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Meshless Heat Conduction Analysis by  
Triple-Reciprocity Boundary Element Method 

Yoshihiro Ochiai  
   Kinki University 

Japan 

1. Introduction 

The main advantage of the boundary element method (BEM) formulation for the solution of 

boundary value problems results from the localization of unknowns on the boundary of the 

analyzed domain. The necessary condition for a pure boundary formulation is the 

knowledge of the fundamental solution of the governing differential operator. In addition to 

the reduction of the dimensionality, other advantages of the BEM formulation include good 

conditioning of the discretized equations, high accuracy and the stability of numerical 

computations because of the utilization of fundamental solutions. Sometimes, domain 

integrals are also involved in integral equation formulations; in such cases, the 

advantageousness of the BEM formulation is partially decreased. The most frequent reasons 

for the occurrence of domain integrals are body sources, nonlinear constitutive laws and 

nonvanishing initial conditions in time-dependent problems (Partridge et al., 1992, Sladek 

and Sladek, 2003, Tanaka et al., 2003). 

Since the fundamental solution for a diffusion operator is available in closed form, one 

can attempt to achieve a pure boundary integral formulation for transient heat conduction 

problems considered within the linear theory. This can be easily achieved provided that 

the initial temperature and/or heat sources are distributed uniformly. Then, one can 

convert the domain integrals of the fundamental solution into boundary integrals  using 

the higher-order polyharmonic fundamental solutions (Nowak, 1989, 1994). As regards 

the discretization of the time variable, two time-marching schemes are appropriate in 

formulations with time-dependent fundamental solutions. In one of them, the integration 

is performed from the initial time to the current time, while in the second scheme the 

integration is considered within a single time step, taking the temperature at the end of 

the previous time step as the initial value (pseudo-initial) at the current time step (Ochiai, 

2006). Although the domain integral of the uniform initial temperature can be avoided in 

the first time-marching scheme, the number of boundary integrals increases with 

increasing number of time steps even in this special case. On the other hand, the spatial 

integrations are performed only once and are used at each time step in the second scheme 

provided that a constant length of the time steps is used. The time-marching scheme with 

integration within a single time step increases the efficiency of numerical integration over 

boundary elements. The integral formulation as well as the triple-reciprocity 

approximation are derived in this chapter. The higher-order polyharmonic fundamental 
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solutions and their time integrals are shown in the Appendies. The numerical examples 

given concern the investigation of the accuracy of the proposed BEM formulation using 

the triple-reciprocity approximation of either pseudo-initial temperatures or body heat 

sources. 

In this chapter, the steady and unsteady problems in the one-, two- and three-dimensional 

cases are discussed. In the triple-reciprocity BEM, the distributions of heat generation and 

initial temperature are interpolated using two Poisson equations. These two Poisson 

equations are solved using boundary integral equations. This interpolation method is very 

important in the triple-reciprocity BEM. This numerical process is particularly focused on 

this chapter.  

2. Basic equations 

2.1 Steady heat conduction  

Point and line heat sources can easily be treated by the conventional BEM. In this study an 

arbitrarily distributed heat source 1
SW  is treated. In steady heat conduction problems, the 

temperature T under an arbitrarily distributed heat source 1
SW  is obtained by solving the 

following equation (Carslaw, 1938): 

 2 1
sW

T



   ,  (1) 

where  is thermal conductivity. Denoting heat generation by 1 ( )SW q , the boundary integral 

equation for the temperature in the case of steady heat conduction is given by (Brebbia, 

1984) 

 { ( ) 1
1

( ) ( , )
cT(P) T P,Q ( )} ( )

T Q T P Q
T Q d Q

n n

 
  

  1
1 1( , ) ( )ST P q W q d


  , (2) 

where 0.5c   on the smooth boundary and 1c   in the domain. The notations  and  

represent the boundary and domain, respectively. The notations p and q become P and Q on 

the boundary.  

In one-dimensional problems, the fundamental solution 1 ( , )T p q  in Eq. (2) used for steady 

temperature analyses and its normal derivative are given by  

    1

1
( , )

2
T p q r    (3) 

 1 ( , ) 1

2

T p q r

n n

 
 

 
 .  (4) 

In two-dimensional problems,  

 1

1 1
( , ) ln( )

2
T p q

r
   (5) 
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 1 ( , ) 1

2

T p q r

n r n
  


 

, (6) 

and in three-dimensional problems, 

 1

1
T (p,q)

4 r
  (7) 

 1
2

( , ) 1

4

T p q r

n nr
  


 

 , (8) 

where r is the distance between the observation point p and the loading point q. As shown in 

Eq. (2),when arbitrary heat generation 1 ( )SW q  exists in the domain, a domain integral is 

necessary. 

In the triple-reciprocity BEM, the distribution of heat generation is interpolated using  integral 

equations. Using these interpolated values, a heat conduction problem with arbitrary heat 

generation can be solved without internal cells by the triple-reciprocity BEM. The conventional 

BEM requires internal cells for the domain integral. The internal cells decrease the 

advantageousness of the BEM, in which the arrangement of data is simple. In the triple-

reciprocity BEM, the fundamental solution of lower order is used. The triple-reciprocity BEM 

requires internal points similarly to the dual reciprocity method (DRM) (Partridge, 1992) as 

shown in Fig. 1, although the boundary values fW  need not be given analytically.     
  

 

    
(a) Internal cells                                (b) Internal points 

Fig. 1. Triple-reciprocity BEM. 

2.2 Interpolation of heat generation    

The distribution of heat generation W is interpolated using integral equations to transform the 
domain integral into the boundary integral. The deformation of a thin plate is utilized to 

interpolate the distribution of the heat source 1
SW , where superscript S indicates a surface 

distribution. The following equations can be used for interpolation (Ochiai, 1995a-c, 1996a, b):  

 2
1 2
S SW W   , (9) 
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 2
2 3

1

( )
M

S P
m

m

W W q


   , (10) 

where 3
PW  is a Dirac-type function, which has a value at only one point. The term 2

SW  in 

Eq. (9) corresponds to the sum of curvatures 2 2
1 /SW x   and 2 2

1 /SW y  . From Eqs. (9) 

and (10), the following equation can be obtained: 

 4
1 3

1

( )
M

S P
m

m

W W q


   . (11) 

This equation is the same type of equation as that for the deformation 1
Sw  of a thin 

 plate with point load P, which is 

  4
1

1

M
S m

m

P
w

D
   , (12) 

where the Poisson’s ratio is  =0 and the flexural rigidity is D=1. A natural spline originates 

from the deformation of a thin beam, which is used to interpolate the one-dimensional 
distribution, as shown in Fig. 2. In this chapter, the deformation of a thin plate is utilized to 

interpolate the two-dimensional distribution 1
SW . The deformation 1

Sw  is given, and the force 

of point load P is unknown and is obtained inversely from the deformation of the fictitious 

thin plate, as shown in Fig. 3. The term 2
SW  corresponds to the moment of the beam.  

 

 

Fig. 2. Interpolation using thin beam with unknown point load. 
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(a) Given internal points and boundary 

 

 
(b) Obtained shape 1

SW                        (c) Sum of curvatures 2
SW  

Fig. 3. Interpolation using fictitious thin plate with unknown point load. 

The moment 2
SW  on the boundary is assumed to be 0, the same as in the case of the natural 

spline. This means that the thin plate is simply supported. In this method, the distribution of 

heat generation is assumed to be that for a freeform surface (Ochiai, 1995c). Equations (9) 

and (10) are similar to the equation used to generate a freeform surface using integral 

equations.  

2.3 Representation of heat generation by integral equations  

The distribution of heat generation is represented by an integral equation. The following 

harmonic function 1( , )T p q  and biharmonic function 2( , )T p q  are used for interpolation 

(Ochiai, 1999-2003). 

 1

1 1
( , ) [ln( ) ]

2
T p q B

r
   (13) 

 
2

2

1
( , ) [ln( ) 1]

8

r
T p q B

r
    (14) 

B  is an arbitrary constant. 1( , )T p q  and 2( , )T p q  have the relationship 

 2
2 1( , ) ( , )T p q T p q  . (15) 
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Let the number of 3
PW  be M. The heat generation 1

SW  is given by Green’s theorem and Eqs. 

(9), (10) and (15) as  

 

1 1
1 1 2 3

1

2
1

2 3
1 1

( ) ( , )
( ) { ( , ) ( )} ( ) ( , ) ( )

( ) ( , )
( 1) ( , ) ( ) ( , ) ( ),

S M
S S P

f m
m

S M
f ff S P

f f m m
f m

W Q T P Q
cW P T P Q W Q d Q T P q W q

n n

W Q T P Q
T P Q W Q d T P q W q

n n







 

 
   

 

        
   



 
 (16) 

where 0.5c   on the smooth boundary and 1c   in the domain. Moreover, 2
SW  in Eq. (10) 

is similarly given by  

 
2 1

2 1 2

( ) ( , )
( ) ( , ) ( )

S
S SW Q T P Q

cW P T P Q W Q d
n n

      
   

 1 3
1

( , ) ( )
M

P
m m

m

T P q W q


 . (17) 

The integral equations (16) and (17) are used to interpolate the distribution. The thin plate 
spline F(p, q) used to make a freeform surface is defined as (Dyn, 1987, Micchelli, 1986) 

 F(p,q)=r2 ln(r). (18) 

Equations (14) and (18) include the same type of function. Assuming 1 ( ) 0SW Q  , the values 

of 3
PW  and /S

fW n  are obtained using Eqs. (16) and (17).  

2.4 Polyharmonic functions 

The polyharmonic function ( , )fT p q  is defined by 

 2
1f fT T  . (19) 

Therefore, ( , )fT p q  for the Kth dimensional case can be obtained using the next equation  

 
1

11

1
[ ]K

f fK
T r T dr dr

r


   . (20) 

From Eq. (20), ( , )fT p q  for the two-dimensional case can be obtained using the next equation 

 1

1
[ ]f fT rT dr dr

r
   .  (21) 

The function ( , )fT p q  and its normal derivative for the two-dimensional case are explicitly 

expressed as 

 
2( 1)

2

1
( , ) [ln( )

2 [(2 1)!!]

f

f

r
T p q B

rf



 


1

1

1
sgn( 1) ]

f

e

f
e




   , (22) 
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2 3

2

( , ) 1
[2( 1){ln( ) }

2 [(2 2)!!]

f
fT p q r

f B
n rf


  

 

1

1

1
1 2( 1) ]

f

e

r
f

e n






  

  , (23) 

where (2 1)!! (2 1)(2 3)(2 5)....1f f f f     ，and sgn() is the sign function.  

For the one-dimensional case,  

 

2 11
( , )

2 (2 1)!

f

f

r
T p q

f



 


, (24) 

 
  2 2, 1

2 (2 2)!

f
fT p q r r

n f n

 


  
. (25) 

For the three-dimensional case, 

 

2 3

( , )
4 (2 2)!

f

f

r
T p q

f






 , (26) 

 

2 4( , ) (2 3)

4 (2 2)!

f
fT p q f r r

n f n

  


  
.  (27) 

Equations (16) and (17) are similar to the equation used to generate a freeform surface using 

integral equations (Ochiai, 1995c). 

Using Green’s theorem three times and Eqs. (9), (10) and (19), Eq. (2) becomes 

1
1

( ) ( , )
( ) { ( , ) ( )} ( )

T Q T P Q
CT P T P Q T Q d Q

n n

 
  

   

1 1
2

( )
{ ( , )

SW Q
T P Q

n







 2
1

( , )
( )} ( )ST P Q

W Q d Q
n


 


1 2

2 1( , ) ( )ST P q W q d


     

1
1

( ) ( , )
{ ( , ) ( )} ( )

T Q T P Q
T P Q T Q d Q

n n

 
  

   

1 1
2

( )
{ ( , )

SW Q
T P Q

n







 2
1

( , )
( )} ( )ST P Q

W Q d Q
n


 


1 2

3 2( , ) ( )ST P q W q d


    

1
1

( ) ( , )
{ ( , ) ( )} ( )

T Q T P Q
T P Q T Q d Q

n n

 
  

   

 
2

1
1

1

( )
( 1) { ( , )

S
ff

f
f

W Q
T P Q

n






 

 
1( , )

( )} ( )
f S

f

T P Q
W Q d Q

n


 


1

3 3
1

( , ) ( )
M

P
m m

m

T P q W q


   (28) 
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2.5 Interpolation for 3D case     

In the three-dimensional case, the following equations are used for smooth interpolation:  

 2
1 2( ) ( )S SW q W q   , (29) 

 2
2 3

1

( ) ( )
M

S P
A m

m

W q W q


   , (30) 

where the function 3
P
AW   expresses the state of a uniformly distributed polyharmonic 

function in a spherical region with radius A. Figure 4 shows the shape of the polyharmonic 

functions; the biharmonic function T2 is not smooth at 0r  . In the three-dimensional case, 

smooth interpolation cannot be obtained solely by using the biharmonic function T2 . To 

obtain smooth interpolation, a polyharmonic function with volume distribution T2A is 

introduced. The function fAT  shown in Fig. 5 is defined as (Ochiai, 2005) 

 

 

 
 

Fig. 4. Polyharmonic functions (Tf, TfA) 

 
2 2

0 0 0
( , ) [ { ( , ) sin } ]

A

fA fT p q T p q a d d da
 

      , (31) 

where A  is a spherical region with radius A, and S is the surface of a spherical shell with 

radius a. The function TfA can be easily obtained using the relationships 
2 2 2 2 cosr R a aR     and sindr aR d   as shown in Fig. 5. Therefore,  

 sin
r

d dr
aR

   . (32) 
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This function is written using r instead of R, similarly to Eqs. (26) and (27), although the 

function obtained from Eq. (31) is a function of R. The newly defined function fAT  can be 

explicitly written as  

 2 21
( , ) {(2 )( ) (2 )( ) }

2 (2 1)!
f f

fAT p q fA r r A fA r r A
r f

     


 r A  (33) 

 2 21
( , ) {(2 )( ) (2 )( ) }

2 (2 1)!
f f

fAT p q fA r A r fA r A r
r f

     


 r A . (34) 

In Fig. 5, A=1. The newly defined functions fAT  used in the chapter can be explicitly written 

as 

 
3

1
3

A

A
T

r
      r>A  (35) 

 
2 2

1

3

6
A

A r
T


  r A  (36) 

 
3 2

2
2 ( )

6 5
A

A A
T r

r
    r>A  (37) 

 
4 2 2 4

2

10 15

120
A

r r A A
T

 
    r A   (38) 

 
3 4 2 2 4

3

(35 42 3 )

2520
A

A r r A A
T

r

 
 r>A (39) 

 
6 4 2 2 4 6

3

21 105 35

5040
A

r r A r A A
T

   
 r A . (40) 

The heat generation 1
SW  is given by Green’s theorem and Eqs. (29)-(31) as  

 
2

1
1

1

( )
( ) ( 1) { ( , )

S
ffS

f
f

W Q
cW P T P Q

n







 

  2 3
1

( , )
( )} ( ) ( , ) ( )

M
f S P

f A m A m
m

T P Q
W Q d Q T P q W q

n 


  

   (41) 

Moreover, 2
SW  in Eq. (30) is similarly given by  

 2
2 1

( )
( ) { ( , )

S
S W Q

cW P T P Q
n




 1
2 1 3

1

( , )
( )} ( ) ( , ) ( )

M
S P

A m A m
m

T P Q
W Q d Q T P q W q

n 


  

  .  (42) 

Equations (41) and (42) are similar to the equation used to generate the freeform surface 

using integral equations. Using Green’s theorem three times and Eqs. (29), (30) and (15), Eq. 

(2) becomes 
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Fig. 5. Notations in three-dimensional problem 

1
1

( ) ( , )
( ) { ( , ) ( )} ( )

T Q T P Q
cT P T P Q T Q d Q

n n

 
  

   

 
2

1
1

1

( )
( 1) { ( , )

S
ff

f
f

W Q
T P Q

n






 

 
1( , )

( )} ( )
f S

f

T P Q
W Q d Q

n


 


1

3 3
1

( , ) ( )
M

P
A m A m

m

T P q W q 



   (43) 

In the same manner, a polyharmonic function with surface distribution fBT  is defined as 

(Ochiai, 2009) 

 
2 2

0 0
( , ) ( ( , ) sin )Bf fT p q T p q A d d

 
     . (44) 

The newly defined function fBT  can be explicitly written as 

 
2 1 2 1{( ) ( ) }

( , )
2(2 1)!

f f

fB

A r A r A
T p q

f r

   



r A  ,  (45) 

  
2 1 2 1{( ) ( ) }

( , )
2(2 1)!

f f

fB

A A r A r
T p q

f r

   



r A .   (46) 

Additionally, the temperature gradient is given by differentiating Equation (28), and 
expressed as: 

( )

i

T P

x




2
1 1( , ) ( ) ( , )

{ ( )} ( )
i i

T P Q T Q T P Q
T Q d Q

x n x n

  
  

     

2
11

1

( , ) ( )
( 1) {

S
f ff

if

T P Q W Q

x n
 




 
 

  
2

1( , )
( )} ( )

f S
f

i

T P Q
W Q d Q

x n
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 1 3
3

1

( , )
( )

M
Pm

m
im

T P q
W q

x







   (47) 

The function ( , ) /f iT p q x   and its normal derivative for the two-dimensional case are 

explicitly expressed as 

 
2 3

2

( , ) 1
[2( 1){ln( ) }

2 [(2 2)!!]

f
f

i

T p q r
f B

x rf


  

 

1

1

1
1 2( 1) ]

f

ie

r
f

e x






  

 ,  (48) 

2 2 4

2

( , ) 1
{[ 2( 2) , , ][2( 1){ln( ) }

2 [(2 2)!!]

f
f

i i i j
i

T p q r
n f r r n f B

x n rf


    

  
 

 
1

1

1
1 2( 1) ] 2( 1) , , }

f

i i j
e

f f r r n
e




      (49) 

2.6 Basic equations for unsteady heat conduction  

In unsteady heat conduction problems with heat generation 1 ( , )SW q t , the temperature T is 

obtained by solving  

 
2 11

SW T
T

t



 

  


 ,  (50) 

where κ and t are the thermal diffusivity and time, respectively. Denoting an arbitrary time 

and the pseudo-initial temperature by   and 0( ,0)T q , respectively, the boundary integral 

equation for the temperature in the case of unsteady heat conduction is expressed as 

(Wrobel, 2002) 

*
1

0

( , , , )
( , ) [ ( , )

t T P Q t
cT P t T Q

n

 



 

  *
1

( , )
( , , , )]

T P Q
T P Q t d d

n
 

 


 

 * 0
1 ( , , ,0) ( ,0)T P q t T q d


 

*
1 10

( , , , ) ( , )
t ST P q t W q d d

   
 

   , (51) 

where c=0.5 on the smooth boundary and c=1 in the domain. The notations Γ and Ω 

represent the boundary and domain, respectively. The notations p and q become P and Q on 

the boundary. In the case of K-dimensional problems, the time-dependent fundamental 

solution *
1 ( , , , )T p q t   in Eq. (51) used for the unsteady temperature analyses and its normal 

derivative are given by  

 
*

1 /2

1
( , , , ) exp( )

4 ( )K
T p q t a

t


 
 


,  (52) 
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*

1
2 /2 1

( , , , )
exp( )

8 ( )K

T p q t r r
a

n nt


  

  
 

 
,  (53) 

where 

 
2

4 ( )

r
a

t 



.  (54) 

Here, r is the distance between the observation point p and the loading point q. As shown in 

Eq. (51), when an arbitrary pseudo-initial temperature distribution 0( ,0)T q  exists in the 

domain, a domain integral is necessary. Therefore, the triple-reciprocity BEM (Ochiai, 2001) 

is used to avoid internal cells.  

This study reveals that the problem of unsteady heat conduction with many time steps can 

be solved effectively by the triple-reciprocity BEM. Two different numerical procedures can 

be employed for the numerical solution of Eq. (51). One method requires internal cells. At 

the end of each time step, the temperature at a sufficient number of internal points must be 

computed for use as the initial temperature in the next time step. The other method uses the 

history of boundary values, making internal cells unnecessary, if the initial temperature can 

be assumed to be 0. However, the CPU time required for calculation increases rapidly with 

increasing number of time steps. In the presented method, the temperature distributions in 

some time steps are assumed to be pseudo-initial and are interpolated using integral 

equations and internal points. 

2.7 Interpolation of time-dependent value     

Heat generation 1 ( , )SW q t  is assumed to vary within each time step in accordance with the 

time interpolation function such that 

 S SW q t 1 1( , ) W ψ  , (55) 

where ψ  is the time interpolation function. Let us now assume a linear variation of 

1 ( , )SW q t , 

 1
f

f

t t

t






, 

1
2

f

f

t t

t
 




,  (56) 

where 1f f ft t t    . 

The following equations can be used to obtain time-dependent values of heat 

generation 1 ( , )fW q t : 

 2
1 2( , ) ( , )S S

f fW q t W q t   ,  (57) 

 2
2 3

1

( , ) ( , )
M

S P
f m f

m

W q t W q t


   . (58) 
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An interpolation method for the pseudo-initial temperature distribution using the boundary 

integral equations that avoids the use of internal cells is next shown. The pseudo-initial 

temperature 0( ,0)T q  in Eq. (51) is represented as 0 ( ,0)ST q .  

The following equations can be used for the two-dimensional interpolation (Ochiai, 2001):  

 
2 0 0

1 2( ,0) ( ,0)S ST q T q   , (59) 

 
2 0 0

2 3
1

( ,0) ( ,0)
M

S P
m

m

T q T q


   . (60) 

The term 0
2
ST  in Eq. (59) corresponds to the sum of the curvatures 

2 0 2
1 /ST x   and 

2 0 2
1 /ST y  . The term ST 0

2  is the unknown strength of a Dirac-type function. From Eqs. (59) 

and (60), the following equation can be obtained.  

 
4 0 0

1 3
1

( ,0) ( ,0)
M

S P

m

T q T q


     (61) 

In this study, the deformation of an imaginary thin plate is utilized to interpolate the two-

dimensional distribution 0
1

ST . The deformation 0
1

ST  is given, but the force of the point load 

0
3

PT  is unknown. 0
3

PT  is obtained inversely from the deformation 0
1

ST  of the fictitious thin 

plate, as shown in Fig. 3. 0
2
ST  corresponds to the moment of the thin plate. The moment 

ST 0
2  on the boundary is assumed to be 0, which is the same as that in the natural spline. 

This indicates that the fictitious thin plate is simply supported.  

Using Green’s second identity and Eqs. (59), (60) and (15), we obtain (Ochiai, 2001)  

02
10

1
1

( ,0)
( ,0) ( 1) { ( , )

S
ffS

f
f

T Q
cT P T P Q

n







 

   

 
0 0

2 3
1

( , )
( ,0)} ( , ) ( ,0)

M
f S P

f m m
m

T P Q
T Q d T P q T q

n 


  

  , (62) 

where M is the number of 
0
3

PT . Moreover, 
0
2

ST  in Eq. (60) is similarly given by  

 
0

0 2
2 1

( ,0)
( ,0) { ( , )

S
S T Q

cT P T P Q
n





0 01
2 1 3

1

( , )
( ,0)} ( , ) ( ,0)

M
S P

m m
m

T P Q
T Q d T P q T q

n 


  

  . (63) 

The integral equations (62) and (63) are used to interpolate the pseudo-initial temperature 

distribution 0
1

ST . On the other hand, the polyharmonic function 
*( , , , )fT p q t   in the unsteady 

heat conduction problem is defined by  
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  2 * *
1( , , , ) ( , , , )f fT p q t T p q t   . (64) 

Using Green’s theorem twice and Eqs. (54)- (57) and (61), Eq. (51) becomes  

0
3

PT * *
1

1
( , , , ) ( , , , )f fT p q t rT p q t dr dr

r
        

2
*

10
1

( , )
( 1) [ ( , , , )

S
t ff

f
f

W Q
T P Q t

n

 
 




 

  
*

1( , , , )
( , )]

f S
f

T P Q t
W Q d d

n


 

 


 

*
3( ) 30

1

( , ) ( , , , )
M t P A

m
m

W q T P q t d
   
 

  
02

*
1

1

( ,0)
( 1) [ ( , , ,0)

S
ff

f
f

T Q
T P Q t

n





 

   

 
*

1 0
( , , ,0)

( ,0)]
f S

f

T P Q t
T Q d

n


 


0 *
3 3

1

( ,0) ( , , ,0)
M

P
m m

m

T q T P q t


 . (65) 

Therefore, it is clear that temperature analysis without the use of a domain integral is 

possible, provided that the initial temperature 0
1T  is interpolated using Eqs. (62) and (63). In 

practice, 0
1

ST  and 2 /ST n   are obtained using results from the previous time step; however, 

0
2

ST , 2 /ST n   and 0
3

PT  in Eq. (65) are not obtained in this way. 

2.8 Polyharmonic function for unsteady state   

The two-dimensional polyharmonic function *( , , , )fT p q t   in Eq. (65) is determined as  

 
* *

1

1
( , , , ) ( , , , )f fT p q t rT p q t dr dr

r
       .  (66) 

*( , , , )fT p q t   in the unsteady state and its normal derivative are concretely given by  
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1
( , , , ) ( ) ln( )

4
T p q t E a a C


   , (67) 
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where E※( ) is the exponential integral function and C is Euler’s constant. 
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Numerical solutions are obtained using the interpolation functions for time and space. If a 

constant time interpolation and time step 1( )k kt t   are used, the time integral can be 

treated analytically. The time integrals for *( , , , )fT p q t   are given as follows: 

 *
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where 
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4 ( )
f

F f

r
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t t



. (73) 

Assuming that functions ( , )T Q   and ( , )T Q n   remain constant over time in each time 

step, Eq. (65) can be written in matrix form. Replacing ( , )T Q   and ( , )T Q n   with vectors 

Tｆ and Qｆ, respectively, and discretizing Eq. (65), we obtain (Brebbia ,1984)   

 
1 1
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f f 

  fF f fF f 0H T G Q B  , (74) 

where B0 represents the effect of the pseudo-initial temperature. Adopting a constant time 
step throughout the analysis, the coefficients of the matrix at several time steps need to be 
computed and stored only once. 
If there is heat generation, the following time integrals are used (Ochiai, 2001).  
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Additionally, the temperature gradient is given by differentiating Equation (65), and 
expressed as: 
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  (79) 

The derivative of the polyharmonic function *( , , , )fT P q t   and the normal derivative with 

respect to ix  in Eq.(79) are explicitly given by  
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where ii xrr  /, . The time integrals for * /f iT x  and 2 *( , , , ) /f iT P q t x n    in Eq. (79) are 

given as follows: 
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3. Numerical examples 

To verify the accuracy of the present method, unsteady heat conduction in a circular region 

with radius a, as shown in Fig. 6, is treated with a boundary temperature given by  

 [1 cos( )]HT T t  . (92) 

We assume an initial temperature T▼=0 C , and R denotes the distance from the center of 

the circular region. A two-dimensional state, in which there is no heat flow in the direction 

perpendicular to the plane of the domain, is assumed. Figure 6 also shows the internal 

points used for interpolation. A thermal diffusivity of   16 mm〒/s and a radius of a=10 

mm are assumed. HT =10 C  in Eq. (92) and a frequency of / 2   rad/s are also 

assumed. The BEM results at R=0 and R=8 mm and the exact values are compared in Fig. 7. 

The exact solution for the temperature distribution is given by (Carslaw, 1938) 

2 2

( , ) [1 cosH
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Fig. 6. Circular region with temperature change at the boundary. 

 

 

Fig. 7. Temperature history in circular region. 
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  (93) 

where ber( ) and bei( ) are Kelvin functions, and s  ( s=1, 2, ...) are the roots of 0( ) 0J a  . 

Constant elements are used for boundary and time interpolation.  
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Appendix A (3D) 

The higher-order functions for 3D unsteady heat conduction are 
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where (, )  is an incomplete gamma function of the first kind (Abramowitz, 1970) and 

, /i ir r x   . Using Eqs. (44) and (A-3), the polyharmonic function with a surface 

distribution is obtained as follows: 
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The time integral of Eq. (62) can be obtained as follows: 
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where 
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and (, )  is an incomplete gamma function of the second kind (Abramowitz, 1970). The time 

integral of Eq. (A-5) can be obtained as follows: 
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where 
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For the sake of conciseness, the terms involving 2u  in Eq. (A-5) are omitted. The derivative 

of the polyharmonic function *( , , , )fT P q t   and the normal derivative with respect to ix  are 

explicitly given by  
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The time integrals of Eqs. (A-18), (A-20) and (A-22) can be obtained as follows: 
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Appendix B (1D) 

The functions for 1D unsteady heat conduction are 
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where (, )  is an incomplete gamma function of the first kind (Abramowitz, 1970). The time 

integral of Eqs. (49) and (B-1)-(B-4) can be obtained as follows: 

 1 1 2 0.5

1 exp( )
( , , , ) [ (0.5, ) ]

2

F

f

t f
ft

f

ar
T p q t d a

a
 



 
    (B-5) 

 
*

1 ( , , , )F

f

t

t

T p q t
d

n





 1 2

1
(0.5, )

2
f

r
a

n 
 

 


  (B-6) 

 *
2 ( , , , )

F

f

t

t
T p q t d 

1 2 3 23

1 2 2

( )1 2 2
(0.5, ) (0.5, ) exp( )

3 38

f f
f f f

f f

a ar
a a a

a a




       
  

 (B-7) 

 
*
2 ( , , , )F

f

t

t

T p q t
d

n







2

1 2 1 2

1 1
{ (0.5, ) 2[ (0.5, ) exp( )]}

8
f f f

f f

r r
a a a

n a a





     


 (B-8) 

 

5
*
3 1 2

2

1/2 3/2 5/2 5/2

3 4
( , , , ) {15( ) (0.5, ) 12 (0.5, )

2880

2 9 4 48
12 (0.5, ) 6( )exp( ) }

F

f

t

f ft
ff

f f
ff f f

r
T p q t d a a

aa

a a
a a a a

  




   

     


  (B-9) 

* 4
3

1 2 2 1 2 3 2

exp( ) 2exp( )( , , , ) 1 1 1
{( ) (0.5, ) (0.5, ) }

3216 3 3

F

f

t f f
f ft

f f f f

a aT p q t r r
d a a

n n a a a a


 



  
     

  , (B-10) 

www.intechopen.com



 
Meshless Heat Conduction Analysis by Triple-Reciprocity Boundary Element Method 

 

347 

where 
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Appendix C (Linear time interpolation) 

The time integrals of Eq. (62) using linear time interpolation in the two-dimensional case can 
be obtained as follows: 
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