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1. Introduction

Smart materials are different from the usual materials and can sense their environment and
respond, in the flexibility of its properties that can be significantly altered in a controlled
fashion by external stimuli, such as stress, temperature, electric and magnetic fields. Fig. 1
shows the general relationship in smart materials among mechanical, electrical, and thermal
fields. Such characteristics enable technology applications across a wide range of sectors
including electronics, construction, transportation, agriculture, food and packaging, health
care, sport and leisure, white goods, energy and environment, space, and defense.
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Fig. 1. The relationship among mechanical, electrical, and thermal fields.

The most widely used smart materials are piezoelectric ceramics, which expand or contract
when voltage is applied. Pyroelectric material is a kind of smart materials and can be
electrically polarized due to the temperature variation. Fig. 2 indicates the relationship
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2 Will-be-set-by-IN-TECH

between pyroelectrics and other smart materials. It follows that a pyroelectric effect cannot
exist in a crystal possessing a center of symmetry. Among the 21 noncentrosymmetrical
crystalline classes only 10 may theoretically show pyroelectric character, (Cady, 1946;
Eringen & Maugin, 1990; Nelson, 1979). It has many applications which occur both in
technology (i.e. infrared detection, imaging, thermometry, refrigeration, power conversion,
memories, biology, geology, etc...) and science (atomic structure of crystals, anharmonicity
of lattice vibrations etc...(Hadni, 1981)). Recently, advanced technical developments have
increased the efficiency of devices by scavenging energy from the environment and
transforming it into electrical energy. When thermal energy is considered and spatial thermal
gradients are present, thermoelectric devices can be used. When thermal fluctuations are
present, the pyroelectric effect can be considered, see (Cuadras et al., 2006; Dalola et al., 2010;
Fang et al., 2010; Gael & et al., 2009; Guyomar et al., 2008; Khodayari et al., 2009; Olsen et al.,
1984; Olsen & Evans, 1983; Shen et al., 2007; Sodano et al., 2005; Xie et al., 2009). The thermal
wave, also called temperature wave, is also found to be a good method to probe in a remote
way near surface boundaries, to measure layer thicknesses and to locate faults (Busse, 1991).

dielectrics

piezoelectrics

pyroelectrics

ferroelectrics

Fig. 2. The relationship of dielectrics, piezoelectrics, pyroelectrics and ferroelectrics.

Therefore, pyroelectric medium can be transformer among mechanical, electrical and thermal
energies. It is with this feature in mind that we have to do research to cover the coupling even
if only one type energy is needed. In this chapter the following works are performed to exploit
pyroelectric material.
Firstly, the general theory of inhomogeneous waves in pyroelectric medium is addressed.
Majhi (Majhi, 1995) studied the transient thermal response of a semi-infinite piezoelectric rod
subjected to a local heat source along the length direction, by introducing a potential function
and applying the Lord and Shulman theory. Sharma and Kumar (Sharma & Kumar, 2000)
studied plane harmonic waves in piezo-thermoelastic materials. He, Tian and Shen (He et al.,
2002) discussed various thermal shock problems of a piezoelectric plate. Baljeet (Baljeet,
2005) formulated the governing differential equations for generalized thermo-piezoelectric
solid by using both L-S and G-L theories and found that the velocities of these plane
waves depend upon properties of material and the angle of propagation. Sharma and Pal
(Sharma & Pal, 2004) discussed the propagation of plane harmonic waves in transversely
isotropic generalized piezothermoelastic materials and found four dispersive modes. The
propagation of Rayleigh waves in generalized piezothermoelastic half-space is investigated
by Sharma and Walis (Sharma & Walia, 2007). Topics of homogeneous and inhomogeneous
waves, reflection/transmission and energy problems in pyroelectrics are firstly researched by
authors (Kuang, 2009; 2010; Kuang & Yuan, 2010; Yuan, 2009; Yuan & Kuang, 2008; 2010).
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Energy Transfer in Pyroelectric Material 3

The speciality of pyroelectric material lies in its relaxation in corresponding thermal field.
Introduction of relaxation time into the heat conduction theory is about 50 years ago.
Cattaneo (Cattaneo, 1958) and Vernotte (Vernotte, 1958) originally proposed the relaxation
time for heat flux in the heat conduction theory, on basis of which the governing equations
of thermoelasticity with relaxation time were deduced by Kaliski (Kaliski, 1965), and
independently by Lord and Shulman (Lord & Shulman, 1967). Notwithstanding, this theory is
usually called L-S theory. Several years later, Green and Lindsy (Green & Lindsay, 1972) gave
another form of governing equations for thermoelasticity called G-L theory. Further, Joseph
and Preziosi (Joseph & Preziosi, 1989) used two relaxation times: one for heat flux and the
other for temperature gradient, and also obtained a system of equations of thermoelasicity.
Kuang (Kuang, 2009; 2010) proposed an inertial entropy theory and got the governing
equations for thermoelasticity which is different from L-S and G-L theories. For pyroelectrics
the effects of relaxation times on wave velocities and attenuation are estimated by (Kuang,
2009; 2010; Yuan, 2009; Yuan & Kuang, 2008; 2010).
Taking account of the relaxation, we introduce the inhomogeneous wave into pyroelectric
medium here. The difference from the homogeneous wave is that the wave propagation vector
is not coincident with the attenuation vector. The attenuation angle, defined by the angle
between wave propagation vector and attenuation vector, is found to be limited in the range
of (-90◦,90◦). It is found that increasing the attenuation angle will introduce more dissipation
and anisotropy. In our work, four wave modes are found in pyroelectric medium, which are
temperature, quasitransverse I, II and quasilongitudinal due to the coupling state relationship.
Though there is no independent wave mode for the electric field, it can still propagate with
other wave modes. The variations of phase velocities and attenuations with propagation angle
and attenuation angle are discussed. Phase velocity surfaces on anisotropic and isotropic
planes are presented for different attenuation angle. It is found that attenuation angle almost
doesn’t influence the phase velocities of elastic waves in both anisotropic and isotropic planes.
In contrast, the roles it plays on temperature wave are obvious. The effects of the positive and
negative attenuation angles are not the same in anisotropic plane.
The propagation of a wave in any medium is associated with the movement of energy.
Therefore, the energy process in pyroelectrics is researched for the first time.
The energy process especially the dissipation energy is one of the most important dynamic
characteristics of continuous media. Many researches were conducted on this problem. Umov
(Umov, 1874) introduced the concept of the energy flux vector and found the first integral
of energy conservation equations of elasticity theory. Fedorov (Fedorov, 1968) used this
theory and discussed the energy flux, energy density and the energy transport velocity of
plane waves in the elastic theory. In paper of (Kiselev, 1982), the energy fluxes of complex
fields in inhomogeneous media were considered. Based on Umov’s theory of energy flux,
he represented analogous results for complex fields which are characterized by the pair of
complex vector fields. On the basis of the results, the Lagrangian density and Umov vector
were derived. At the same time, the question of additivity of the Umov flux vectors of
longitudinal and transverse waves was also discussed.
For the class of plane inhomogeneous waves propagating in linear viscoelastic media, Buchen
(Buchen, 1971) gave a detailed description of the physical properties and energy associated
with these inhomogeneous waves. The paralleled paper by Borcherdt (Borcherdt, 1973)
adopted a different derivation from Buchen’s and discussed the mathematical framework
for describing plane waves in elastic and linear inelastic media. The expressions for the
energy flux, energy densities, dissipated energy, stored energy were derived from an explicit
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energy conservation relation. Based on the motion equation and its integral form, Červený
(Cerveny & Psencik, 2006) discussed three different types of energy fluxes in anisotropic
dissipative media. The relationships among them, especially their applications in the interface
between dissipative media, were researched in detail. In the field of piezoelectrics, Auld
(Auld, 1973) derived the energy flux in the electromagnetic field and also its form in the
piezoelectric media. Baesu (Baesu et al., 2003) considered non-magnetizable hyperelastic
dielectrics which conduct neither heat nor electricity and also obtained the energy flux with
the linearized theory.
In this chapter, the energy process in pyroelectric medium with generalized heat conduction
theory is studied firstly. According to the derived energy conservation law, the energy
densities, energy dissipated and energy flux are defined. Generally there are several type
velocities in wave theory, such as phase velocity, group velocity and energy velocity. The
phase velocity is related to the phase of the wave. Owing to damping, the usual definition
of group velocity of waves become meaningless and this issue can be solved by considering
the energy of the physical phenomenon of wave propagation (Mainardi, 1973). Regarding the
propagation of the energy, the energy flux may be used in order to quantify the energy velocity
vector and they have the same direction. The energy flux vector has a dynamical definition
and consequently, polarization of the wave (the amplitudes of displacements, temperature
and electric potential) is taken into account. In particular the phase velocity and energy
velocity are compared in the results and discussion section.
We shall use the operation rules: the dot above a letter denotes the time derivative, the index
following the comma in the subscript denotes the partial derivative with respect to relevant
Cartesian coordinate, and the asterisk in the superscript denotes the complex conjugate.

2. The inhomogeneous waves in pyroelectric medium

2.1 The governing equations and state equations

The pyroelectric medium can be influenced by the mechanical, electric and thermal fields.
These fields have their own governing equations. The physical quantities of pyroelectric
medium in these fields are not independent, because they are related by the state equations.
The known fundamental equations for the pyroelectric medium are listed as follows.

1. Mechanical field equations in ℜ3

Equation of motion:
σij,j + bi = ρüi (1)

Geometric property:

ε ij =
1

2
(ui,j + uj,i) (2)

where ui is the displacement vector, σij the stress tensor, bi the body force per unit volume,
ρ the density and ε ij the strain tensor.

2. Electrical field equations under the quasi-static assumption ℜ3

Gauss equation:
Di,i = ̺e (3)

where Di is the electric displacement. The absence of free charge requires ̺e = 0. In
quasi-static approximation, the electric field E is derivable from a potential, that is
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Energy Transfer in Pyroelectric Material 5

(∇× E)i = 0, Ei = −ϕ,i (4)

where ϕ is the scalar quasi-static electric potential.

3. Thermal field equations in ℜ3

If the temperature disturbance θ ≪ T0, the entropy equation is

ρT0 η̇ = −qi,i (5)

in which T0 is the initial temperature, η is the entropy per unit volume. The thermal flux
vector qi is related to the temperature disturbance θ = T − T0 by

Lqi = −κijθ,j (6)

in which L is an operator defined by

L = 1 + τ
∂

∂t

Equation (6) is called the generalized Fourier heat conduction equation. In these two
equations, κij indicates the heat conduction constant and τ is the relaxation time.
In the above individual field introduces physical quantities, and they are not independent
and should satisfy the state equations, which play roles in two aspects: 1. physically they
reflect the real world interactions among the three fields; 2. they are useful to formulate a
solvable equation system mathematically. The constitutive equations (Yuan & Kuang, 2008)
can be expressed by

σij = cijklεkl − ekijEk − γijθ

Dk = ekijε ij + λikEi + ξkθ (7)

ρη = γijε ij + ξiEi +
ρCθ

T0

In this system of equations, cijkl denotes the elastic stiffness; ekij the piezoelectric tensor; γij

the thermo-mechanical tensor; ρ the density; λik the dielectric permittivity tensor; ξk the
pyroelectric constants’; T0 the initial temperature; C is the specific heat capacity.
Inserting these state equations into Equations (1), (4) and (5) and using Equations (2) and (6),
we obtain

cijkluk,l j + ekijϕ,kj + γijθ,j = ρüi

ekijui,jk − λik ϕ,ik + ξkθ,k = 0

T0γij

(

ε̇ ij+ τε̈ ij

)

+ T0ξi

(

Ėi+ τËi

)

+ ρC
(

θ̇+ τθ̈
)

= κijθ,ij

(8)

which is a system of equations in the unknown fundamental functions: the displacements uk,
the electric potential ϕ, the temperature disturbance θ. There are 7 equations in this system
and also the same number of unknowns, therefore it can be solved.
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Equiphase plane

Equiamplitude plane
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Fig. 3. Equiphase plane, equiamplitude plane and exponential variation of the amplitude
along the phase propagation direction.

2.2 The fundamental concepts of inhomogeneous wave theory

When the wave vector is complex, generally speaking, the propagation direction (normal to
the equiphase plane) is different from the attenuation direction (normal to the equiamplitude
plane), see Fig. 3. Any plane wave can be expressed as

f = f0ei(k·x−ωt) = f0ei(kmxm−ωt), k = [k1, k2]
T = P + iA

P = Pn, A = Am, kj = Pj + iAj, k2 = k · k = P2 − A2 + 2iP · A

(9)

where P is the propagation vector, P is its module, and n is the unit vector along the
propagation direction; A is the attenuation vector, A is its module, and m is the unit vector
perpendicular to the plane of constant amplitude. When n = m, we call it homogeneous
wave, otherwise inhomogeneous wave. Hereafter, we assume that θ, transportation angle,
is the angle between n and x2; γ, attenuation angle, is the angle between n and m; and
ϑ(= θ + γ) is the angle between m and x2. Using Equation (9), we obtain

n = [sin θ, cos θ]T, m = [sin (θ + γ) , cos (θ + γ)]T, n · m = cos γ

k1 = P1 + iA1 = Pn1 + iAm1, k2 = P2 + iA2 = Pn2 + iAm2

P =
√

P2
1 + P2

2 , A =
√

A2
1 + A2

2

Due to n = m and γ = 0 in homogeneous wave, we have k1 = (P + iA) sin θ, k2 =
(P + iA) cos θ. Therefore, k is determined by one complex number and a real propagation
angle θ, but in inhomogeneous wave n �= m , we have to use four parameters (P, A, θ, γ) to
determine wave vector.
Unlike propagation angle θ, γ has its boundary to guarantee the waves are of attenuation. On
the basis of non-negative dissipation rate of linear viscoelastic media, Buchen (Buchen, 1971)
verified that γ is in the range of 0◦ to 90◦ and the same conclusion can also be seen in reference
(Borcherdt, 1973). In the present paper, the boundary of attenuation angle γ is determined by
the condition that waves should be attenuate physically.
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2.3 The propagation of inhomogeneous plane waves in infinite medium

For the solution to Equation 8, the general monochromatic plane waves are assumed as

uk = Ukexp [i(xiki − ωt)]
θ = Θexp [i(xiki − ωt)]
ϕ = Ψexp [i(xiki − ωt)]

(10)

where ki is the complex-valued wave vector, ω is the circular frequency, t is the time variable
and Uj, Θ and Ψ are generally the complex amplitudes (or polarizations) of displacements,
temperature and electric potential respectively. The subscript i, k equal to 1, 2, 3. It is noted
that in Equation (10), exp [i(xiki − ωt)] is used, which is different from homogeneous wave
with exp [i(knixi − ωt)]. In other words, in the inhomogeneous wave, kixi can’t be expressed
as knixi.
Inserting Equation (10) into Equation (8) yields a system of Christoffel algebraic equations in
amplitude vector U

Λ (k, ω)U = 0, U = [U1, U2, U3, Ψ, Θ]T (11)

Λ (k, ω, n) =

⎡

⎢

⎢

⎢

⎢

⎣

Γ11 (k)− ρω2 Γ12 (k) Γ13 (k) iα∗1 (k) e∗1 (k)
Γ21 (k) Γ22 (k)− ρω2 Γ23 (k) iα∗2 (k) e∗2 (k)
Γ31 (k) Γ32 (k) Γ33 (k)− ρω2 iα∗3 (k) e∗3 (k)
e∗1 (k) e∗2 (k) e∗3 (k) −iξkkk λ∗ (k)
γ∗

1 (k)ω γ∗
2 (k)ω γ∗

3 (k)ω κ∗ (k) ξ∗ (k)

⎤

⎥

⎥

⎥

⎥

⎦

(12)

where

Γik (k) = Cijklkjkl , e∗i (k) = ekijkkkj, γ∗
i (k) = T0γijkj

(

ω − iτω2
)

ξ∗ (k) = T0ξiki

(

−ω+iτω2
)

, λ∗ (k) = λikkikk, κ∗ (k) = κijkikj − ρC
(

iω+τω2
) (13)

Nontrivial solutions for Ui, Θ and Ψ require

det Λ (k, ω) = 0. (14)

which is complex equation in wave vector k for given ω. Decomposing the equation into the
real and imaginary parts, we can obtain a solvable equations in P and A:

{

Dℜ(P, A) = 0
Dℑ(P, A) = 0

and P, A ∈ 0 ∪ R
+ (15)

Due to that the equations are very tedious, we would not present them in explicit forms.
Equation (15) are nonlinear and coupling equations in (P, A). According to the definitions
of P and A in Equation (9), the right solution of P and A should be real valued. Therefore,
the domain of θ and γ are determined by the condition that P and A are nonnegative real
numbers(only one direction of wave propagation is considered). The wave propagates with
the velocity cp (=ω/P), with non-negative value in attenuation A. This condition agrees with
the Sommerfeld radiation condition; i.e., vanishing at infinity. When A and P are obtained for
given θ and γ, we can use Equations (9) to determine the inhomogeneous wave vector k. For
each ki, we can get a corresponding amplitude vector U with one undetermined component.
Generally, there are four roots of (P,A) to Equation (15) corresponding to four wave vector
k. For every k, P and A, we have two components (kiα, Pkα, Akα), in which i = 1, 2, 3, 4 and
α = 1, 2. They are related to three elastic waves and one temperature wave; The electric field
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doesn’t have its own wave mode, but, through the constitutive relations, it can propagate with
other four wave modes. After P, A are solved, the phase velocity can be given by

cp =
ω

P
(16)

and also the attenuation A.
Therefore, general solutions in pyroelectric medium equal to the sum of four wave modes,
which are

uk =
4

∑
j=1

U
(j)
k e

i
(

k
(j)
m xm−ωt

)

=
4

∑
j=1

U
(j)
k ei[(P(j)n(j)+iA(j)

m(j))·x−ωt] (17)

θ =
4

∑
j=1

Θ(j)e
i
(

k
(j)
m xm−ωt

)

ϕ =
4

∑
j=1

Ψ(j)e
i
(

k
(j)
m xm−ωt

)

in which j indicates the wave mode.

2.4 Quantitative analysis of pyroelectric media

The material under study is transversely isotropic BaTiO3, in which the isotropic plane is x1-x2

and the anisotropic plane is x1-x3 plane. All the physical constants are rewritten with the help
of Voigt notation, whose rule is that the subscript of a tensor is transformed by {11 → 1, 22 →
2, 33 → 3, 23 → 4, 31 → 5, 12 → 6}.

Coordinate index (11) (12) (13) (33) (44) (66) (15)

Elastic moduli E(1010Pa) 15.0 6.6 6.6 14.6 4.4 4.3

Piezoelectric Charge constant e(C/m2) -4.35 17.5 11.4
Electric permittivity λ(10−9f/m) 9.867 11.15
Thermal expansion tensor α(10−61/K) 8.53 1.99

Pyroelectric constant ξ(10−4C/m2K) 5.53
Thermal conductivity tensor κ(J/m·K·s) 1.1 1.1 3.5

Table 1. Material properties of BaTiO3

The material constants of BiTiO3 studied in this paper are shown in Table 1. The specific heat
capacity C is 500 (J/K·Kg); the relaxation times τ = 10−10s for L-S theory; density ρ = 5700
kg/m3; the prescribed circular frequency ω = 2π × 106 s−1; the thermo-mechanical coupling
coefficients γij are given by

γ11 = γ22 = (c11 + c12)α11 + (c13 + e31)α33, γ33 = 2c13α11 + (c33 + e33)α33

2.4.1 Determination of the boundary of attenuation angle

The condition in Equation (15) requires that the attenuation angle γ should be limited
in the range of (−900, 900) to get attenuate wave, by which we can obtain four wave
modes: quasilongitudinal, quasitransverse I, II and temperature waves. This conclusion is
consistent with previous researchers (Borcherdt, 1973; Buchen, 1971; Kuang, 2002). Their
studies demonstrated that attenuation angle γ is confined in the range of (00, 900) for
isotropic viscoelastic medium. This result can be arrived at by ours, that the positive
and negative attenuation angles come to the same results for isotropic medium. But the

236 Heat Conduction – Basic Research

www.intechopen.com



Energy Transfer in Pyroelectric Material 9

influences of positive and negative attenuation angles on waves in the anisotropic plane
for the transverse material are different. Attenuation angle introduces more dissipation and
anisotropy (Carcione & Cavallini, 1997).

2.4.2 The velocity surfaces

With the material constants shown in Table 1, the phase velocity surface sections are
calculated. Fig. 4(a),(b) show the sections of phase velocity surfaces in the anisotropic x1-x3

plane and isotropic x1-x2 plane. It is demonstrated that the attenuation angle γ almost doesn’t
change the phase velocities of elastic waves, therefore only the case at γ = 0 is presented.
The elastic wave velocity surfaces, including quasilongitudinal, quasitransverse I,II waves,
show the anisotropic behaviors in the anisotropic x1-x3 plane. It is seen that, in Fig. 4(a),
the quasi-longitudinal waves are the fastest, while the thermal wave are the slowest and the
quasi-transversal waves stand in between them and all of them are related to propagation
angle θ. Instead the role played by attenuation angle γ on temperature wave is obvious as
shown in Fig. 4(b). The influences of the positive and negative attenuation angles are different
in anisotropic x1-x3 plane, but both can reduce the velocity of temperature wave.
On the isotropic x1-x2 plane, Fig. 5(b) implies that the negative and positive attenuation angle
have the same role. Velocities of all waves in isotropic plane don’t depend on the propagation
angle.

(a) Velocity surfaces of elastic waves.

(b) Velocity surfaces of temperature wave.

Fig. 4. Sections of the velocity surfaces in (x1,x3) plane at different attenuation angle γ.

237Energy Transfer in Pyroelectric Material
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(a) Velocity surfaces of elastic waves.

(b) Velocity surfaces of temperature waves.

Fig. 5. Sections of the velocity surfaces in (x1,x2) plane at different attenuation angle γ.

3. Dynamic energy balance law in pyroelectric medium

We shall formulate the energy balance laws as consequences of the governing equations
presented in the previous section, see (Yuan, 2010).
I. We consider the scalar product of the velocity u̇i with the motion equation. Multiplying
Equation (1) by u̇i results in

σij,ju̇i + ρbiu̇i = ρüiu̇i

Taking account of the identity

(σiju̇i),j = σij,ju̇i + σiju̇i,j

and, by considering a region Ω with surface element ∂Ω in the configuration of the body,
applying the volume integral and Gaussian Theorem to the previous equation, we obtain

∫

∂Ω

σiju̇injdS +
∫

Ω

ρbiu̇idV =
∫

Ω

σiju̇i,jdV +
∫

Ω

ρüiu̇idV

where nj is the unit outward normal of dS. Let ti = σijnj in the surface integral, and
substituting σij with the constitutive equation Equation (7)1 within the integral operator, this
equation can be rewritten as
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∫

∂Ω

tiu̇idS +
∫

Ω

ρbiu̇idV =
∫

Ω

(

cijkluk,lu̇i,j − ekijEku̇i,j − γijθu̇i,j

)

dV +
∫

Ω

ρüiu̇idV (18)

which can be of the form

∫

∂Ω

tiu̇idS +
∫

Ω

ρbiu̇idV =
∫

Ω

(

Ẇe − ekijEku̇i,j − γijθu̇i,j

)

dV +
∫

Ω

K̇dV (19)

where

Ẇe = cijkluk,lu̇i,j =
1

2

∂

∂t
(cijkluk,lui,j)

which represents the rate of mechanical potential energy density.

K̇ = ρüiu̇i =
1

2

∂

∂t
(ρu̇iu̇i)

which is the rate of kinetic energy density.
II. Multiplying ϕ by the time derivative of Equation (3), integrating the resulting expression
over volume Ω and using the identity equation

(

Ḋk ϕ
)

,k = Ḋk,k ϕ + Ḋk ϕ,k and Gaussian

Theorem, we have

−
∫

∂Ω

ϕḊknkdS −
∫

Ω

EkḊkdV = 0

where nk is the unit outward normal of dS.
Substitution the constitutive equation Equation (7)2 into the above equation yields

−
∫

∂Ω

ϕḊknkdS −
∫

Ω

Ek

(

ekij ε̇ ij + λikĖi + ξk θ̇
)

dV = 0

which is of the form

−
∫

∂Ω

ϕḊknkdS −
∫

Ω

(

ekij ε̇ ijEk + ẆE + ξk θ̇Ek

)

dV = 0 (20)

where the rate of electric energy density is defined as

ẆE =
1

2

∂

∂t
(λikEiEk)

The addition of Equation (19) and Equation (20) yields

∫

∂Ω

tiu̇idS +
∫

Ω

ρbiu̇idV +
∫

Ω

γijθu̇i,jdV −
∫

∂Ω

ϕḊknkdS −
∫

Ω

Ekξk θ̇dV =
∫

Ω

(

Ẇe + K̇ + ẆE

)

dV

(21)
III. Taking the time differential on Equation (7)3 and using Equation (5), we get

T0γijε̇ ij + T0ξiĖi + ρCθ̇ = −qi,i
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Applying the operator L on both sides of this equation and using Equation (6) yields

κijθ,ij − L(T0γij ε̇ ij + T0ξiĖi + ρCθ̇) = 0 (22)

Multiplying Equation (22) by θ and apply volume integral on this expression, we obtain

∫

Ω

κijθ,ijθdV −
∫

Ω

T0γijL
(

ε̇ ij

)

θdV −
∫

Ω

T0ξiL
(

Ėi

)

θdV −
∫

Ω

ρCL
(

θ̇
)

θdV = 0 (23)

Using the identity (θθ,i),j = θ,jθ,i + θθ,ij and Gaussian Theorem, then we have

∫

Ω

κijθ,ijθdV =
∫

Ω

κij

[

(θθ,i),j − θ,jθ,i

]

dV =
∫

∂Ω

κijnjθθ,idS −
∫

Ω

κijθ,jθ,idV

Inserting this relation into Equation (23) and expanding the result by using the entropy
equation Equation (7)3, we get

1

T0

∫

∂Ω

κijθ,iθnjdS −
1

T0

∫

Ω

κijθ,jθ,idV =
∫

Ω

γijε̇ ijθdV +
∫

Ω

ξiĖiθdV +
∫

Ω

ρC

T0
θ̇θdV + τ

∫

Ω

ρη̈θ

T0
dV

(24)
Thus the rate of thermal energy density Ẇθ can be expressed as

Ẇθ =
ρC

T0
θ̇θ =

1

2

∂

∂t

(

ρC

T0
θ2

)

Combining Equation (21) and Equation (24) by eliminating
∫

Ω

γij ε̇ ijθdV, finally we obtain

∫

∂Ω

tiu̇idS −
∫

∂Ω

ϕḊknkdS +
1

T0

∫

∂Ω

κijθ,iθnjdS (25)

=
∫

Ω

τ
ρη̈θ

T0
dV +

1

T0

∫

Ω

κijθ,jθ,idV +
∫

Ω

∂

∂t
(Eiξiθ) dV+

∂

∂t

∫

Ω

(We + K + WE + Wθ) dV

which is the energy balance law for pyroelectric medium with generalized Fourier conduction
law for arbitrary time dependent wave field.
As the general energy balance states:

∫

Ω

QdV = −
∮

∂Ω

PinidS −
∂

∂t

∫

Ω

WdV (26)

which is the law governing the energy transformation. The physical significance of Equation
(26) is that the rate of heat or dissipation energy Q equals to the reduction of the rate of
entire energy Ẇ within the volume plus the reduction of this energy flux outward the surface
bounding the volume. Pi is called the energy flux vector(also called the Poyting vector,
Poyting-Umov vector) and its direction indicates the direction of energy flow at that point,
the length being numerically equal to the amount of energy passing in unit time through unit
area perpendicular to P.
In this chapter, important conclusions can be made from Equation (25): the energy density W
in the the pyroelectric medium:
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W = We + K + WE + Wθ

We =
1

2
cijkluk,lui,j, K =

1

2
ρu̇iu̇i, (27)

WE =
1

2
λikEiEk, Wθ=

1

2

ρC

T0
θ2

which is sum of the mechanical potential energy density We, the kinetic energy density K, the
electric energy density WE, the heat energy density Wθ .
The physical meaning of Eiξiθ can be seen from constitutive equation in Equation (7)3, from
which Eiξi is found to contribute entropy. Therefore the result Eiξiθ, by its multiplication with
temperature disturbance θ, is the dissipation due to the pyroelectric effect. Therefore Q the
rate of energy dissipation per unit volume is represented by

Q = τ
ρη̈θ

T0
+

1

T0
κijθ,jθ,i +

∂

∂t
(Eiξiθ) (28)

in which the energy dissipated by the heat conduction is 1
T0

κijθ,jθ,i, the dissipation energy

generated by the relaxation is τ
ρη̈θ
T0

and the last term is due to pyroelectric effect.
The energy flux vector(also called the Poyting vector, Poyting-Umov vector) Pi is defined as

Pi = −σjiu̇j + ϕḊi − κijθ,j
θ

T0
(29)

If the temperature effect is not taken account of, Equations (27), (29) can be degenerated into
the forms in reference (Baesu et al., 2003).

3.1 Energy balance law for the real-valued inhomogeneous harmonic wave

In previous section, we derived the energy balance equation for the pyroelectric medium and
defined the total energy, dissipation energy and energy flux vector explicitly. Keeping in mind
that the real part is indeed the physical part of any quantity, and considering Equation (10),
we can define the corresponding fundamental field functions as

ui =
1

2

[

Uiexp(ixsks)exp (iωt) +U∗
i exp(−ixsk∗s )exp (−iωt)

]

θ =
1

2

[

Θexp(ixiki)exp (iωt) +Θ∗exp(−ixik
∗
i )exp (−iωt)

]

(30)

ϕ =
1

2

[

Ψexp(ixiki)exp (iωt) +Ψ∗exp(−ixik
∗
i )exp (−iωt)

]

which are the real-valued inhomogeneous harmonic waves assumed on the basis of the pair
of complex vector fields for Equation (8).
The velocity of plane of constant phase is defined by

vp = ωP/ ‖P‖2 (31)

and the maximum attenuation is ‖A‖, where ‖ ‖ indicates the norm(or length) of a vector.
The quantities of the rate of energy density, the dissipation energy and the energy flux vector
can be expressed by inserting Equation (30) into Equations (27), (28) and (29).
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The mechanical potential energy density We

We =
1

2
cijklRe

[

UkklU
∗
i k∗j

]

exp (−2xs As)−
1

2
cijklRe

[

UkklUikjexp (2ixsks) exp (2iωt)
]

(32)

The first term on the right-hand side of this equation is time-independent and the second term
is time harmonic with frequency 2ω. The first term, expressed as 〈We〉 afterwards, represents
the result of We averaged over one period. From now on, we shall use 〈 〉 indicates the mean
quantity over one period. The notation Re stands for the real part and Im the imaginary part.
Similarly, the kinetic energy density K takes the form

K =
1

2
ρω2UiU

∗
i exp (−2xs As)−

1

2
ρω2Re [UiUiexp (i2xsks) exp (i2ωt)] (33)

The electric energy density WE

WE =
1

2
λikRe [kik

∗
k ΨΨ∗exp (−2xs As)]−

1

2
λikRe [kikkΨΨexp (i2xsks) exp (i2ωt)] (34)

The heat energy density Wθ

Wθ =
1

2

ρC

T0
{Θ∗Θexp (−2xs As) +Re [ΘΘexp (i2xiki) exp (i2ωt)]} (35)

The rate of energy dissipation density

Q = Q(κ) + Q(τ) + Q(ξ)

where Q(κ) due to the heat conduction

Q(κ) =
1

T0
κijRe

[

kik
∗
j Θ∗Θexp (−2xs As)

]

−
1

T0
κijRe

[

kikjΘΘexp (i2xsks) exp (i2ωt)
]

(36)

Q(τ) because of the relaxation

Q(τ) = τ
ρ

T0

(

γij ε̈ ijθ + ξiËiθ +
ρC

T0
θ̈θ

)

= τ
ρ

T0
ω2

{

γijIm
(

UikjΘ
∗
)

exp (−2xs As) + γijIm
[

UikjΘexp (i2xsks) exp (i2ωt)
]

+(37)

+ξiIm (k∗i Ψ∗Θ) exp (−2xs As) + ξi Im [k∗i Ψ∗Θ∗exp (i2xsks) exp (i2ωt)] +

−ΘΘ∗exp (−2xs As)− Re [ΘΘexpi(2xiki)exp (i2ωt)]}

At last, Q(ξ) attributed by the pyroelectric effect

Q(ξ) = 2ξiRe(kiωΨΘ∗)exp (−2xs As) + 2ξiRe [(kiωΨΘ)exp(2ixsks)exp (i2ωt)] (38)

The energy flux vector Pi consists of three different parts: P
(u)
i is generated in the elastic field;

P
(ϕ)
i in the electric field; P

(θ)
i in the thermal field, which are expressed as

P
(u)
j = −σjiu̇j

= −ωcjikl {Re (U∗
i Ukkl) exp (−2xs As) + Re [UiUkklexp (i2xsks) exp (i2ωt)]}+ (39)

ωekji {−Re (kkU∗
i Ψ) exp (−2xs As) + Re [kkΨUiexp (i2xsks) exp (i2ωt)]}+

ωγji [[Im (U∗
i Θ) exp (−2xs As)− ωImUiΘexp (i2xsks) exp (i2ωt)]]
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In the electric field, P
(ϕ)
j

P
(ϕ)
j = ϕḊj

= −ωejmn {Re (UmknΨ∗) exp [−2xs As] +Re [ΨUmknexp [i(2xsks)] expi2ωt]}+ (40)

ωλmj {Re (kmΨΨ∗) exp (−2xs As) + Re [kmΨΨexp (i2xsks) exp (i2ωt)]}+

ωξ j {Im (Θ∗Ψ) exp (−2xs As)− Im [ΘΨexp [i(2xiki)] exp (i2ωt)]}

In the thermal field, P
(θ)
j

P
(θ)
j = −κijθ,i

θ

T0
=

1

T0

{

−ΘΘ∗κijIm (ki) exp (−2xs As) + Im
[

κijkiΘΘexp (i2xsks) exp (i2ωt)
]}

(41)

It is to be noted that the mean quantities still satisfy Equation (25) of energy balance equation
for pyroelectric medium.
Since the energy flux and the energy density have the dimensions of watt per square meter
and joule per cubic meter respectively, their ratio gives a quantity with dimension of velocity.
This energy velocity vE is defined as the radio of the mean energy flux to the mean energy
density over one period, that is

vE = 〈P〉 / 〈W〉 (42)

which corresponds to the average local velocity of energy transport. From an experimental
point of view, it is more interesting to define velocity from averaged quantities
(Deschamps et al., 1997).
We can substitute the expressions in Equations (32)-(35) and (39)-(41) into (42), which yields
a lengthy formulation. Comparing the expression of phase velocity in Equation (31) with the
energy velocity in Equation (42), it is obvious that they are different from each other in moduli
as well as directions.

3.2 Results and discussion

According to previous studies, it is already known that there are waves of four modes, which
are quasilongitudinal, quasitransverse I, II and temperature. In this section, we’d like to
discuss phase velocity vp, energy velocity vE related to the four mode waves. They are studied
as functions defined in propagation angle θ and attenuation angle γ. After wave vector k is
determined, Equations (31) and (42) yield the phase velocity and energy velocity respectively.
The material constants under study is transversely isotropic material, see Section 2.4.
The variation of phase and energy velocity of quasilongitudinal wave is presented in Fig. 6
(a) which shows that the phase velocity does not vary with attenuation angle γ , while the
corresponding energy velocity can be influenced by γ. With γ increasing, the energy velocity
turns small. It is also noted that the phase velocity is a little bigger than the energy velocity
for quasilongitudinal wave mode.
The case of temperature wave is shown in Fig. 6 (b). Different from quasilongitudinal wave,
the phase velocity and energy velocity of temperature wave are influenced by propagation
angle θ and attenuation angle γ. Both phase velocity and energy velocity decay with γ. For
given γ, the phase velocity is also bigger than energy velocity.
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(a)

(b)

Fig. 6. Variations of velocity with propagation angle θ at γ=0◦, 30◦ .
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(a)

(b)

Fig. 7. Variations of velocity with propagation angle θ at γ=0◦,30◦.
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Plots of the computed velocities of quasitransverse wave I and II are given in Fig. 7. The phase
velocities of both wave modes are almost independent of γ and the energy velocity become
small with γ increasing.

4. Conclusion

In this chapter, the energy process of the pyroelectric medium with generalized heat
conduction theory is addressed in the framework of the inhomogeneous wave results
originally. The characters of inhomogeneous waves lie in that its propagation direction
is different from the biggest attenuation direction. The complex-valued wave vector is
determined by four parameters. The range of attenuation angle should be confined in
(-90◦ ,90◦) to make waves attenuate. Further analysis demonstrates that, in anisotropic plane,
the positive and negative attenuation angle have different influences on waves, while, in the
isotropic plane, they are the same. Based on the governing equations and state equations, the
dynamic energy conservation law is derived. The energy transfer, in an arbitrary instant, is
described explicitly by the energy conservation relation. From this relation, it is found that
energy density in pyroelectric medium consists of the electric energy density, the heat energy
density, the mechanical potential energy density, the kinetic energy density. The heat loss or
dissipation energy is equal to the reduction of the entire energy within a fixed volume plus
the reduction of this energy flux outward the surface bounding this volume. The dissipation
energy in pyroelectric medium are attributed by the heat conduction, relaxation time and
pyroelectric effect. The energy flux is obtained and it can not be influenced by the relaxation
time. The phase velocity and energy velocity of four wave modes in pyroelectric medium
are studied. Results demonstrate that the attenuation angle almost doesn’t influence phase
velocity of quasilongitudinal, quasitransverse I, II wave modes, while plays large role on
the temperature wave. The energy velocities of the four wave modes all decay with the
attenuation angle.
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instantanée, Comptes Rend Acad Sc 247: 431–432.
Cerveny, V. & Psencik, I. (2006). Energy flux in viscoelastic anisotropic media, Geophys. J. Int.

166(3): 1299–1317.

246 Heat Conduction – Basic Research

www.intechopen.com



Energy Transfer in Pyroelectric Material 19

Cuadras, A., Gasulla, M., Ghisla, A. & Ferrari, V. (2006). Energy harvesting from pzt
pyroelectric cells, Instrumentation and Measurement Technology Conference, 2006. IMTC
2006. Proceedings of the IEEE, pp. 1668–1672.

Dalola, S., Ferrari, V. & Marioli, D. (2010). Pyroelectric effect in pzt thick films for thermal
energy harvesting in low-power sensors, Procedia Engineering 5: 685–688.

Deschamps, M., Poiree, B. & Poncelet, O. (1997). Energy velocity of complex harmonic plane
waves in viscous fluids, Wave Motion 25: 51–60.

Eringen, A. C. & Maugin, G. A. (1990). Electrodynamics of continua, Vol. I, Springer-Verlag, New
York.

Fang, J., Frederich, H. & Pilon, L. (2010). Harvesting nanoscale thermal radiation using
pyroelectric materials, Journal of Heat Transfer 132(9): 092701–10.

Fedorov, F. I. (1968). Theory of Elastic Waves in Crystals, Plenum Press, New York.
Gael, S. & et al. (2009). On thermoelectric and pyroelectric energy harvesting, Smart Materials

and Structures 18(12): 125006.
Green, A. E. & Lindsay, K. A. (1972). Thermoelasticity, Journal of Elasticity 2(1): 1–7.
Guyomar, D., Sebald, G., Lefeuvre, E. & Khodayari, A. (2008). Toward heat energy harvesting

using pyroelectric material, Journal of Intelligent Material Systems and Structures .
Hadni, A. (1981). Applications of the pyroelectric effect, J. Phys. E: Sci. Instrum. 14: 1233–1240.
He, T., Tian, X. & Shen, Y. (2002). Two-dimensional generalized thermal shock problem of a

thick piezoelectric plate of infinte extent, Int. J. Eng. Sci. 40: 2249–2264.
Joseph, D. & Preziosi, L. (1989). Heat waves, Reviews of Modern Physics 61: 41–73.
Kaliski, S. (1965). Wave equation of thermoelasticity, Bull. Acad. Pol. Sci., Ser. Sci . Tech.

13: 211–219.
Khodayari, A., Pruvost, S., Sebald, G., Guyomar, D. & Mohammadi, S. (2009). Nonlinear

pyroelectric energy harvesting from relaxor single crystals, Ultrasonics, Ferroelectrics
and Frequency Control, IEEE Transactions on 56(4): 693–699. 0885-3010.

Kiselev, A. P. (1982). Energy flux of elastic waves, Journal of Mathematical Sciences
19(4): 1372–1375.

Kuang, Z. B. (2002). Nonlinear continuum mechanics, Shanghai Jiaotong University Publishing
House, Shanghai.

Kuang, Z. B. (2009). Variational principles for generalized dynamical theory of
thermopiezoelectricity, Acta Mechanica 203(1): 1–11.

Kuang, Z. B. (2010). Variational principles for generalized thermodiffusion theory in
pyroelectricity, Acta Mechanica 214(3): 275–289.

Kuang, Z. & Yuan, X. (2010). Reflection and transmission of waves in pyroelectric and
piezoelectric materials, Journal of Sound and Vibration 330(6): 1111–1120.

Lord, H. W. & Shulman, Y. (1967). A generalized dynamical theory of thermoelasiticity, J.
Mech. Phys. Solids 15: 299–309.

Mainardi, F. (1973). On energy velocity of viscoelastic waves, Lettere Al Nuovo Cimento
(1971-1985) 6: 443–449.

Majhi, M. C. (1995). Discontinuities in generalized thermoelastic wave propagation in a
semi-infinite piezoelectric rod, J. Tech. Phys 36: 269–278.

Nelson, D. F. (1979). Electric, Optic and Acoustic Interactions in Dielectrics, John Wiley, New
York.

Olsen, R. B., Bruno, D. A., Briscoe, J. M. & Dullea, J. (1984). Cascaded pyroelectric energy
converter, Ferroelectrics 59(1): 205–219.

247Energy Transfer in Pyroelectric Material

www.intechopen.com



20 Will-be-set-by-IN-TECH

Olsen, R. B. & Evans, D. (1983). Pyroelectric energy conversion: Hysteresis loss
and temperature sensitivity of a ferroelectric material, Journal of Applied Physics
54(10): 5941–5944.

Sharma, J. N. & Kumar, M. (2000). Plane harmonic waves in piezo-thermoelastic materials,
Indian J. Eng. Mater. Sci. 7: 434–442.

Sharma, J. N. & Pal, M. (2004). Propagation of lamb waves in a transversely isotropic
piezothermoelastic plate, Journal of Sound and Vibration 270(4-5): 587–610.

Sharma, J. N. & Walia, V. (2007). Further investigations on rayleigh waves in
piezothermoelastic materials, Journal of Sound and Vibration 301(1-2): 189–206.

Shen, D., Choe, S.-Y. & Kim, D.-J. (2007). Analysis of piezoelectric materials for energy
harvesting devices under high-igi vibrations, Japanese Journal of Applied Physics
46(10A): 6755.

Sodano, H. A., Inman, D. J. & Park, G. (2005). Comparison of piezoelectric energy harvesting
devices for recharging batteries, Journal of Intelligent Material Systems and Structures
16(10): 799–807.

Umov, N. A. (1874). The equations of motion of the energy in bodies[in Russian], Odessa.
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