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Particle Transport Monte Carlo Method  
for Heat Conduction Problems 

Nam Zin Cho 
Korea Advanced Institute of Science and Technology (KAIST), Daejeon,  

South Korea 

1. Introduction 

Heat conduction [1] is usually modeled as a diffusion process embodied in heat conduction 
equation. The traditional numerical methods [2, 3] for heat conduction problems such as the 
finite difference or finite element are well developed. However, these methods are based on 
discretized mesh systems, thus they are inherently limited in the geometry treatment. This 
chapter describes the Monte Carlo method that is based on particle transport simulation to 
solve heat conduction problems. The Monte Carlo method is “meshless” and thus can treat 
problems with very complicated geometries.  
The method is applied to a pebble fuel to be used in very high temperature gas-cooled 
reactors (VHTGRs) [4], which is a next-generation nuclear reactor being developed. 
Typically, a single pebble contains ~10,000 particle fuels randomly dispersed in graphite–
matrix. Each particle fuel is in turn comprised of a fuel kernel and four layers of coatings. 
Furthermore, a typical reactor would house several tens of thousands of pebbles in the core 
depending on the power rating of the reactor. See Fig. 1. Such a level of geometric 
complexity and material heterogeneity defies the conventional mesh–based computational 
methods for heat conduction analysis. 
Among transport methods, the Monte Carlo method, that is based on stochastic particle 
simulation, is widely used in neutron and radiation particle transport problems such as 
nuclear reactor design. The Monte Carlo method described in this chapter is based on the 
observation that heat conduction is a diffusion process whose governing equation is analogous 
to the neutron diffusion equation [5] under no absorption, no fission and one speed condition, 
which is a special form of the particle transport equation. While neutron diffusion 
approximates the neutron transport phenomena, conversely it is applicable to solve diffusion 
problems by transport methods under certain conditions. Based on this idea, a new Monte 
Carlo method has been recently developed [6-8] to solve heat conduction problems. The 
method employs the MCNP code [9] as a major computational engine. MCNP is a widely used 
Monte Carlo particle transport code with versatile geometrical capabilities. 
Monte Carlo techniques for heat conduction have been reported [10-13] in the past. But most of 
the earlier Monte Carlo methods for heat conduction are based on discretized mesh systems, 
thus they are limited in the capabilities of geometry treatment. Fraley et al[13] uses a 
“meshless” system like the method in this chapter but does not give proper treatment to the 
boundary conditions, nor considers the “diffusion-transport theory correspondence” to be 
described in Section 2.2 in this chapter. Thus, the method in this chapter is a transport theory 
treatment of the heat conduction equation with a methodical boundary correction. The 
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transport theory treatment can easily incorporate anisotropic conduction, if necessary,  in a 
future study. 
 

 
(c) A pebble-bed reactor core 

(a) A pebble fuel element 

(b) A coated fuel particle 

Fig. 1. Cross-sectional view of a pebble fuel (a) consisting several thousands of coated fuel 
particles (b) in a reactor core (c) 

2. Description of method 

2.1 Neutron transport and diffusion equations 

The transport equation that governs the neutron behavior in a medium with total cross 

section ( , )


t r E and differential scattering cross section ( , , )    
 

s r E E is given as [5]: 

 t s(r ,E, ) (r ,E) (r ,E, ) dE d (r ,E E, ) (r ,E , )

S(r ,E, )

           



         



 
          

  (1a) 

with boundary condition, for n ,  0


 

 s
s

(E, ), given,
(r ,E, )

, if vacuum,

 
 

 
 0

  (1b) 
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where 

r neutron position,

E neutron energy,

neutron direction,

S neutron source,

(r ,E, ) neutron angular flux.



 















 

 

 

Fig. 2. Angular flux and boundary condition 

Fig. 2 depicts the meaning of angular flux (r ,E, ) 


and boundary condition. In the 

special case of no absorption, isotropic scattering, and mono-energy of neutrons, Eq. (1) 
becomes 

        
 

   
1

4 4
s s

S(r )
(r , ) (r ) (r , ) (r ) (r ) ,

      
 (2a) 

with vacuum boundary condition, 

 s(r , )  for n ,    0 0
  

 (2b) 

where scalar flux is defined as 

 (r ) d (r , ).   
  

 (2c) 

Let us now consider a “scaled” equation of (2a),  

        
  

   
1 1

4 4
s s

S(r )
(r , ) (r ) (r , ) (r ) (r ) .

      
 (3) 

An important result of the asymptotic theory provides correspondence between the 

transport equation and the diffusion equation, i.e., the asymptotic ( )  solution of Eq. (3) 

satisfies the following diffusion equation: 

www.intechopen.com



 
Heat Conduction – Basic Research 

 

298 

 
s

(r ) S(r ),
(r )




  
1

3

 
  (4a) 

with vacuum boundary condition  

 s(r d) , d extrapolation distance.   0


 (4b) 

 It is known that, between the two solutions from transport theory and from diffusion 
theory, a discrepancy appears near the boundary. Thus, the problem domain is extended 

using an extrapolated thickness (typically td one mean free path /  1 ) for boundary layer 

correction, as shown in Fig. 3. 
 

 
 

Fig. 3. Boundary correction with an extrapolated layer 

2.2 Monte Carlo method for heat conduction equation 

Correspondence 

The steady state heat conduction equation for a stationary and isotropic solid is given by [1]: 

 k(r ) T(r ) q (r ) ,     0
  

 (5a) 

with boundary condition 

 sT(r ) , 0


 (5b) 

where k(r )


is the thermal conductivity and q (r )  is the internal heat source. 

If we compare Eq. (5) with Eq. (4), it is easily ascertained that Eq. (4) becomes Eq. (5) by 
setting 

www.intechopen.com



 
Particle Transport Monte Carlo Method for Heat Conduction Problems 

 

299 

 s(r ) ,
k(r )

 
1

3


  (6) 

and  

 S q (r ),


 (7) 

with a large  and the problem domain extended by d . 

The Monte Carlo method is extremely versatile in solving Eqs. (1), (2) and (3) with very 
complicated geometry and strong heterogeneity of the medium. Thus, Eq. (3) is solved by 

the Monte Carlo method (with a large  ) to obtain (r ) 
. The result of (r ) 

is then translated 

to provide sT(r ) (r ) (r )  
  

as the solution of Eq. (5) [See Fig. 3.] 

Here,   1 is a scaling factor rendering the transport phenomena diffusion-like. A large 

scaling factor plays an additional role of reducing the extrapolation distance to the order of a 

mean free path. To choose a proper value for  , we introduce an adjoint problem to perform 

sensitivity studies, specific results for a pebble problem provided later in this section. 

Proof of principles of the method 

In order to confirm or provide proof of principles of the Monte Carlo method described in 

Section 2.2, first we consider a simple heat conduction problem which allows analytic 

solution. The problem consists of one-dimensional slab geometry, isotropic solid, and 

uniformly distributed internal heat source under steady state. The left side has reflective 

boundary condition and the right side has zero temperature boundary condition. Fig. 4(a) 

shows the original problem and Fig. 4(b) shows the extended problem to be solved by the 

Monte Carlo method, incorporating the boundary layer correction. Table 1 provides the 

calculational conditions. 

 

 

Fig. 4. A one-dimensional slab test problem 

 

Thermal 
Conductivity 

( W / cm K  ) 

Internal Heat 

Source( W / cm3 ) 

Extrapolation Thickness 

( mfp ) 
Scaling 
Factor 

0.5 0.01 1 1 

Table 1. Calculation Conditions for Simple Problem 

Figs. 5 and 6 show the Monte Carlo method results with and without the extension by 

extrapolation thickness in comparison with the analytic solution. Note that the result of the 

Monte Carlo method with boundary layer correction is in excellent agreement with the 

analytic solution. 
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Fig. 5. Monte Carlo heat conduction solution with extrapolated layer 

 
 

 

Fig. 6. Monte Carlo heat conduction solution without extrapolated layer 

To test the method on a realistic problem, the FLS (Fine Lattice Stochastic) model and 

CLCS (Coarse Lattice with Centered Sphere) model [14] for the random distribution of 

fuel particles in a pebble are used to obtain the heat conduction solution by the Monte 

Carlo method. Details of this process are described in Table 2 and Fig. 7. The power 

distribution generated in a pebble is assumed uniform within a kernel and across the 

particle fuels. The pebble is surrounded by helium at 1173K with the convective heat 

transfer coefficient h=0.1006( W / cm K 2 ). A Monte Carlo program HEATON [15] was 

written to solve heat conduction problems using the MCNP5 code as the major 

computational engine. 
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Material Kernel Buffer Inner PyC SiC 

Thermal Conductivity 

( /  W cm K ) 
0.0346 0.0100 0.0400 0.1830 

Radius 
 ( cm ) 

0.02510 0.03425 0.03824 0.04177 

Material Outer PyC Graphite-matrix Graphite-shell 

Thermal Conductivity 

( / W cm K ) 
0.0400 0.2500 0.2500 

Radius 
 ( cm ) 

0.04576 2.5000 3.0000 

Number of Triso Particles 9394 

Power/pebble 

 (W ) 
1893.95 

Table 2. Problem Description for a Pebble 

 

 

Fig. 7. A planar view of a particle random distribution for a pebble problem with the FLS 
model 

Heat conduction solutions for the pebble problem with the data in Table 2 using the Monte 

Carlo method are shown in Table 3 and Fig. 8. The number of histories used was 710 . 

Parallel computation with 60 CPUs (3.2GHz) was used. When the scaling factor  increases, 

the solution of the pebble problem approaches its asymptotic solution (diffusion solution). 

However, the computational time increases rapidly as the scaling factor increases. In Table 3 

and Fig. 8, it is shown that a scaling factor of 10 or 20 is not large enough. 
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Scaling 
Factor 

Maximum 
Temp. 

( K ) 

Relative 
Errora 

(%) 

Graphite 
Temp. Near 

Center( K ) 

Relative 
Errora 

(%) 

Computing 
Time 
(sec) 

Translation 
Temp. 

( K ) 

1 1674.21 1.59 158.33 0.71 534 27.08 

10 1556.96 1.14 1533.53 0.34 6,692 2.72 

20 1558.54 1.12 1531.67 0.30 20,297 1.36 

50 1553.22 1.11 1527.07 0.28 99,454 0.54 

a One standard deviation in temperature / mean estimate of temperature by Monte Carlo %100  

Table 3. Results of Fig. 7 Problem 

 

 

Fig. 8. Results along the red line of Fig. 7 vs the scaling factor 

Therefore, it is necessary to determine an effective scaling factor that renders the problem 
more diffusive. This can be done using an adjoint calculation. Using an adjoint calculation, 
the computing time is reduced as the calculation transports particles backward from the 
detector region (at the center of the pebble) to the source region. Additionally, it is possible 
that the changed tally regions used in the adjoint calculation allow effective particle tallies. 
 

Scaling Factor 
Maximum Temp. 

( K ) 

Standard 

Deviation( K ) 
Computing Time 

(sec) 

1 1685.131 0.409 47 

20 1558.817 0.308 1,427 

50 1553.931 0.304 7,298 

80 1553.586 0.304 17,976 

100 1552.995 0.303 27,240 

120 1552.713 0.303 39,435 

Table 4. Maximum Temperature and Computing Time for Fig. 9 
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In order to confirm the appropriate scaling factor, the problem with the data of Table 2 and 

in Fig. 7 was again tested with a smaller number ( 610 ) of histories compared to the number 

used in the forward calculation. The results depending on the scaling factor are shown in 

Fig. 9 and Table 4. 

Fig. 9 shows that the center temperature of a fuel pebble approaches its asymptotic solution 

(diffusion solution) as the scaling factor increases. Therefore, to obtain a diffusion solution, a 

scaling factor of > 30 (e.g., 50) is required. 

 
 

 

Fig. 9. Center temperature by the adjoint calculation 

2.3 Heat conduction problems 

Given varying-temperature boundary condition 

The first kind of the boundary conditions is the prescribed surface temperature: 

 s sT(r ) f (r ),
 

 (8) 

where sr


is on a boundary surface. Since the paradigm heat conduction problem that the 

Monte Carlo method can treat is a problem with zero temperature boundary condition (as 

described in Section 2.2), letT be decomposed into *T and T as follows: 

 *T(r ) T (r ) T(r ), 
    (9) 

where
*T satisfies the zero boundary condition, and T  is chosen such that it satisfies the 

given boundary condition (8). Eq. (5a) can then be rewritten as: 

 *k(r ) T(r ) k(r ) (T T ) q (r ),        
     (10) 
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or 

 * *k(r ) T (r ) q (r ),   
  

 (11a) 

where the new source * ( )q r


is defined by 

 *q (r ) k(r ) T(r ) q (r ),     
     (11b) 

Eq. (11a) is to be solved for *T by the Monte Carlo method [6-8]. The Monte Carlo method 

cannot deal easily with the gradient term, ( ) k r T
  , in Eq. (11b) when the boundary 

condition temperature is not a constant and k(r )


is not smooth enough. In order to evaluate 

the new source term as simply as possible, letT be zero in internally complicated thermal 

conductivity region as shown in Fig. 10. In addition,T and T must be continuous in the 

whole problem domain to render the k(r ) T  
  term treatable. 

 

 

 

 

 

 

 
 

 

 

 

Fig. 10. Solution Decomposition *T T T ,    
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In Ref. [8], the followingT is chosen for a three-dimensional spherical model: 

 s
s

(r r )
T U(r ) f (r , , ) ,

(r r )
  




2
0

2
0

  (12) 

where sf (r , , )  is the given boundary condition (8), and indicate polar and azimuthal 

angle, respectively. sr is radius to the boundary surface and there may be internally 

complicated thermal conductivity region inside r0 . 

Convection boundary condition 

A convection boundary condition is usually given by 

 s
b s

T(r )
k h(T T(r )),

n


 

1

 
 (13) 

where 1k is the thermal conductivity of medium 1 (solid), h and bT are the convective heat 

transfer coefficient and the bulk temperature of the convective medium, respectively. This 

condition can be equivalently transformed to a given temperature ( )bT boundary condition 

of a related problem, in which the convective medium is replaced by a hypothetical 

conduction medium with thermal conductivity 

 s

b

r
k h n ,

r

 
   

 
2  (14) 

where n is additional thickness beyond s b sr ( n r r )   in a spherical geometry. Here br is 

the radius where bT occurs. 2k involves a geometry factor and 2k ’s for several geometries are 

shown in Table 5 (see Appendix B for the derivation). 
 

Geometry 2k  

Sphere  s
b s

b

r
h(r r )

r

 
  

 
 

Cylinder b
s

s

r
hr ln

r

 
 
 

 

Slab b sh(x x )  

Table 5. 2k for Several Geometries 

There is no approximation in the 2k expressions for given h if there is no heat source in the 

fluid. The transformed problem can then be solved by the Monte Carlo method in Section 

2.1 with replacement of 0r by sr and sr by br , and bT as the boundary condition. Eq. (13) 

with the right-hand side replaced by Eq. (14) is no more than a continuity expression of heat 

flux on the interface. Fig. 11 shows the concept in this transformation. 
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(a) Original problem 
 
 

 
 

(b) Equivalent problem 
 
 

Fig. 11. Transformation of a convective medium to an equivalent conduction medium 
preserving heat flux 
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Examples 

The method is applied to a pebble fuel with Coarse Lattice with Centered Sphere (CLCS) 

distribution of fuel particle [14]. The description of a pebble fuel is shown in Fig. 12 and 

Table 2. The pebble fuel is surrounded by helium at given bulk temperature with convective 

heat transfer coefficient 20.1006( / ) h W cm K . The number of histories used in the 

Monte Carlo calculation was 710 . 
 
 

 
 

Fig. 12. CLCS distribution 

Test Problem 1 is defined by the following non-constant bulk temperature of the helium 
coolant: 

 ( cos ) K ,  1173 10 1  (15a) 

where is the polar angle, or equivalently 

 
z

,
x y z

 
  
   

2 2 2
1173 10 1  (15b) 

where 

 bx y z r ,  2 2 2 2  (15c) 

with 3.1br , ,x y and z in centimeters. 

The results are shown in Figs. 13, 14 and 15. 
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Fig. 13. Temperature distribution along x -direction with 0 y z in Test Problem 1 

 

 

Fig. 14. Temperature distribution along z -direction with 0 x y in Test Problem 1 
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Fig. 15. Comparison of Test Problem 1 and a problem with constant helium bulk 

temperature (1173 K ) 

Test Problem 2 is defined by the following non-constant bulk temperature of the helium 
coolant: 

 (x y z) K    1173 10  (16a) 

where 

 bx y z r ,  2 2 2 2  (16b) 

with 3.1br , ,x y and z in centimeters. 

The results are shown in Figs. 16, 17, and 18. 
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Fig. 16. Temperature distribution along x -direction with 0 y z in Test Problem 2 

 

 

Fig. 17. Temperature distribution along z -direction with 0 x y in Test Problem 2 
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Fig. 18. Temperature distribution along y -direction with 0 x z in Test Problem 2 

3. Applications 

3.1 Comparison between the FLS (Fine Lattice Stochastic) model and analytic bound 
solutions 
In this section, the data of the geometry information and thermal conductivity are identical 
to those in Table 2. Based on the results in the previous section, temperature distributions 
were calculated using a scaling factor of 50. Three triso particle configurations obtained by 
randomly distributed fuels in a pebble were considered (using the FLS model in Ref. 14). 
The tally regions as shown in Fig. 19 were chosen. If a (fine) lattice has a heat source, the 
tally is done over the kernel volume. If the lattice consists of only graphite, tally is done over 
the lattice cubical volume.  
 

 

Fig. 19. Tally regions with and without a heat source 

www.intechopen.com



 
Heat Conduction – Basic Research 

 

312 

Fig. 20 shows the temperature distributions obtained from the Monte Carlo method 

compared to the two analytic bound solutions superimposed with a particle located at the 

center of the pebble based on commonly quoted homogenized models [16]. It is important to 

note that the volumetric analytic solution usually presented in the literature [17] predicts 

lower temperatures than those of 

(thus underestimates) the Monte Carlo results. In the Monte Carlo results, the fuel-kernel 

temperature and graphite-matrix temperature are distinctly calculated. The results are 

summarized in Table 6. 

 

 

Fig. 20. Temperature profiles depending on the triso particle distribution configuration 
compared to two homogenized models 

 

 
Max. Temp. 

( K ) 

Average Kernel Temp. 

( K ) 

Average Graphite Temp. 

( K ) 

Case 1 1555.07 1497.84 1487.61 

Case 2 1553.77 1499.63 1480.43 

Case 3 1550.87 1501.89 1489.38 

Average 1553.23 1499.79 1485.80 

Table 6. Maximum, Average Kernel and Graphite Temperatures from Fig. 20 

For a fourth triso particle configuration (Case 4), the tally region was further refined as 

shown in Fig. 21 to provide more accurate graphite-moderator temperature. Essentially, if 

the lattice has a kernel (heat source), the tally is done over the kernel volume and over the 

moderator (graphite and layers) volume separately. Otherwise, if the lattice consists of only 

graphite, the tally is done over the cubical volume. 
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Fig. 21. Tally regions depending on the geometries 

In this problem, geometry information is identical to those shown in Table 2. The distributed 
particle configuration is shown in Fig. 22. The kernel and graphite-moderator temperatures 
are shown in Fig. 23 and Table 7. 
 
 
 

 
 
 

Fig. 22. A planar view of a fourth particle distribution configuration with the FLS model 
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Fig. 23. Temperature distribution along red line for Fig. 22 

 

Maximum temperature ( K ) 1556.70 

Averaged kernel temperature ( K ) 1518.88 

Averaged moderator temperature ( K ) 1484.61 

Surface temperature at 2.5cm ( K ) 1379.82 

Surface temperature at 3.0cm ( K ) 1339.65 

Computing time 43h 35m 9s 

Table 7. Results for the Fourth Configuration Shown in Fig. 23 

 

 

Fig. 24. Cross-sectional views for Fig. 22 
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The temperature profile on the 0z plane along red line is shown in Fig. 23 and Table 7. In 

this FLS model, the maximum fuel temperature appears not at the center point but near the 

central region, as the fuels are concentrated on the right side of the center point on 

the 0z plane, as shown in Fig. 24. Note that the red circle in Fig. 24 denotes particles with 

the dominant effect of the temperature increase on the 0z plane. 

3.2 CLCS (Coarse Lattice with Centered Sphere) model 

The temperature distribution was obtained again for the CLCS (Coarse Lattice with 
Centered Sphere) model [14]. In this model, the tally regions used are shown in Fig. 25. The 
general geometry  
information is identical to that in Table 2, except that there are 9315 triso particles and each 
triso particle takes one lattice cube (and vice versa), as shown in Fig. 26. The resulting 
temperature distribution for the CLCS model is shown in Fig. 27. 
 

 

Fig. 25. Tally regions for the CLCS model 

 

 

Fig. 26. Fuel particle configuration for the CLCS model 
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Fig. 27. Results of cubes along red line for Fig. 26 

4. Concluding remarks 

A Monte Carlo method for heat conduction problems was presented in this chapter. Based 

on the asymptotic theory correspondence between neutron transport and diffusion 

equations, it is shown that the particle transport Monte Carlo simulation can provide 

solutions to the heat conduction problems with two modeling devices introduced: i) 

boundary layer correction by the extended problem domain and ii) scaling factor to increase 

the diffusivity of the problem. 

The Monte Carlo method can be used to solve heat conduction problems with complicated 

geometry (e.g. due to the extreme heterogeneity of a fuel pebble in a VHTGR, which houses 

many thousands of coated fuel particles randomly distributed in graphite matrix). It can 

handle typical boundary conditions, including non-constant temperature boundary 

condition and heat convection boundary condition. The HEATON code was written using 

MCNP as the major engine to solve these types of heat conduction problems. Monte Carlo 

results for randomly sampled configurations of triso fuel particles were presented, showing 

the fuel kernel temperatures and graphite matrix temperatures distinctly. The fuel kernel 

temperatures can be used for more accurate neutronics calculations in nuclear reactor 

design, such as incorporating the Doppler feedback. It was found that the volumetric 

analytic solution commonly used in the literature predicts lower temperatures than those of 

the Monte Carlo results. Therefore, it will lead to inaccurate prediction of the fuel 

temperature under Doppler feedback, which will have important safety implications. 

 An obvious area of further application is the time transient problem. The results of the 

steady-state heterogeneous calculations by Monte Carlo (as described in this chapter) can be 

used to construct a two-temperature homogenized model that is then used in transient 

analysis [18]. 

While the Monte Carlo method has its capability and efficacy of handling heat conduction 

problems with very complicated geometries, the method has its own shortcomings of the 

long computing time and variance due to the statistical results. It also has a limitation in that 

it provides temperatures at specific points rather than at the entire temperature field. 
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Appendix A: Elements of Monte Carlo method 

A.1 Introduction 
In a typical form of the particle transport Monte Carlo method [9,19], we simulate particle 
(e.g., neutron) behavior by following a finite number, say N, of particle histories and tallying 
the appropriate events needed to calculate the quantity of interest. The simulation is 
performed according to the physical events (expressed by each term in the transport 
equation) that a particle would encounter through the use of random numbers. These 
random numbers are usually generated by a pseudo random number generator, that 
provides uniform random number   between 0 and 1. In each particle history, the random 

numbers are generated and used to sample discrete events or continuous variables as the 
case may be according to the probability distribution functions. The results of tally are 
processed to provide estimates for the mean and variance of the quantity of interest, e.g., 
neutron flux, current, reaction rate, or some other quantities. 

A.2 Basic operations of sampling 
A.2.1 Sampling of random events 
The discrete events such as the type of nuclides and collisions are simple to sample. For 
example, suppose that there are in the medium I nuclides with total macroscopic cross 

sections, ( i )
t , i , , ,I  1 2  . Let 

 
I ( i )

t ti
 


 1

, (A1) 

and 

 
( i )
t

i
t

P , i , , ,I .



  1 2   (A2) 

Now draw a random number and if  

 i iP P P P P P ,       1 2 1 1 2   (A3) 

then the i -th nuclide is selected and the neutron collides with nuclide i . After determination 

of the nuclide, the type of collisions (absorption, fission, or scattering, etc.) is determined in 
a similar way. If the event is scattering, the energy and direction of the scattered neutron are 
sampled. In addition, the distance a neutron travels before suffering its next collision is 
sampled. These values are continuous variables and thus determined by sampling according 

to the appropriate probability density function ( )f x . For example, the distance l to next 

collision (within the same medium) is distributed as 

 ( )
 t l tf l dl e dl , (A4) 

with its cumulative distribution function 

 t
l lF(l) f ( l )dl e    0 1 . (A5) 

Since ( )F l is uniformly distributed between 0 and 1, we draw a random number and let 
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 F(l)  , (A6) 

that in turn provides 

 
t t

ln( ) ln( )
l

 
 


   
1

. (A7) 

A.2.2 Geometry tracking 
In typical Monte Carlo codes, the geometries of the problem are created with intersection 
and union of surfaces. In turn, the surfaces are defined by a collection of elementary 
mathematical functions. For example, the geometry in Fig. A1 would be defined by 
functions that represent four straight lines and a circle. 
 

 

Fig. A1. An example of problem geometry with two material media 

 

 

Fig. A2. Geometry tracking 

Suppose that the neutron we follow is now at point A and heading to the direction as in Fig. 

A2. In order to determine next collision point, first we calculate the distance 1( )l to the 

nearest material interface and draw a random numberi , then two cases occur; i) 
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if 1 1  t l

i e , the collision is in region 1 at point  1ln /  i i tl , or ii) if 1 1  t l

i e , it says 

that the collision is beyond region 1, so draw another random number 1 i to determine the 

collision point that may be in region 2 at 1 1 2ln /   i i tl  beyond 1l  along the same 

direction. This process continues until the neutron is absorbed or leaks out of the problem 

boundary. 

A.2.3 Tally of events 

To calculate neutron flux of a region, current through a surface, or reaction rate in a region, 

the events that are usually tallied are i) number of collisions, ii) total track length traveled, or 

iii) number of crossings through a surface. For example, suppose that we like to calculate 

average scalar flux  in a volume element V with total cross section t . From a well-

known relation, 

 tc V  , (A8) 

where c is the number of collisions made by neutrons inV , we can calculate by tallying 

the number of collisions: 

 
t

c
V





1

. (A9) 

We provide sample estimate of c by 

 
N

n
n

ĉ c
N 

 
1

1
, (A10) 

where nc is the number of collisions made inV during the n-th history and N is a large 

number. In addition, we also provide sample estimate of variance on c by 

 


N

n
n

N

n

ˆS (c c )
N

N
ˆ(c c ),

N





 


 






2 2

1

2 2

1

1

1

1

 (A11) 

where 

 
 N

n
n

c s
N 

 2 2

1

1
. (A12) 

It can be easily shown that the sample standard deviation on ĉ is 

 ĉ

S

N
  , (A13) 
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which suggests to use a large N  for accurate ĉ , since ˆ c  is a measure of uncertainty in the 

estimated ĉ . 

Fig. A3 shows an example for nc ; in the shaded region, 

c ,c ,c ,andc ,   1 2 3 40 1 1 3  

thus 

ĉ

ĉ . ,

S ( . ) . ,

.
. .

  

   

 

2 2

1
5 1 25

4
3 11

1 25 1 583
4 4

1 583
0 6291

4

 

 

 

Fig. A3. Tally of number of collisions 

Appendix B: Derivation of equivalent thermal conductivities 

The expressions of 2k (equivalent thermal conductivity) for the convective medium are 

derived in this Appendix for three (sphere, cylinder, slab) geometries. 

B.1 Sphere geometry 

The heat conduction equation in spherical coordinates is, in a region free of heat source, 

 
k d dT

r .
dr drr

22
2

0  (B1) 
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Thus, 

 
dT

r c ,
dr

2
1  (B2) 

 
dT c

,
dr r

 1
2

 (B3) 

 
c

T c .
r

  1
2  (B4) 

From Eq. (B4), 

 s b
s b

b s s b

r r
T T c c ,

r r r r

  
    

 
1 1

1 1
 (B5) 

and thus 

 s b
s b

s b

r r
c (T T ),

r r
 

1  (B6) 

The convective boundary condition equation for spherical geometry is, 

 
s

s b
r

dT
k h(T T ).

dr
  2  (B7) 

Substituting Eqs. (B3) and (B6) into (B7), we have 

 s
b s

b

r
k h(r r ) .

r

 
   

 
2  (B8) 

B.2 Cylinder geometry 

The heat conduction equation in cylindrical coordinates is, in a region free of heat source, 

  
k d dT

r .
r dr dr

2 0  (B9) 

Thus, 

 
dT

r c ,
dr

 1  (B10) 

 
dT c

,
dr r

 1  (B11) 

 T c lnr c , 1 2  (B12) 

From Eq. (B12), 
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 s
s b s b

b

r
T T c (lnr lnr ) c ln ,

r

 
     

 
1 1  (B13) 

and thus 

 s b

s b

T T
c .

ln(r / r )


1  (B14) 

The convective boundary condition equation for cylindrical geometry is,  

 
s

s b
r

dT
k h(T T ).

dr
  2  (B15) 

Substituting Eqs. (B11) and (B14) into (B15), we have 

 b
s

s

r
k hr ln .

r

 
  

 
2  (B16) 

B.3 Slab geometry 

The heat conduction equation in slab geometry is, in a region free of heat source, 

 
d T

k .
dx


2

2 2
0  (B17) 

Thus, 

 
dT

c ,
dx

 1  (B18) 

 T c x c , 1 2  (B19) 

From Eq. (B19), 

 s b s bT T c (x x ),  1  (B20) 

and thus 

 s b

s b

T T
c ,

x x




1  (B21) 

The convection boundary condition equation for slab geometry is, 

 
s

s b
r

dT
k h(T T ).

dr
  2  (B22) 

Substituting Eqs. (B18) and (B21) into (B22), we have 

 b sk h(x x ). 2  (B23) 
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