > 0 such that

‖x‖ ≤ δ ⇒ V(x) < β.
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Then
Bδ ⊂ Ωβ ⊂ Br,

and
x(0) ∈ βδ ⇒ x(0) ∈ Ωβ ⇒ x(t) ∈ Ωβ ⇒ x(t) ∈ Br.

Therefore,
‖x(0)‖ < δ ⇒ ‖x(t)‖ < r ≤ ε, ∀t ≥ 0.

which shows that the equilibrium point x = 0 is stable. Now, to show asymptotic stability it
is necessary to show that x(t) → 0 as t → ∞, that is, for every a > 0, there is T > 0 such that
‖x(t)‖ < a, for all t > T. For every a < 0, we can choose b > 0 such that Ωb ⊂ Ba. Therefore,
it is sufficient to show that V(x(t)) → 0 as t → ∞. Since V(x) is monotonically decreasing
and bounded from below by zero,

V(x(t)) → c ≥ 0 as t → ∞.

To show that c = 0, suppose by contradiction c > 0. By continuity of V(x), there is d > 0 such
that Bd ⊂ Ωc. The limit V(x(t)) → c > 0 implies that the trajectory x(t) lies outside the ball
Bd ⊂ Ωc for all t ≥ 0. When V̇(x) is integrated on t, it follows by (6) that

V(x(t)) = V(x(0)) +
∫ t

0
V̇(x(τ))dτ ≤ V(x(0)) + kt,

where k = −maxa≤‖x‖≤rV̇(x) < 0. Since the right-hand side will eventually become negative,
the inequality contradicts the assumption that c > 0.

Remark 1. The origin is stable if there is a continuously differentiable positive definite function V(x)
so that V̇(x) is negative semi-definite, and it is asymptotically stable if V̇(x) is negative definite.

Remark 2. The theorem’s conditions are only sufficient. Failure of a Lyapunov function candidate
to satisfy the conditions for stability or asymptotic stability does not mean that the equilibrium is not
stable or asymptotically stable. It only means that such a stability property cannot be established by
using this Lyapunov function candidate.

For the case when the origin x = 0 is asymptotically stable, it is often interesting to determine
how far from the origin can the trajectory be and still converges to the origin as t → ∞. This
gives rise to the definition of the region of attraction or basin.

Definition 2. Let x(t, x(0)) be the solution of (3) that starts at initial state x0 at time t = 0. Then,
the region of attraction is defined as the set of all points x such that limt→∞ x(t, x(0)) = 0.

To find the exact region of attraction analytically might be difficult or even impossible.
However, Lyapunov functions can be used to estimate the region of attraction, that is, to find
sets contained in the region of attraction. From the proof of Lemma 1, we say that if there is a
Lyapunov function that satisfies the conditions of asymptotic stability over a domain D, and
if

Ωc = {x ∈ Rn|V(x) ≤ c} , (7)

is bounded and contained in D, then every trajectory starting in Ωc remains in Ωc, and
approaches the origin as t → ∞. The set in (7) with V̇(x) ≤ 0, ∀x ∈ Ωc is a positively invariant
set, since, as we showed in the proof of Lemma 1, a solution starting in Ωc remains in Ωc for
all t ≥ 0. Now, it is introduced the following corollaries known as the LaSalle invariance
principle and the Barbashin-Krasovskii theorem.

222 Understanding HIV/AIDS Management and Care – Pandemic Approaches in the 21st Century
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Corollary 1. Let Ωc be a compact (closed and bounded) set with the property that every solution of (3)
which starts in Ωc remains for all future time in Ωc. Let V : Ωc → R be a continuously differentiable
function such that V̇(x) ≤ 0, ∀x ∈ Ωc. Let E be the set of all points in Ωc where V̇(x) = 0. Let M be
the largest invariant set in E. Then every solution starting in Ωc approaches M as t → ∞.

Corollary 2. Let x = 0 be an equilibrium point for (1). Let V : Ωc → R be a continuously
differentiable positive definite function on a neighbourhood Ωc of x = 0, such that V̇(x) ≤ 0, ∀x ∈ Ωc.
Let S =

{

x ∈ Ωc|V̇(x) = 0
}

, and suppose that no solution can stay forever in S, other than the trivial
solution. Then, the origin x = 0 is asymptotically stable.

Remark 3. When V̇(x) is negative definite, S = 0. Then, corollary 2 coincide with lemma 1.

With the previous stability criteria for equilibria point about the origin, it is necessary to
introduce the specific analysis for autonomous perturbed system.

2.1.1 Mean value

Consider the autonomous case in (2), when d(t) = 0 for all t ≥ 0. Suppose that the origin
x = 0 is inside of D and is an equilibrium point for the nominal system f (x), that is, f (0) = 0.
By the mean value

f (x) = f (0) +
∂ f (z)

∂x
x,

where z is a point on the line segment connecting x to the origin. The above equality is valid
for any point x ∈ D such that the line segment connecting x to the origin lies entirely in D.
Since f (0) = 0, we can write f (x) as

f (x) =
∂ f (z)

∂x
x =

∂ f (0)

∂x
x +

[

∂ f (z)

∂x
− ∂ f (0)

∂x

]

x,

f (x) = Ax + g(x),

where

A =
∂ f (0)

∂x
, and g(x) =

[

∂ f (z)

∂x
− ∂ f (0)

∂x

]

x.

The function g(x) satisfies

‖g(x)‖2 ≤
∣

∣

∣

∣

∂ f (z)

∂x
− ∂ f (0)

∂x

∣

∣

∣

∣

2

‖x‖2 ≤ k‖x‖2,

for any k > 0, there exists r > 0, such that ∀‖x‖2 < r. It is possible to approximate in a small
neighbourhood of the origin the nonlinear system f (x) by its linearization about the origin

(̇x) = Ax, where A =
∂ f (0)

∂x
. (8)

The following corollary characterizes the stability properties of the origin.

Corollary 3. The equilibrium point x = 0 of (8) is stable if and only if all eigenvalues of A satisfy
Re(λi) ≤ 0. The equilibrium point x = 0 is asymptotically stable if and only if all eigenvalues of A
satisfy Re(λi) < 0. When all eigenvalues of A satisfy Re(λi) < 0, A is called a stability matrix or a
Hurwitz matrix. The origin of (8) is asymptotically stable if and only if A is a stability matrix.
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Consider a quadratic Lyapunov function candidate

V(x) = xT Px,

where P is a real symmetric positive definite matrix. The derivative of V along the trajectories
of the linear system (8) is given by

V̇(x) = ẋT Px + xT Pẋ = xT
(

PA + AT P
)

x = −xTQx.

Asymptotic stability of the origin can be also investigated using Lyapunov’s equation, as it is
shown on corollary 4.

Corollary 4. A matrix A is a stability matrix, that is, Re(λi) < 0 for all eigenvalues of A, if and only
if for any given positive definite symmetric matrix Q there exists a positive definite symmetric matrix
P that satisfies the Lyapunov equation

PA + AT P = −Q. (9)

If Q is positive definite, then the origin is asymptotically stable, that is, Re(λi) < 0, for all
eigenvalues of A. Here it follows the usual procedure of Lyapunov’s method, where it choose
V(x) to be positive definite and then check negative definiteness of V̇(x).

Remark 4. If matrix A is a stability matrix, then P is a unique solution of (9).

The Lyapunov equation can be used to test whether or not a matrix A is a stability matrix, as
an alternative to calculating the eigenvalues of A. The existence of a Lyapunov function will
allow us to draw conslusions about the system when the linear term Ax is perturbed, whether
such perturbation is a linear perturbation in the coefficients of A or a nonlinear autonomous
perturbation. The following lemma is known as Lyapunov’s indirect method or Lyapunov
first method.

Lemma 2. Let x = 0 be an equilibrium point for the nonlinear system

ẋ = f (x), (10)

where f : D → Rn is continuously differentiable and D is a neighbourhood of the origin. Let

A =
δ f (x)

δx

∣

∣

∣

∣

x=0

.

Then, the origin is asymptotically stable if Re(λi) < 0 for all eigenvalues of A.

Proof. Let A be a stability matrix. Then, by corollary 4 it is known that for any positive definite
symmetric matrix Q, the solution P of the Lyapunov equation (9) is positive definite. Consider

V(x) = xT Px,

as a Lyapunov function candidate for the nonlinear system. The derivative of V(x) along the
trajectories of the system is given by

V̇(x) = xT Pe(x) + eT(x)Px = xT P (Ax + g(x)) +
(

xT AT + gT(x)
)

Px,

V̇(x) = xT
(

PA + AT P
)

x + 2xT Pg(x) = −xTQx + 2xT Pg(x).

224 Understanding HIV/AIDS Management and Care – Pandemic Approaches in the 21st Century
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Exponential Equilibria and Uniform Boundedness of HIV Infection Model 7

The first term on the right-hand side is negative definite, while the second term is indefinite.
But the function g(x) satisfies

‖g(x)‖2 ≤ k‖x‖2, ∀‖x‖2 < r.

For any k > 0, there exists r > 0. Hence, after majorize the right-hand side

V̇(x) ≤ −xTQx + 2k‖P‖2‖x‖2
2,

but
xTQx ≥ λmin(Q)‖x‖2

2,

where λmin(·) denotes the minimum eigenvalue of a matrix. Note that λmin(Q) is real and
positive since Q is symmetric and positive definite. Thus

V̇(x) ≤ − (λmin(Q)− 2k‖P‖2‖) ‖x‖2
2.

By choosing

k <
1

2

λmin(Q)

‖P‖2
,

ensures that V̇(x) is negative definite. By lemma 1, we conclude that the origin is
asymptotically stable.

2.2 Non linear non autonomous perturbation

Consider the system given in (2)

ẋ = h(t, x) = f (x) + g(x) + d(t),

ẋ = e(x) + d(t),

where f : D → Rn and g : D → Rn are locally Lipschitz in x on domain D ⊂ Rn, d(t) is a
uniformly bounded disturbance that satisfies |d(t)| ≤ δ for all t ≥ 0 and e(x) = f (x) + g(x).
The notions of stability and asymptotic stability of the equilibrium of a non autonomous
system are basically the same as Definition 1 for autonomous system, see (Khalil, 2002). The
difference here is that, while the solution of an autonomous system depends only on (t − t0),
the solution of a non autonomous system may depend on both t and t0. Here, in that case the
function d(t) 
= 0 for all t ≥ 0 about the origin.
Therefore, the stability behavior of the equilibrium point will be dependent on t0.

Definition 3. The equilibrium point x = 0 of (2) is

• Stable, if for each ε > 0, and any t0 ≥ 0 there is δ = δ(ε, t0) ≥ 0 such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0.

• Unstable, if not stable.

• Asymptotically stable if it is stable and δ > 0 can be chosen such that

‖x(t0)‖ < δ ⇒ lim
t→∞

x(t) = 0.

It is necessary to introduce special scalar functions that will help to characterize and study the
behavior of a solution for the non autonomous system.

225Exponential Equilibria and Uniform Boundedness of HIV Infection Model
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Definition 4. A scalar function w(r) ∈ R is said to be positive definite, if it is continuous and
w(r) > 0 for |r| > 0 and w(0) = 0. The scalar function is radially unbounded if w(r) → ∞ as
|r| → ∞.

Definition 5. A scalar function u(r, s) ∈ R is said to be positive definite and decreasing, if for each
fixed s, the function u(r, s) > 0 and u(r, 0) = 0 is continuous with respect to r, and for each fixed r
the function u(r, s) is continuous and decreasing with respect to s and u(r, s) → 0 as |s| → ∞.

The following corollary states some properties of positive definite functions.

Corollary 5. Let w1(·) and w2(·) be positive definite functions on domain D = {x ∈ Rn, ‖x‖ < r}.
Consider the following difference between scalar functions

k1w1(r)− k2w2(‖x‖) ≥ 0, where ‖x‖ < r.

If the leading term can be factorized, then the bound is given by

‖x‖ ≤ γ, where γ = w−1
2 [w1(r)].

The following stability properties of the origin are given.

Definition 6. The equilibrium point x = 0 of (2) is

1. Uniformly stable, if there exists a positive definite function w(·) and a positive constant r,
independent of t0 such that

‖x(t)‖ ≤ w(‖x(t0)‖), ∀t ≥ t0 > 0, ∀‖x(t0)‖ < r. (11)

2. Uniformly asymptotically stable, if there exist a positive definite and decreasing function u(·, ·) and
a positive constant r, independent of t0 such that

‖x(t)‖ ≤ u(‖x(t0)‖, t − t0), ∀t ≥ t0 > 0, ∀‖x(t0)‖ < r. (12)

3. Globally uniformly asymptotically stable, if inequality (12) is satisfied for any initial state x(t0).

4. Exponentially stable if inequality (12) is satisfied with

u(r, s) = kre−αs, k > 0, α > 0. (13)

To establish uniform asymptotic stability of the origin, it is necessary to verify inequality (12)
with the aid of an auxiliary scalar differential equation. The following corollary defines a
scalar solution of a special equation.

Corollary 6. Consider the scalar differential equation

ẏ = −w(y), y(t0) = y0.

where w(·) is a locally Lipschitz positive definite function. Then, this equation has a unique solution
y(t) defined for all t ≥ t0

y(t) = σ
(

y(t0), t − t0

)

where σ(r, s) is a positive definite and decreasing function, see Definition 5.

226 Understanding HIV/AIDS Management and Care – Pandemic Approaches in the 21st Century

www.intechopen.com



Exponential Equilibria and Uniform Boundedness of HIV Infection Model 9

Lyapunov stability theorems give sufficient conditions for stability, asymptotic stability, and
so on. They do not say whether the given conditions are also necessary. There are converse
theorems which establish, that for many Lyapunov stability theorems the given conditions
are indeed necessary (Hahn, 1967; Krasovskii, 1967). The converse theorems are proved by
actually constructing auxiliary functions that satisfy the conditions of the respective theorems.
Almost always this construction assumes the knowledge of the solution of the differential
equation. The origin x = 0 of the perturbed non-autonomous system (2), may not be an
equilibrium point. We can no longer study stability of the origin as an equilibrium point, nor
should we expect the solution of the perturbed system to approach the origin as t → ∞. If
the perturbation terms g(x) and d(t) are small in some sense, then the solution x(t) will be
bounded by a small bound, that is ‖x(t)‖ will be small for sufficiently large t.

Definition 7. The solution of ẋ = h(t, x) is said to be uniformly bounded if there exist constants a
and b, and for every µ ∈ (0, b) there is a constant T such that

‖x(t0)‖ < µ ⇒ ‖x(t)‖ < a, ∀t > t0 + T. (14)

It is said globally uniformly bounded if (14) holds for arbitrarily large µ.

The following Lyapunov like theorem is useful to show uniform boundedness.

Theorem 1. Let D = {x ∈ Rn | ‖x‖ < r} and h : [0, ∞)× D → Rn be continuous in t and locally
Lipschitz in x. Let V : [0, ∞)× D → R be a continuously differentiable function such that

w1(‖x‖) ≤ V(t, x) ≤ w2(‖x‖), (15)

∂V

∂t
+

∂V

∂x
h(t, x) ≤ w3

(

x
)

, (16)

for all ‖x‖ ≥ µ > 0, and for all x ∈ D, where w1(·), w2(·) and w3(·) are positive definite functions

and µ < w−1
2 (w1(r)). Then, there exists a positive definite and decreasing function u(·, ·) and a finite

time t1 (dependent on x(t0) and µ) such that

‖x(t)‖ ≤ u
(

‖x(t0)‖, t − t0

)

, ∀t0 ≤ t < t1, (17)

‖x(t)‖ ≤ w−1
1

(

w2(µ)
)

, ∀t ≥ t1, (18)

for all ‖x(t0)‖ < w−1
2

(

w1(r)
)

. Furthermore, if wi(r) = kir
c, for some positive constants ki and c,

then u(r, s) = kre−αs, with k = (k2/k1)
1/c, and α = (k3/k2c).

Proof. By definition 6, it is necessary to prove that the origin is uniformly asymptotically stable
in order to have an uniformly bounded solution. First, consider the derivative of V(t, x) along
the trajectories of (2)

V̇(t, x) =
∂V

∂t
+

∂V

∂x
h(t, x) ≤ −w3 (‖x‖) .

Let ρ < r, and define a time-dependent set Ωt,ρ by

Ωt,ρ = {x ∈ D|V(t, x) ≤ w1(ρ)} .

The set Ωt,ρ contains the ball
{

‖x‖ ≤ w−1
2 (w1(ρ))

}

since

w2(‖x‖) ≤ w1(ρ) and V(t, x) ≤ w1(ρ).

227Exponential Equilibria and Uniform Boundedness of HIV Infection Model
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Also, the set Ωt,ρ is a subset of the ball {‖x‖ ≤ ρ} since w1(‖x‖) ≤ w1(ρ). Thus

{

x ∈ Rn|‖x‖ ≤ w−1
2 (w1(ρ))

}

⊂ Ωt,ρ,

Ωt,ρ ⊂ {x ∈ Rn|‖x‖ ≤ ρ} ⊂ D,

for all t ≥ 0. For any t0 ≥ 0 and any x(t0) ∈ Ωt,ρ, the solution starting at (t0, x(t0)) stays

in Ωt,ρ for all t0 ≥ 0. This follows from the fact that V̇(t, x) is negative on D − {0}; hence
V(t, x) is decreasing. Therefore, the solution starting at (t0, x(t0)) is defined for all t ≥ t0 and

x(t) ∈ D. Now, it will assume that
{

‖x(t0)‖ ≤ w−1
2 (w1(ρ))

}

. Then

V̇(t, x) ≤ −w3 (‖x(t0)‖) ≤ −w3

(

w−1
2 (w1(ρ))

)

.

Let y(t) satisfy the auxiliary autonomous first order differential equation

ẏ = w(y), y(t0) = V(t0, x(t0)) ≥ 0.

It is clear that
V(t, x(t)) ≤ y(t), ∀t ≥ t0.

By corollary 6, there exists a positive definite and decreasing function σ(r, s) such that

V(t, x(t)) ≤ σ(V(t0, x(t0)), t − t0), ∀t ≥ t0.

Therefore, any solution starting in Ωt,ρ satisfies the inequality

w1(‖x(t)‖) ≤ V(t, x(t)),

‖x(t)‖ ≤ w−1
1 (V(t, x(t))),

‖x(t)‖ ≤ w−1
1 (σ(V(t0, x(t0)), t − t0)),

‖x(t)‖ ≤ w−1
1 (σ(w2(‖x(t0)‖), t − t0)),

‖x(t)‖ ≤ u(‖x(t0)‖, t − t0).

Since µ < w−1
2 (w1(r)), we can choose ρ < r such that µ < w−1

2 (w1(ρ)).

Furthermore, for any ‖x(t0)‖ < w−1
2 (w1(r)), we can choose ρ close enough to r such that

‖x(t0)‖ < w−1
2 (w1(ρ)). Let η = w−1

1 (w2(µ)). Then

Bµ ⊂ Ωt,η ⊂ Bη ⊂ Bρ ⊂ D,

and
Ωt,η ⊂ Ωt,ρ ⊂ Bρ ⊂ D.

The sets Ωt,ρ and Ωt,η have the property that a solution starting inside either set cannot leave it

because V̇(t, x) is negative on the boundary. Therefore, if ‖x(t0)‖ ≤ w−1
2 (w1(ρ)), the solution

x(t) will belong to Ωt,ρ for all t ≥ t0. For a solution starting inside Ωt,η , the inequality (18) is
satisfied for all t ≥ t0. For a solution starting inside Ωt,ρ, but outside Ωt,η , let t1 be the first
time it enters Ωt,η . This time t1 could be t0 (if the solution starts inside Ωt,η) or infinite (if it
never enters Ωt,η). Since u(‖x(t0)‖, t − t0) → 0 as t → ∞, there is a finite time after which
u(‖x(t0)‖, t − t0) < µ for all t. Therefore, the time t1 must be finite; that is, the solution must
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enter the set Ωt,η in finite time. Once inside the set, the solution remains inside for all t ≥ t1.
Therefore,

V(t, x(t)) ≤ w1(η), ∀t ≥ t1,

and
‖x(t)‖ ≤ η, ∀t ≥ t1.

Hence, any initial state x(t0) can be included in the set {‖x‖ ≤ w−1
2 (w1(ρ))}. Thus, inequality

(12) is satisfied for all {‖x(t0)‖ ≤ w−1
2 (w1(ρ))}, which implies that the origin x = 0 is

uniformly asymptotically stable. The exponentially decaying for w1(·), w2(·) and w3(·) is
given by

wi(r) = kir
c, ki > 0, c > 0, i = 1, 2, 3.

Further, for scalar function

w(r) = k3

[

(

r

k2

)1/c
]c

=
k3

k2
r.

Hence, the positive definite and decreasing function σ(·, ·) is given by

σ(r, s) = re−(k3/k2)s.

Subsequently, the function u(·, ·) is given by

u(r, s) =

[

k2rce−(k3/k2)s

k1

]1/c

.

Hence, the origin is exponentially stable. The property completes the proof.

Inequalities (17) and (18) show that the solution x(t) is uniformly bounded for all t ≥ t0.

Remark 5. Let w−1
1 (w2(µ)) be a positive definite function called the bound of µ. As µ → 0, the

bound approaches zero. Sometimes, it is possible to combine inequalities (17) and (18) in one inequality

‖x(t)‖ ≤ u
(

‖x(t0)‖, t − t0

)

+ w−1
1 (w2(µ)), ∀t ≥ t0. (19)

Now, let us illustrate how Theorem 1 is used in the analysis of the perturbed system (2), when
the origin of the nominal system is exponentially stable and the system has a uniform bounded
solution.

Lemma 3. Let x = 0 be an exponentially stable equilibrium point of the nominal system (8). Let
V : [0, ∞)× D → R be a Lyapunov function of the nominal system that satisfies inequalities (15) and
(16), where D = {x ∈ Rn, ‖x‖ < r}. Suppose the perturbation term g(x) + d(t) satisfies

‖g(x)‖ ≤ c4‖x‖, ‖d(t)‖ ≤ δ <
ζ

c5
rθ

√

c1

c2
,

for all t ≥ 0, x(t) ∈ D, and some positive constants 0 < θ < 1, 0 < ζ < 1, c2 > 0, c4 > 0, c5 > 0
respectively. Then, for all ‖x(t0)‖ < r

√
c1/c2, the solution of the perturbed system x(t) satisfies

‖x(t)‖ ≤ k‖x(t0)‖exp(−α(t − t0)), ∀t0 ≤ t < t1,

and
‖x(t)‖ ≤ b, ∀t ≥ t1,
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for some finite time t1, where

k =

√

c2

c1
, α =

(1 − θ)ζ

2c2
, b =

c5

ζ

δ

θ
k,

c1 = λmin(P), c2 = λmax(P),

c3 = λmin(Q), c4 ≤ c3 − ζ.

Proof. Consider V(t, x) as a Lyapunov function candidate. The derivative of V(t, x) along the
trajectories of (2) satisfies

V̇(t, x) ≤ −c3‖x‖2
2 +

∥

∥

∥

∥

∂V

∂x

∥

∥

∥

∥

2

‖g(x)‖2 +

∥

∥

∥

∥

∂V

∂x

∥

∥

∥

∥

2

‖d(t)‖2,

V̇(t, x) ≤ −c3‖x‖2
2 + c4‖x‖2

2 + c5δ‖x‖2,

V̇(t, x) ≤ −(c3 − c4 − ζ)‖x‖2
2 − ζ‖x‖2

2 + c5δ‖x‖2,

V̇(t, x) ≤ −ζ‖x‖2
2 + c5δ‖x‖2, 0 < ζ < 1,

V̇(t, x) ≤ −(1 − θ)ζ‖x‖2
2 − θζ‖x‖2

2 + c5δ‖x‖2,

V̇(t, x) ≤ −(1 − θ)ζ‖x‖2
2, 0 < θ < 1, ∀‖x‖2 ≥ δc5/θζ.

By following application of theorem 1 completes the proof.

The bound b is proportional to the upper bound on the perturbation δ. Once again, this
result can be viewed as a robustness property of nominal system having exponentially
uniform equilibria at the origin, because it shows that arbitrarily small (uniformly bounded)
perturbations, will not result in large steady-state derivations from the origin.

3. HIV infection model approximation: Third order ODE

Consider the following model for HIV infection that involves a 3rd order ODE (Barao &
Lemos, 2007), (Perelson & Nelson, 1999), and (Santos & Middleton, 2008)

dT

dt
= s − dτT − βTV,

dT̃

dt
= βTV − δT̃,

dV

dt
= pT̃ − cV,

(20)

where T denotes the concentration of uninfected target cells (specially, CD4+helper T cells), T̃
is the concentration of infected target cells and V denotes the concentration of virions. There
are two equilibrium points for the system given in (20). One of these is termed the uninfected
state and is given by

T =
s

dT
, T̃ = 0, V = 0. (21)

The other equilibrium is termed the infected state and is given by

T =
δc

βp
, T̃ =

s

δ
− cdτ

βp
, V =

ps

δc
− dτ

β
. (22)
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Parameter Description Value/units

Source term for
s uninfected cells 10mm−3 per day

Death rate of
dT uninfected cells 0.02 per day

Infection rate of
β free virus particles 2.4×10−5 mm−3 per day

Death rate of
δ infected cell 0.24 per day

Rate of virions
p produced per 100 per day

infected cells

Death rate of
c free particle 2.4 per day

virions

t Time days

Table 1. Parameters for HIV model

3.1 Linearisation on infected and uninfected equilibrium point

On reference (Santos & Middleton, 2008), both equilibrium points (21) and (22) were studied.
The uninfected state (21), see parameter values on Table 1, is an unstable equilibrium, where
even a small perturbation (e.g introduction of HIV virus to system’s dynamic) leads to
divergence. For infected state in (22), it is concluded that the infected equilibrium is locally
stable for the parameter values given on Table 1. The qualitative behavior of a non linear
system near an equilibrium point can be determined via linearisation (Khalil, 2002). The
system can be linearised by computing the Jacobian which for (20) is given by

A =
∂ f

∂x x=[T,T̃,V]
=

⎡

⎣

−(dT + βV) 0 −βT
βV −δ βT
0 p −c

⎤

⎦ , (23)

where A is a stability matrix for the evaluation of infected state given in (22) that leads to the
characteristic polynomial

|λI − A| = λ3 + a1λ2 + a2λ + a3 (24)

where a1 =
(

c + δ +
βsp
δc

)

, a2 =
βsp
δc (c + δ), and a3 = (βsp − δcdT).

From (24), the Hurwitz stability conditions are ak > 0, for k = 1, 2, 3 and a1a2 − a3 > 0. This
stability domain is very conservative, because of the local behavior about the equilibrium
point in (22). In next subsection, for equilibrium point in (22), we need to probe the
exponentially uniform stable property and describe boundedness of the region of attraction.
We propose to work with the converse Lyapunov stability analysis in order to obtain a
uniformly bounded estimation for the equilibria point behavior at perturbation.

3.2 Non autonomous perturbation analysis

Now, it is necessary to study the dynamics for the perturbation and to determine the extent of
stability region to know how large a perturbation from the equilibrium can be allowed and it
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can still be sure that the solution remains toward the equilibrium (Hahn, 1967), (Khalil, 2002).
Consider the following change of variables in (20)

x = [T, T̃, V]T = [x1, x2, x3]
T .

The HIV model equations (20) can be rewritten as a perturbed model

ẋ1 = s − dT x1 − βx1x3 = −dT x1 + (s − βx1x3),

ẋ2 = βx1x3 − δx2 = −δx2 + (βx1x3),

ẋ3 = px2 − cx3.

(25)

The compact form of (25) is
ẋ = f (x) + g(x) + d(t), (26)

where β ≥ 0 is unknown, d is bounded disturbance that satisfies |d(t)| ≤ δ, for t ≥ 0, and

f (x) = Ax =
∂ f

∂x x=0
x =

⎡

⎣

−dT 0 0
0 −δ 0
0 p −c

⎤

⎦

⎡

⎣

x1

x2

x3

⎤

⎦ ,

g(x) =

⎡

⎣

−βx1x3

βx1x3

0

⎤

⎦ , d(t) =

⎡

⎣

s
0
0

⎤

⎦ . (27)

Suppose the perturbation g(x) satisfies the uniform bound

‖g(x)‖2 ≤ β

⎡

⎣

|x1||x3|
|x1||x3|

0

⎤

⎦ ≤ β

2

⎡

⎣

‖x‖2

‖x‖2

0

⎤

⎦ . (28)

The linearisation about the origin x = 0 for the perturbed system in (20) is described by matrix
A in (27). The stability analysis of matrix A is given by the eigenvalues

|λI − A| =

∣

∣

∣

∣

∣

∣

λ + dT 0 0
0 λ + δ 0
0 −p λ + c

∣

∣

∣

∣

∣

∣

,

|λI − A| = (λ + dT)(λ + δ)(λ + c).

Matrix A is Hurwitz when dT > 0, δ > 0, c > 0.
The converse theorem of Lyapunov is based on linearisation about the origin, x = 0. The
theorem supposes that matrix A is Hurwitz, in other words the nominal system. Then, there
exists a candidate Lyapunov function V(x) = xT Px, which permit to analyse the stability by
evaluating its derivative along the trajectories of the nominal system (27) such that

V̇(x) = ẋT Px + xT Pẋ,

V̇(x) = xT AT Px + xT PAx,

V̇(x) = xT [AT P + PA]x.

By solving the Lyapunov equation

AT P + PA = −Q, Q = QT
> 0. (29)
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It is possible to find the unique solution with matrix P = PT
> 0 be positive definite. By

taking the parameter values in Table 1 the matrix P is

P =

⎡

⎣

25 0 0
0 3.2902 × 103 7.8914
0 7.8914 0.2083

⎤

⎦ . (30)

The candidate Lyapunov function V(x) = xT Px needs to satisfy the following four conditions,
for being a positive definite scalar function

1. λmin(P)‖x‖2
2 ≤ V(x) ≤ λmax(P)‖x‖2

2,

λmin(P) = 0.1894, λmax(P) = 3.2902 × 103.

2. ∂V
∂x f (x) = ∂V

∂x Ax = −xTQx,

‖ ∂V
∂x ‖2‖Ax‖2 ≤ −λmin(Q)‖x‖2

2,

λmin(Q) = 1, Q = I = QT
> 0.

3. ‖ ∂V
∂x ‖2 = ‖2xT P‖2 ≤ 2‖P‖2‖x‖2 ≤ 2λmax(P)‖x‖2,

2λmax(P) = 6.5804 × 103.

4. ‖ ∂V
∂x ‖2|d(t)| = |2xT P||d(t)|,

‖ ∂V
∂x ‖2|d(t)| ≤ 2|P||x||d(t)|,

≤ 2 ∑
3
i=1 λi(P)|xi||di(t)| = 0.5|x1|.

Remark 6. A candidate Lyapunov function V(x) is used to investigate for the nominal system and its
stable or asymptotically stable equilibrium point at the origin, and determine if perturbed system (26)
can obtain a uniform bounded value.

By evaluation the derivative of V(x) along the trajectories of perturbed system (26)

V̇(x) =
∂V

∂x
ẋ =

∂V

∂x
f (x) +

∂V

∂x
g(x) +

∂V

∂x
d(t), (31)

where f (x) is a function which describes the nominal system in (26), g(x) is a function which
describes the perturbation about the origin in (26) and satisfy the growing bound given in
(28) and d(t) is a function for a bounded perturbation in (26). Hence, by using the bound (28)
given for g(x), their corresponding results for the function V(x) are given by

V̇(x) ≤ −‖x‖2
2 +

∥

∥

∥

∥

∂V

∂x

∥

∥

∥

∥

2

‖g(x)‖2 +

∥

∥

∥

∥

∂V

∂x

∥

∥

∥

∥

2

‖d(t)‖2,

V̇(x) ≤ −‖x‖2
2 +

6.5804 × 103

2
β‖x‖3

2 + 50s‖x‖2,

V̇(x) ≤ −ζ‖x‖2
2 + 50s‖x‖2

2; 0 < ζ < 1, M > 0,

V̇(x) ≤ (1 − θ)ζ‖x‖2
2; 0 < θ < 1.

Then, the function V̇(x) will be negative definite if the following conditions are satisfied

∀‖x‖2 ≥ min

{

50s

θζ
, M

}

, (32)
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where

M =
β6.5804 × 103

2(1 − ζ)
> 0, 0 < θ < 1, 0 < ζ < 1.

Therefore, the function V̇(x) is negative definite inside the ball ‖x‖ < r
√

c1/c2. The ball
defines the region of attraction for the solution, when condition (32) is satisfied. It is concluded
that the origin x = 0 is exponentially uniform stable and the solution for system (20) is
uniformly bounded in the large for disturbances that satisfy |d(t)| ≤ δ, for all t ≥ 0.

3.3 Simulation of trajectories and the region of attraction

For the bound given in (32), the following simulations are shown, with initial condition T(0) =
520, T̃(0) = 0 and V(0) = 1. The phase space for system (20) is depicted in Figure 1 for
parameter values s = 10, and β = 2.4 × 10−5.

Fig. 1. Phase space for: s = 10, β = 2.4 × 10−5 with three initial conditions (order from above
to bottom): a) T(0) = 180.2, T̃(0) = 77.6, V(0) = 3305; b) T(0) = 180.2, T̃(0) = 0, V(0) = 500;
c) T(0) = 180.2, T̃(0) = 0, V(0) = 1.

The result describing the region of attraction is useful for the clinical personal studying HIV
behavior, since it allows to predict the infection development and then choose treatment
options. This model does not describe the infection behavior when AIDS has already
developed. The region of attraction describes the zone for which, given any initial state
condition within it, its future dynamics will be particularly slow, i.e. exponentially uniform. In
the positive sector (xi > 0, i = 1, 2, 3) of the trajectory space, the solutions will be exponentially
uniform, but two different types of conditions are analysed: those starting outside and those
starting inside of the domain. The latter are from an invariant set. In Fig. 2, the trajectory
corresponds to initial condition given in the paper (Barao & Lemos, 2007). That trajectory
belongs to solution with fast dynamics that becomes slow as soon as it traverses the invariant
set.
One point which is closer to conditions found in reality is the point (180.2, 0, 1), which is
depicted in Fig. 1, c). Here, the viral load is small, but the number of uninfected cells is zero.
This makes us think of an HIV-infected patient who is not having a large viral load. This
information may be useful to configure control law that locate the starting condition at a point
such that no large viral load is generated. It is important to keep in mind that the attraction
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Fig. 2. Region of attraction for: T(0) = 520, T̃(0) = 0, V(0) = 1.

Fig. 3. Time response for three initial conditions: a) T(0) = 180.2, T̃(0) = 77.6, V(0) = 3305;
b) T(0) = 180.2, T̃(0) = 0, V(0) = 500; c) T(0) = 180.2, T̃(0) = 0, V(0) = 1.

point is the same, regardless of the the given initial condition. The proposed change in the
values causes a shift in the response for the viral load for variable V, without modifying the
time response for T and T̃, see Fig. 3. Also, the possibility of the initial condition (180.2, 0, 500)
is worth considering in Fig. 1,b) and Fig. 3. That represents the beginning of an infection with
a high viral load. This generates a more benign transient concerning the viral load dynamics.
The aim of plotting the trajectories generated from different initial conditions is to depict the
dynamics generated by the three state HIV model. Remember that the perturbation term d(t)
is constant.

4. Conclusions

In the paper of (Barao & Lemos, 2007), the study is made for 3rd order ODE, which focus on
the analysis of eigenvalues resulting from linearisation around the equilibrium points (Santos
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& Middleton, 2008). The disadvantage of linearizing about the equilibrium point when it is
not the origin, is that the non linearities of the system are not taken into account.
Lyapunov converse analysis allows to obtain bounds on the phase space so that the
exponential stability of the equilibrium point at the origin is guaranteed.
This means that the system trajectory describes an exponentially uniform trajectory as it
approaches to stable equilibrium point. It can be seen that, there are initial conditions which
are not within the given sets but their respective trajectories eventually reach the stable
equilibrium point.
This dynamic characteristic is studied for the kind of nonlinear system which is studied in
this chapter. It must be emphasized that the region of attraction will always determined by
the initial conditions and the parameter values. It is also interesting in the future, to study
the repulsion region, that means, the region which corresponds to the unstable equilibrium
region. Both regions, attraction and repulsion are located in a manifold. The closer the initial
condition is to the manifold in which the equilibrium point is located, the less stressful will the
patient suffer from the dynamics. That is the main reason to justify the search for manifolds
where the uniformly exponentially stable trajectories are found.
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