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Can a Lorentz Invariant Equation Describe
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1. Introduction

In the new technologies the development towards the small scales initiates and encourages the
reformulation of those well-known transport equations, like heat and electric conduction, that
were applied for bulk materials. The reason of it is that there are several physical evidences
for the changes of the behavior of the signal propagation as the sample size is decreasing
(Anderson & Tamma, 2006; Cahill et al., 2003; Chen, 2001; Liu & Asheghi, 2004; Schwab et al.,
2000; Vázquez et al., 2009). The constructed different mathematical models clearly belong to
the phenomena of the considered systems. However, presently, there is no a well-trodden way
how to establish the required formulations in general. A great challenge is to establish and
exploit the Lagrangian and Lorentz invariant formulation of the thermal energy propagation,
since, on the one hand, the connection with other field theories including the interactions of
fields can be done on this level, on the other hand, these provide the finite physical action
and signal propagation. The results of the presented theory ensures a deeper insight into the
phenomena, thus hopefully it will contribute to the technical progress in the near future.
It is an old and toughish question how to introduce the finite speed propagation of action in
such physical processes like the thermal energy propagation (Eckart, 1940; Joseph & Preziosi,
1989; Jou et al., 2010; Márkus & Gambár, 2005; Sandoval-Villalbazo & García-Colín, 2000;
Sieniutycz, 1994; Sieniutycz & Berry, 2002). There is no doubt that the solution must exist
somehow and the suitable description should be Lorentz invariant. Moreover, this Lorentz
invariant formulation needs to involve anyway the Fourier heat conduction as the classical
limit. The elaborated theory ensures that in the case of Lorentz invariant formulation both
the speed of the signal and the action propagation is finite. Furthermore, for the Fourier heat
conduction the temperature propagation is finite, however, the speed of action is infinite.
This chapter treats the consequent mathematical formulation of a suitable relativistic invariant
description of the above problem and its consequences, connections with other topics are also
treated. As the author hopes it will be noticeable step-by-step that this synthesis theory may
have a prominent role in the phenomena of nature. The construction of the Lorentz invariant
thermal energy propagation, the Klein-Gordon equation with negative "mass term" providing
the expected propagation modes, the limit to the classical heat conduction and the related
dynamic phase transition between the dissipative – non-dissipative dynamic phase transitions
are discussed in a coherent frame within Sec. 2. Two mechanical analogies are shown in
Sec. 3 for the two kinds of Klein-Gordon type equations to see the distinct behavior due to
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2 Will-be-set-by-IN-TECH

the opposite sign of the mass term. On the one hand, it will be convincing to see how the
negative "mass term" can govern the above mentioned change in the dynamics, and, on the
other hand, it clarifies the physical role of the similar term in the Lorentz invariant propagation
studied in Sec. 2. It is assumable that the efficiency of the relativistic invariant theory can be
demonstrated via other physical phenomena. The spectacular description of the inflationary
cosmology with the inflaton-thermal field coupling, the resulted time evolution of the inflaton
field and the dynamic temperature show this fact clearly in Sec. 4. Finally, to achieve a deeper
insight into the soul of this new theory and to be sure that the causality principle is completed,
for this reason the Wheeler propagator is calculated in Sec. 5 as well. The main ideas, results
of the chapter and some concluding remarks are summarized in Sec. 6. Finally, Sec. 7 is for
the acknowledgment.

2. Lorentz invariant thermal energy propagation

The mathematical description is based on the least action principle (Hamilton’s principle)

S =
∫

L d3xdt = extremum, (1)

i.e., there exists a Lagrange density function L by which the calculated action S is extremal
for the real physical processes. The Hamiltonian formulation can be also achieved for certain
differential equations involving non-selfadjoint operators like the first time derivative in the
classical Fourier heat conduction. Then such potential functions are required to introduce
by which the Lagrange functions can be expressed and the whole Hamiltionian theory can
be constructed (Gambár & Márkus, 1994; Gambár, 2005; Márkus, 2005). The long scientific
experience on this topic showed that the theories are comparable and connectable on this —
Lagrangian-Hamiltonian — level, thus in the further development of the theory it is useful
to apply this idea and scheme. In order to generate a dynamic temperature and the related
covariant Klein-Gordon type field equation, to describe the heat propagation with finite speed
— less than the speed of light — of action an abstract scalar potential field has been introduced
(Gambár & Márkus, 2007). In this case the thermal energy propagation has wave-like modes.
It is important to emphasize that, on the other hand, this scalar field can be connected to the
usual (local equilibrium) temperature and the Fourier’s heat conduction in the classical limit.
This treating is an attempt to point out that the dynamic phase transition (Ma, 1982) between
the two kinds of propagation, between a wave and a non-wave, or with another context it is
better to say — between a non-dissipative and a dissipative thermal process — has a more
general role and manifestation in the processes.
As a starting point the Lagrange functions are given for both the Lorentz invariant heat
propagation (Márkus & Gambár, 2005) and for the classical heat conduction (Fourier’s heat
conduction) (Gambár & Márkus, 1994). The first description is based on a Klein-Gordon
type equation formulated by a negative "mass term". It will be shown that this pertains
to a repulsive potential, which repulsive interaction produces a tachyon solution leading
to the so-called spinodal instability which effect is often applied in modern field theories
(Borsányi et al., 2000; 2002; 2003). Now, the Hamiltonian descriptions are written side by
side — to prepare the later comparison — showing how the Lorentz invariant solution
provides the classical solution in the limit of speed of light. The relevant Lagrangians, Lw

for the wave-like solution (Márkus & Gambár, 2005) and Lc for the classical heat conduction
(Gambár & Márkus, 1994) restricting our examination for the one dimensional case, are
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Lw =
1
2

(

∂2 ϕ

∂x2

)2

+
1

2c4

(

∂2 ϕ

∂t2

)2

− 1
c2

∂2 ϕ

∂x2
∂2 ϕ

∂t2 − 1
2

c4c4
v

16λ4 ϕ2, (2a)

Lc =
1
2

(

∂ϕ

∂t

)2
+

1
2

λ2

c2
v

(

∂2 ϕ

∂x2

)2

, (2b)

where ϕ is a four times differentiable and Lorentz invariant scalar field that generates the
measurable thermal field, and c denotes the speed of light, λ is the heat conductivity, cv is the
specific heat. Applying the calculus of variation the corresponding Euler-Lagrange equations
as equations of motion for the field ϕ can be obtained

0 =
1
c4

∂4 ϕ

∂t4 +
∂4 ϕ

∂x4 − 2
c2

∂4 ϕ

∂t2∂x2 − c4c4
v

16λ4 ϕ, (3a)

0 = − ∂2 ϕ

∂t2 +
λ2

c2
v

∂4 ϕ

∂x4 . (3b)

It is expected that the above scalar field is able to define the measurable physical quantities,
namely, in the present case, the temperature. Let the temperature T be a Lorentz invariant
temperature, which is defined from a dynamical point of view, thus it can be considered as
the dynamic temperature. Furthermore, temperature T denotes the usual local equilibrium
temperature

T =
1
c2

∂2 ϕ

∂t2 − ∂2 ϕ

∂x2 +
c2c2

v

4λ2 ϕ, (4a)

T = − ∂ϕ

∂t
− λ

cv

∂2 ϕ

∂x2 . (4b)

Eliminating the potentials in Equations (3a) and (3b) by the help of the corresponding
Equations (4a) and (4b), for the relevant case, a differential equation for the time evolution
of the temperature can be obtained

1
c2

∂2T

∂t2 − ∂2T

∂x2 − c2c2
v

4λ2 T = 0, (5a)

∂T
∂t

− λ

cv

∂2T
∂x2 = 0. (5b)

Here, Equation (5a) — the hyperbolic one — is a Klein-Gordon type equation with a negative
"mass term" −(c2c2

v/4λ2)T which means a kind of repulsive interaction. This term is
responsible for the tachyon solution leading to a spinodal instability as it will be also seen
in Sec. 3 in the case of classical Klein-Gordon equation of the mechanical analogy. On the
other hand, Equation (5b) — the parabolic one — pertains to the Fourier’s heat equation. The
signal propagation mechanism can be examined by the calculation of the dispersion relations
for both cases

ω(k) =

√

c2k2 − c4c2
v

4λ2 = ck

√

1 − c2

4D2k2 , (6a)

ω(k) = −i
λ

cv
k2 = −iDk2. (6b)

157Can a Lorentz Invariant Equation Describe Thermal Energy Propagation Problems?

www.intechopen.com



4 Will-be-set-by-IN-TECH

Here, the diffusivity parameter D = λ/cv is introduced to simplify the forms. The dispersion
relation in Equation (6a) pertains to the Klein-Gordon wave equation in Equation (5a) from
which we obtain the phase velocity w f

w f (k) =
ω

k
= c

√

1 − c2

4D2k2 . (7)

The dispersion relation in Equation (6b) belongs to the classical (non-wave) Fourier’s heat
conduction. The models can be compared by the calculation of the group velocities since these
pertain to the signal propagations. Thus, from Equation (6a) the group velocity vg = dω/dk
of the wave-like propagation can be directly calculated. Then, tending to the infinity with the
speed of light, the group velocity vT of the classical heat conduction can be obtained, as it is
expected

vg =
dω

dk
=

c
√

1 − c2

4D2 k2

−→ dω

dk

∣

∣

∣

∣

c→∞

= −i2Dk; vT = 2Dk ≪ c. (8)

This limit shows clearly that the Lorentz invariant description covers both cases, and the
wave-like and the non-wave heat propagation can be discussed in the same frame.
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f
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non−dissipative
NON−WAVE
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↓ speed of light c

← Im w
f

↑ w
f

Fig. 1. Phase transition between the non-wave (dissipative) [left] and the wave
(non-dissipative) solution [right]. The critical transition point is at x0 = Dk0 = c/2. The
value of diffusity is taken D = 1. The phase velocity w f of the wave-like propagation is
always smaller than the speed of light.

It can be recognized that there is a value of the wave number k when the discriminant changes
its sign in Equation (7) at the value k0 = c/2D. Now, the solutions can be split into two
parts. On the one hand, we can consider the case k > k0, when the solution is real and
wave-like (non-dissipative), and on the other hand, we take the case k < k0, when the solution
is imaginary and non-wave (dissipative). The real and the imaginary part of the phase velocity
w f can be written for both cases

w f =
ω

k
= c

√

1 − c2

4D2k2 < c k > k0, (9a)
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Im w f =
ω

k
= c

√

c2

4D2k2 − 1 k < k0. (9b)

The above physical discussion can be easily followed in Fig. 1.
In order to couple the thermal field given in Equation (2a) with other fields (like the inflaton
field in the cosmology shown in Sec. 4) it is worthy to reformulate it for this later use. It has
been shown in the literature (Márkus & Gambár, 2005) that the quantization of the thermal
field generates quasi particles and these particles may have a mass

M0 =
h̄

2D
, (10)

where h̄ is the Planck constant. Moreover, the Planck units are applied for the present case
(c = 1; h̄ = 1). Then the 3D Lagrangian given by Eq. (2a) should be rewritten

Lw =
1
2
(∆ϕ)2 +

1
2

(

∂2 ϕ

∂t2

)2

− ∂2 ϕ

∂t2 ∆ϕ − 1
2

M4
0 ϕ2, (11)

where ∆ is the Laplace operator.

3. Mechanical analogies for the two kinds of Klein-Gordon equations

It is instructive to study the set-up of the classical model of the Klein-Gordon equation
(Morse & Feshbach, 1953) to make comparisons and conclusions on the physical meaning
of the relevant terms that may appear similarly in a more general and abstract theory. The
mechanical model is a stretched string with little vertically oriented springs along the string
which pull back the spring to the equilibrium position as it is shown in Fig. 2(a). The equation
of motion of the string can be formulated applying the Lagrangian formalism. To achieve this,
the kinetic and potential energy terms are needed to calculate. The string has a kinetic energy
from its movement

T =
1
2

̺A
∫

(

∂Ψ

∂t

)2
dx, (12)

where Ψ is the displacement from the equilibrium position, ̺ is the density, A is the cross
section of the string. The mass element is dm = ̺Adx. The either of the potential energy
terms comes from the small deformation (elongation) of the stretching which is

V = F
∫

⎡

⎣

√

1 +
(

∂Ψ

∂x

)2
− 1

⎤

⎦ dx ∼ 1
2

F
∫

(

∂Ψ

∂x

)2
dx, (13)

F is the stretching force. The other attractive potential energy term pertains to the little springs
which is

Vs =
1
2

ka

∫

Ψ
2dx. (14)

Here, ka is the spring direction coefficient density along the string as is shown in Fig 2(a). The
Lagrangian of the system can be formulated with the usual construction L = T − V − Vs, by
which the Euler-Lagrange equation as equation of motion — a Klein-Gordon equation with
positive "mass term" —
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∂2
Ψ

∂t2 − F

̺A

∂2
Ψ

∂x2 +
ka

̺A
Ψ = 0. (15)

can be deduced. Now, if a "repulsive" potential is imagined at the places of the springs shown
in Fig. 2(b) then a Klein-Gordon type equation with negative "mass term" (Gambár & Márkus,
2008) is obtained

∂2
Ψ

∂t2 − F

̺A

∂2
Ψ

∂x2 − ka

̺A
Ψ = 0. (16)

(a) A stretched string (green line) with
an additional attractive interaction by
the springs ka

(b) A stretched string (green line) with
an additional "repulsive" interaction by
the springs ka

(c) A stretched string (green line) on a
rotating disc; ω0 is the angular velocity

Fig. 2. The three physical situations of the stretched string; the acting force is F for each cases.
The equations of motion due to the attractive or "repulsive" interactions pertain to the
different figures: Equation (15) for Fig. (a); Equation (16) for Fig. (b); Equation (18) for Fig.
(c).

The structure of this equation is exactly the same as in the case of Lorentz invariant thermal
energy propagation in Equation (5a). Since, it is clear from this mechanical example that the
negative sign of the third term in Equation (16) pertains to a repulsive interaction, thus, this is
the reson why the negative "mass term" may relate to a repulsive interaction in the relativistic

160 Heat Conduction – Basic Research

www.intechopen.com



Can a Lorentz Invariant Equation Describe Thermal Energy Propagation Problems? 7

case in Equation (5a), in general. Maybe, it is complicated to prepare a device to ensure the
repulsive interaction from little springs. However, if the stretched string is placed on the
diameter of a rotating disk — shown in Fig. 2(c) that moves with the angular velocity ω0, then
the centrifugal force can produce the similar repulsive interaction.
The centrifugal potential of a point-like mass m moving on a circle with a radius r

− 1
2

mr2ω2
0

can be generalized to the present case. This gives the potential Vrot pertaining to the rotational
motion of the string

Vrot = − 1
2

̺Aω2
0

∫

Ψ
2dx. (17)

The relevant Lagrangian is L = T − V − Vrot, by which the calculated equation of motion can
be obtained

∂2
Ψ

∂t2 − F

̺A

∂2
Ψ

∂x2 − ω2
0Ψ = 0. (18)

The same mathematical structure can be immediately recognized comparing this equation
with the Equations (5a) and (16). This means that these three equations must involve the
similar physical behavior: the spinodal instability and the dynamic phase transition (Gambár,
2010). All together these examples clearly prove the physical reality of the Klein-Gordon
equation with negative "mass term" in nature.
Finally, for the completeness the dispersion relation for Equation (18) can be also calculated

Ω(k, ω0) =

√

F

̺A
k2 − ω2

0. (19)

This formula shows again the same physical behavior clearly as it has been found in Equation
(6a). The phase velocity is

wph =
Ω

k
=

√

F

̺A
−

(ω0

k

)2
. (20)

It is easy to recognize that for small angular velocity ω0 while
√

F

̺A
>

ω0

k
(21)

is completed, then wave modes exist. The opposite case is when
√

F

̺A
<

ω0

k
, (22)

there are no wave modes. The physical meaning is that, above a certain value of ω0, the
centrifugal force elongates the string to infinity, the string cannot have vibrating modes. The
change in the propagation modes is an angular velocity controlled dynamic phase transition
that divides the dissipative – non-dissipative transition like in Equations (7), (9a) and (9b) for
the thermal case.
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4. Inflationary cosmology with the dynamic temperature

It is a great challenge to experience and understand how the Lorentz invariant propagating
thermal energy field ϕ can interact with other physical fields. In this way new physical
relations, considerations and explanations may be expected for the relevant phenomena.
As an advanced example, to point out the strength of the formulation, the thermal and
cosmological inflaton fields are coupled within the Lagrangian framework (Márkus et al.,
2009).

4.1 Linde’s model of the inflaton field

In the present model the cosmological model is based on the Einstein’s equation in the
Friedman-Robertson-Walker metric. Now, the action S can be expressed as

S =
∫

√

−g̃LFRW d4x, (23)

where the expression
√−g̃ = a3 is the Friedman-Robertson-Walker metric. Here, the a(t) =

R(t)/R0 is taken as the ’radius’ of the universe. The Lagrange density function LFRW of the
inflaton field φ

LFRW =

(

1
2

(

∂φ

∂t

)2
− 1

2a2 (∇φ)2 − V(φ)

)

(24)

is the starting point in the description; ∇ is the gradient operator. Then, the equation of motion
for the inflaton can be calculated

∂2φ

∂t2 − 1
a2 ∆φ + 3H

∂φ

∂t
= − δV(φ)

δφ
, (25)

where δV(φ)/δφ means a functional derivative. The Hubble parameter H(t) is defined by

H =
ȧ

a
. (26)

The fate of the universe depends on the potential V(φ). The hybrid inflation model suggested
by Linde (Felder et al., 1999; 2001; Linde, 1982; 1994) introduces an additional scalar field σ (in
fact the Higgs field) into the effective potential

V(σ, φ) = − 1
2a2 (∇φ)2 +

1
2

m2φ2 +
1
2

g2φ2σ2 +
1

4λ
(M2 − λσ2)2. (27)

Here, the first term on the right hand side pertains to the second term — the space derivate
term — on the left hand side in Equation (25). The second term generates the inflation
process, the third one couples the inflaton field to the introduced additional field σ and the last
one produces mass generation through the spontaneous symmetry breaking. The canonical
momentum of the inflaton field can be calculated

Πφ =
∂LFRW

∂φ̇
= φ̇. (28)

Then the Hamiltonian H̃ of the field which is the energy density can be obtained
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H̃ = Πφφ̇ − LFRW =

(

1
2

(

∂φ

∂t

)2
+

1
2a2 (∇φ)2 + V(φ)

)

. (29)

It is often used different notations for H̃

H̃ = ̺φ = T00, (30)

where T00 is called as the time-time component of the energy-momentum tensor. Furthermore,
the Einstein’s equation can be expressed in the FRW metric as

(

ȧ

a

)2
=

8πG

3
̺, (31)

where G is the gravitational constant and ̺ is the mass density. Substituting the energy density
̺φ and the Planck mass

Mpl =

√

h̄c

8πG
(32)

into Equation (31) and applying Planck units, the Friedman’s equation can be written in the
following form

H2 =
1

3M2
pl

̺φ, (33)

which corresponds to a flat universe. If it is assumed that the universe is growing
homogeneously in the space we can neglect those terms where the spatial derivates (∇ and ∆)
appear in Equation (25), then an ordinary differential equation can be obtained

d2φ0

dt2 + 3H
dφ0

dt
= − δV(φ0)

δφ0
, (34)

the ’field variable’ φ0 depends on the time parameter only. In this case the energy density ̺φ

has a simplified form

̺φ =

(

1
2

(

dφ0

dt

)2
+ V(φ)

)

, (35)

by which the equation H2 = (1/3M2
pl)̺φ naturally also remains valid, i.e.,

H2 =
1

3M2
pl

(

1
2

(

dφ0

dt

)2
+ V(φ)

)

. (36)

Soon it will be seen that the above equations, (35) and (36), with the modifying effect of
the thermal field ϕ0 will become those equations which are going to be considered as the
time-evolution equations of the inflaton field.

4.2 The coupling of the fields

The introduction of the dynamic temperature and the laws of thermodynamics into the theory
of cosmology requires the same mathematical frame of the description. Now, the tool is ready
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to make this willing. The interaction of the thermal potential field ϕ [see Equation (11)] and
the inflaton field φ [see Equation (24)] can be constructed by adding the Lagrangians of the
different fields

Lint =

(

1
2a4 (∆ϕ)2 +

1
2

(

∂2 ϕ

∂t2

)2

− 1
a2

∂2 ϕ

∂t2 ∆ϕ − 1
2

M4
0 ϕ2

)

+

(

1
2

(

∂φ

∂t

)2
− 1

2a2 (∇φ)2 − V(φ, ϕ)

)

. (37)

This Lagrangian Lint of the coupled inflaton-thermal field by the following interaction
potential can also realize the spontaneous symmetry breaking

V(φ, ϕ) =
1
2

m2φ2 +
1
2

g2
0φ2 ϕ2, (38)

where m denotes the mass of the inflaton, and g0 is the coupling constant, moreover, this
description can involve the temperature of the inflaton field (Márkus et al., 2009). This fact
is very interesting, since at this stage, there is no need for the Higgs field and the mass
generation.
After all, applying the calculus of variation, two Euler-Lagrange equations as equations of
motion are arisen from the variation with respect to the variables φ and ϕ

∂2φ

∂t2 − 1
a2 ∆φ + 3

ȧ

a

∂φ

∂t
= − δV(φ, ϕ)

δφ
, (39)

and

1
a4 ∆∆ϕ +

∂4 ϕ

∂t4 + 6
ȧ

a

∂3 ϕ

∂t3 +
1
a3

∂2(a3)

∂t2
∂2 ϕ

∂t2 − 2
a2 ∆

∂2 ϕ

∂t2 − ä

a3 ∆ϕ − 2
ȧ

a3 ∆
∂ϕ

∂t
− M4

0 ϕ

=
δV(φ, ϕ)

δϕ
. (40)

An important remark is needed here. Since, for the cases when the Lagrangian
contains second order time derivatives the Hamiltonian H̃ must be expressed as follows
(Gambár & Márkus, 1994; Márkus & Gambár, 1991),

H̃ =
∂ϕ

∂t

∂L

∂ϕ̇
− ∂ϕ

∂t

∂

∂t

∂L

∂ϕ̈
+

∂2 ϕ

∂t2
∂L

∂ϕ̈
− L. (41)

By substituting the Lagrangian Lint from Equation (37), the Hamiltonian — energy density
regarding the whole space with all interactions — can be calculated

̺φ,ϕ = H̃ = − ∂ϕ

∂t

∂3 ϕ

∂t3 +
∂ϕ

∂t

∂

∂t

(

1
a2

)

∆ϕ +
1
a2

∂ϕ

∂t

∂

∂t
∆ϕ +

1
2

(

∂2 ϕ

∂t2

)2

− 1
2a4 (∆ϕ)2 +

1
2

M4
0 ϕ2 +

1
2

(

∂φ

∂t

)2
+

1
2a2 (∇φ)2 + V(φ, ϕ). (42)

In the case of a rapidly growing universe in a homogeneous space, the terms containing the
operators ∇ and ∆ can be omitted, thus the obtained field equations are simplified to the
following coupled nonlinear ordinary differential equations:
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d2φ0

dt2 + 3H
dφ0

dt
= −

(

m2 + g2
0 ϕ2

0

)

φ0, (43)

d4 ϕ0

dt4 + 6H
d3 ϕ0

dt3 = M4
0 ϕ0 + g2

0φ2
0 ϕ0 (44)

and

H2 =
1

3M2
pl

[

1
2

(

d2 ϕ0

dt2

)2

− dϕ0

dt

d3 ϕ0

dt3 +
1
2

(

dφ0

dt

)2
+

1
2

M4
0 ϕ2

0 +
1
2

m2φ2
0 +

1
2

g2
0φ2

0 ϕ2
0

]

. (45)

Here, the field φ0 and ϕ0 depend on time only. The three coupled nonlinear ordinary
differential equations, Equations (43), (44) and (45), can be considered as the equations of
motion of the inflationary model. It is easy to recognize that Equation (45) can be considered
as the modified version of Friedman’s equation given in Equation (33). The temperature
generated by the thermal field ϕ0 can then be expressed as [see Equation (4a) and taking
into account Equation (10) with Planck units]

T =
d2 ϕ0

dt2 + M2
0 ϕ0. (46)

4.3 On the time evolution of the fields

The mathematical and numerical examinations show that the solution of these coupled
differential equations describes fairly well the time evolution of the inflationary universe
including its thermodynamical behavior. Due to the complicated nonlinear Equations (43-45)
the solutions can be achieved by numerical calculations for the time-dependence of the scalar
fields and the dynamic temperature T. These equations are needed to solve simultaneously
for the scalar field φ0 and the thermal potential ϕ0 first. After then the time evolution equation
for the (thermo)dynamic temperature can be obtained.
In the present model there are two adjustable parameters, namely, the mass M0 of the thermal
field and the coupling constant g0. The time scales of the temperature and the scalar inflaton
field can be synchronized by the change of values for these two parameters. The mass of
the scalar field m is chosen in the same order of magnitude as it is proposed by Linde Linde
(1994), namely, m = 80GeV. The two fitted parameters are M0 = 52.2GeV and g0 = 0.12GeV.
It is important to set relevant initial conditions to find reasonable numerical solutions for
Equations (43) – (45). Thus, a big acceleration is assumed at the beginning of the expansion
and the thermal field has a given initial value. This results an initial value for the temperature
T0 ∼ 2.5 × 106GeV ∼ 1019K. (Presently, the exact magnitude of the temperature has not too
much importance, since another value can be obtained by rescaling, i.e., it does not touch the
shape of the temperature function. However, it is sure, that this value is rather far from the
theoretically possible ∼ 1.4 × 1032K value (Lima & Trodden, 1996; Márkus & Gambár, 2004).)
In order to ensure the thermal and the inflaton field decay the first time derivatives of them
are needed to be negative.
After finding a set of the numerical solutions, two main stages can be distinguished for the
time evolution of the inflaton field φ0. The first short period is when it decreases rapidly.
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This follows the second rather long time interval in which the inflaton field oscillates with
decreasing amplitude. Both of these processes can be recognized well in Fig. 3.

0.02 0.04 0.06 0.08 0.10
t

50

100

150

Φ0�t�

Fig. 3. The time evolution of the inflaton field φ0(t) is shown. The short decreasing
(deacying) period is followed by a rather long damped oscillating process. Time is in
arbitrary units.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
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400

600

800

�0�t�

Fig. 4. The time evolution of the thermal field ϕ0(t). The field decays in the first period and
reaches its minimal value. It begins to increase monotonically when the inflaton field φ0(t)
starts to oscillate. Time is in arbitrary units.

It is noticable that the above described behavior of the inflaton field is in line with Linde’s
cosmology model (Felder et al., 2002; Linde, 1982; 1990; 1994) based on a potential energy
expression given by V(φ0) = (m2/2)φ2

0 + V0 with V0 > 0 which is similar to Equation
(38), here. The physically coupled thermal field ϕ0 produces a completely different behavior.
During inflation era, the field ϕ0 decreases. Probably, the reason of this effect is strongly the
radius and the volume increase of the universe. Once it reaches a minimum which happens
about the same time when field φ0 starts to oscillate. After then, the thermal field increases
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monotonically since the decaying inflaton field φ0 with a time delay pumps up it as plotted in
Fig. 4.
The temperature field T is coupled to the thermal field ϕ0 by Equation (46), thus
mathematically this can be obtained directly. The time evolution of the temperature can be
followed in Fig. 5. In the first era of the inflation process the temperature decreases. After
reaching its minimal value, which is at the same instantaneous of the minimum of the thermal
field, it increases quite rapidly. This period of the cosmology is known as the reheating process
of the universe. The present elaboration of the model can describe and reproduce to this stage
of the life of the early universe.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
t

500 000

1.0�10
6

1.5�10
6

2.0�10
6

2.5�10
6

T�t�

Fig. 5. The time evolution of the temperature field T(t). The temperature follows the change
of the thermal field ϕ0. It decreases in the first period of the expansion while its reaches a
minimal value. The, due to the pumping of the inflaton field φ0 into the thermal field ϕ0, the
temperature starts increasing. This growing temperature period can be identified as the
reheating process in Linde’s cosmology model. Time is in arbitrary units.

0.01 0.02 0.03 0.04 0.05
t

2�10
12

4�10
12

6�10
12

8�10
12

1�10
13

ΡΦ0 ,�0
�t�

Fig. 6. The time evolution of the energy density ρφ0 ϕ0(t). As it is expected the energy density
decreases monotonically during the expansion. Time is in arbitrary units.

Since the whole energy of the universe is conserved during the expansion, the energy density
is needed to decrease. This tendency can be seen in Fig. 6. Finally, the radius a(t) of the
universe is plotted in Fig. 7.
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0.01 0.02 0.03 0.04 0.05
t
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0.08
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Fig. 7. The time evolution of the radius a(t) of the universe. As it is expected the radius
increases monotonically during the expansion. Time is in arbitrary units.

The presented model of the inflationary period is not complete in that sense that e.g., the
Higgs mechanism is dropped by the elimination of the fourth term of the effective potential in
Equation (27) comparing with the applied potential in Equation (38). However, hopefully, the
strength of the theory can be read out from the most spectacular results: the thermal field can
generate not only the spontaneous symmetry breaking involving the correct time evolution
of the inflaton field, but it ensures a really dynamic Lorentz invariant thermodynamic
temperature. The further development of this cosmological model would be to add the
particle generator Higgs mechanism again.

5. Wheeler propagator of the Lorentz invariant thermal energy propagation

As it has been shown previously that the Lorentz invariant description involves different
physically realistic propagation modes. However, the development of the theory is needed
to learn more about propagation, the transition amplitude and the completeness of causality,
i.e., the field equation in Equation (5a) does not violate the causality principle.

5.1 The Green function

A common way to examine these questions is based on the Green function method.
Mathematically, the solution of the equation

1
c2

∂2G

∂t2 − ∂2G

∂x2 − c2c2
v

4λ2 G = −δn(x − x′) (47)

for the Green function G is needed to find. The n-dimensional source function is δn(x − x′) =
δn−1(r − r′)δ(t − t′) which can be expressed by the delta function

δn(x − x′) =
1

(2π)n

∫

dnkeik(x−x′). (48)

Here, the vector k = (k, ω0) is n-dimensional; the n − 1 dimensional k pertains to the space
and the 1-dimensional ω0 is to time. Moreover, the d’Alembert operator is
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� =
1
c2

∂2

∂t2 − ∆. (49)

To shorten the formulations the following abbreviation is also introduced

m2 =
c2c2

v

4λ2 . (50)

Now, Equation (47) has a simpler form

(�− m2)G = δn(x − x′). (51)

Since, the equality holds

(�− m2)−1eik(x−x′) = − eik(x−x′)

k2 − m2 , (52)

then we obtain

(�− m2)−1δn(x − x′) = − 1
(2π)n

∫

dnk
eik(x−x′)

k2 − m2 . (53)

After all, the Green function can be formally expressed as

G(x, x′) =
1

(2π)n

∫

dnk
eik(x−x′)

k2 − m2 . (54)

To calculate this integral the zerus points of the denominator k2 − m2 = p2 − p2
0 − m2 = 0 are

needed, from which

p0 = ±
√

p2 − m2. (55)

can be obtained. After then, the propagator should be expressed in proper way taking
Equation (54)

G(p) =
1

p2 − p2
0 − m2

. (56)

In the sense of the theory the retarded Gret(p) = 1/(p2 − p2
0 − m2)ret and the advanced

Gadv(p) = 1/(p2 − p2
0 − m2)adv propagators are needed to be expressed for the tachyons due

to the presence of the imaginary poles. Now, the construction of the Wheeler propagator
(Wheeler, 1945; 1949) can be expounded as a half sum of the above propagators

G(p) =
1
2

Gadv(p) +
1
2

Gret(p). (57)

5.2 The Bochner’s theorem

The calculation of propagators is based on the Bochner’s theorem (Bochner, 1959;
Bollini & Giambiagi, 1996; Bollini & Rocca, 1998; 2004; Jerri, 1998). It states that if the function
f (x1, x2, ..., xn) depends on the variable set (x1, x2, ..., xn) then its Fourier transformed is —
without the factor 1/(2π)n/2 —
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g(y1, y2, ..., yn) =
∫

dnx f (x1, x2, ..., xn)e
ixiyi (i = 1, ..., n). (58)

However, it is useful to introduce the variables x = (x2
1 + x2

2 + ... + x2
n)

1/2 and y = (y2
1 +

y2
2 + ... + y2

n)
1/2 instead of the original sets. Now, the examinations are restricted to the

spherically symmetric functions f (x) and g(y). In these cases the above Fourier transform
given by Equation (58) can be calculated by applying the Hankel (Bessel) transformation by
which we obtain

g(y, n) =
(2π)n/2

yn/2−1

∫

∞

0
f (x)xn/2 Jn/2−1(xy)dx. (59)

Here, Jα is a first kind α order Bessel function. Later it will be very useful to calculate the
function f with causal functions depending on the momentum space p thus we write

f (x, n) =
(2π)n/2

xn/2−1

∫

∞

0
g(p)pn/2 Jn/2−1(xp)dp. (60)

It can be seen that the singularity at the origin depends on n analytically.

5.3 Calculation of the Wheeler propagator

To obtain the Wheeler propagator, first, e.g., the integral in Equation (54) for the advanced
propagator can be calculated

Gadv(x) =
1

(2π)n

∫

dn−1 peipr
∫

adv
dp0

e−ip0x0

p2 − p2
0 − m2

. (61)

The path of integration runs parallel to the real axis and below both the poles for the advanced
propagator. (For the retarded propagator the path runs above the poles.) Thus, considering
the propagator Gadv(p) for x0 > 0 the path is closed on the lower half plane giving null result.
In the opposite case, when x0 < 0, there is a non-zero finite contribution of the residues at the
poles

p0 = ±ω =
√

p2 − m2 i f p2 ≥ m2 (62)

and

p0 = ±iω′ =
√

p2 − m2 i f p2 ≤ m2. (63)

After applying the Cauchy’s residue theorem for the integration with respect to p0 we obtain
an n − 1 order integral

Gadv(x) = − H(−x0)

(2π)n−1

∫

dn−1 peipr sin[(p2 − m2 + i0)
1
2 x0]

(p2 − m2 + i0)
1
2

, (64)

where H is the Heaviside’s function. The retarded propagator can be similarly obtained

Gret(x) =
H(x0)

(2π)n−1

∫

dn−1peipr sin[(p2 − m2 + i0)
1
2 x0]

(p2 − m2 + i0)
1
2

. (65)
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Considering the form of the propagator in Equation (57) and taking the propagators in
Equations (64) and (65) we obtain the Wheeler-propagator

G(x) =
Sgn(x0)

2(2π)n−1

∫

dn−1peipr sin[(p2 − m2 + i0)
1
2 x0]

(p2 − m2 + i0)
1
2

. (66)

To evaluate the above propagators the integrals can be rewritten by the Hankel transformation
based on Bochner’s theorem [Equation (59)]

1
(2π)n−1

∫

dn−1 peipr sin[(p2 − m2 + i0)
1
2 x0]

(p2 − m2 + i0)
1
2

=

1

(2π)
n−1

2

1

x
n−1

2 −1

∫

∞

0
p

n−1
2

sin(p2 − m2)
1
2 x0

(p2 − m2)
1
2

J n−1
2 −1(xp) dp, (67)

where p =
√

p2
1 + p2

2 + ... + p2
n−1 and r =

√

x2
1 + x2

2 + ...+ x2
n−1. The following integrals

(Gradshteyn & Ryzhik, 1994) are applied for the above calculations such as

∫

∞

0
dy yγ+1

sin
(

a
√

b2 + y2
)

√

b2 + y2
Jγ(cy) =

√

π

2
b

1
2 +γcγ(a2 − c2)−

1
4 − 1

2 γ J−γ− 1
2
(b
√

a2 − c2), (68)

if 0 < c < a, Re b > 0, −1 < Re γ < 1/2, and

∫

∞

0
dy yγ+1

sin
(

a
√

b2 + y2
)

√

b2 + y2
Jγ(cy) = 0, (69)

if 0 < a < c, Re b > 0, −1 < Re γ <
1
2 . The parameters of the model can be fitted by

a = x0, b = im = i
ccv

2λ
, c = r, γ =

n

2
− 3

2
. (70)

and we consider the relation between the Bessel functions

Jα(ix) = iα Iα(x), (71)

where Iα(x) is the modified Bessel function. Now, we can express the advanced Wheeler
propagator Equation (64) of the tachyonic thermal energy propagation

Wadv(x) = H(−x0)
π

(2π)n/2

( ccv

2λ

)
n
2 −1

(x2
0 − r2)

1
2 (1− n

2 )
+ I1− n

2

(

ccv

2λ
(x2

0 − r2)
1
2
+

)

. (72)

The calculation for the retarded propagator can be similarly elaborated by Equations (65) and
(67)

Wret(x) = H(x0)
π

(2π)n/2

( ccv

2λ

)
n
2 −1

(x2
0 − r2)

1
2 (1− n

2 )
+ I1− n

2

(

ccv

2λ
(x2

0 − r2)
1
2
+

)

. (73)

Comparing the results of Equations (72) and (73) it can be seen that we can write one common
formula easily to express the complete propagator. Thus the Wheeler-propagator in the n
dimensional space-time — remembering the construction in Equation (57) — is
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W(n)(x) =
π

2(2π)n/2

( ccv

2λ

)
n
2 −1

(x2
0 − r2)

1
2 (1− n

2 )
+ I1− n

2

(

ccv

2λ
(x2

0 − r2)
1
2
+

)

. (74)

The calculated Wheeler propagator in the 3 + 1 dimensional space-time can be expressed for
the thermal energy propagation

W(4)(r, x0) =
1

8π

( ccv

2λ

)

(x2
0 − r2)−

1
2 I−1

( ccv

2λ
(x2

0 − r2)
1
2

)

. (75)

The expected causality can be immediately recognized from the plot of the propagator in Fig.
8, since it differs to zero just within the light cone.
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Fig. 8. The causal Wheeler propagator in the space-time — in arbitrary units — which is zero
out of the light cone.

Finally, it is important to mention and emphasize that the participating particles of the above
treated thermal energy propagation cannot be observable directly as Bollini’s and Rocca’s
detailed studies (Bollini & Rocca, 1997a;b; Bollini et al., 1999) show. This is a consequence
of the fact that the tachyons do not move as free particles, thus they can be considered as
the mediators of the dynamic phase transition (Gambár & Márkus, 2007; Márkus & Gambár,
2010).

6. Summary and concluding remarks

This chapter of the book is dealing with the hundred years old open question of how it
could be formulated and exploited the Lorentz invariant description of the thermal energy
propagation. The relevant field equation as the leading equation of the theory providing the
finite speed of action is a Klein-Gordon type equation with negative "mass term". It has been
shown via the dispersion relations that the classical Fourier heat conduction equation is also
involved, naturally. The tachyon solution of this kind of Klein-Gordon equation ensures that
both wave-like (non-dissipative, oscillating) and the non-wave-like (dissipative, diffusive)
signal propagations are present. The two propagation modes are divided by a spinodal
instability pertaining to a dynamic phase transition. It is important to emphasize that in this
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way, finally, the concept of the dynamic temperature has been introduced.
Then, a mechanical system is discussed to point out clearly that Klein-Gordon equations with
the same mathematical structure and similar physical meaning can be found in the other
disciplines of physics, too. The model involves a stretched string put on the diameter of a
rotating disc. Collecting the kinetic and potential energy terms and formulating the Lagrange
function of the problem, it has been shown that the equation of motion as Euler-Lagrange
equation is exactly the above mentioned Klein-Gordon equation. The calculated dispersion
relation points out unambiguously that the dynamics is similar to the case of Lorentz invariant
heat conduction. The motion is vibrating (oscillating) below a system parameter dependent
angular velocity, or diffusive (decaying) above this value.
The great challenge is to embed the concept of dynamic temperature into the general
framework of physics. One of the aims via this step is to introduce the second law of
thermodynamics by which the most basic law of nature may appear in the physical theories.
Thus, such categories like dissipation, irreversibility, direction of processes can be handled
directly within a description. This was the motivation to elaborate the coupling of the inflaton
and the thermal field. As it can be concluded from the results, the introduced thermal field can
generate the spontaneous symmetry breaking in the theory — without the Higgs mechanism
— due to its property including the spinodal instability and the dynamic phase transition.
The inflation decays into the thermal field by which the reheating process can start during
the expansion of the universe. The time evolution of the inflation field is reproduced so well
as it is known from the relevant cosmological models. It is important to emphasize that the
thermal field generates a really dynamic temperature. A further progress could be achieved
by the adding again the Higgs mechanism to generate massive particles in the space. This
elaboration of the model remains for a future work.
Finally, it is an important step to justify that the above theory of thermal propagation
completes the requirement of the causality. This question comes up due to the tachyon
solutions. The arisen doubts can be eliminated in the knowledge of the propagator of the
process. The relevant causal Wheeler propagator can be deduced by a longer, direct, analytic
mathematical calculation applying the Bochner’s theorem. The results clearly shows that
the causality is completed since the propagator is within the light cone, i.e., the theory is
consistent.
The presented theory of this chapter is put into the general framework of the physics
coherently. These results mean a good base how to couple the thermodynamic field with the
other fields of physics. Hopefully, it opens new perspectives towards in the understanding of
irreversibility and dissipation in the field theoretical processes.

7. Acknowledgment

This work is connected to the scientific program of the " Development of quality-oriented and
harmonized R+D+I strategy and functional model at BME" project. This project is supported
by the New Hungary Development Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002).

8. References

Anderson C. D. R. & Tamma, K. K. (2006). Novel heat conduction model for bridging different
space and time scales. Physical Review Letters, Vol. 96, No. 18, (May 2006) p. 184301,
ISSN 0031-9007

173Can a Lorentz Invariant Equation Describe Thermal Energy Propagation Problems?

www.intechopen.com



20 Will-be-set-by-IN-TECH

Bochner, S. (1959). Lectures on Fourier Integrals, Princeton Univ., ISBN 0691079943, New Jersey,
USA.

Bollini, C. G. & Giambiagi, J. J. (1996). Dimensional regularization in configuration space.
Physical Review D, Vol. 53, No. 10, (May 1996) pp. 5761-5764, ISSN 0556-2821

Bollini, C. G. & Rocca, M. C. (1997). Vacuum state of the quantum string without anomalies in
any number of dimensions. Nuovo Cimento A, Vol. 110, No. 4, (April 1997) pp. 353-361,
ISSN 0369-3546

Bollini, C. G. & Rocca, M. C. (1997). Is the Higgs a visible particle? Nuovo Cimento A, Vol. 110,
No. 4, (April 1997) pp. 363-367, ISSN 0369-3546

Bollini, C. G. & Rocca, M. C. (1998). Wheeler propagator. International Journal of Theoretical
Physics, Vol. 37, No. 11, (November 1998) pp. 2877-2893, ISSN 0020-7748

Bollini, C. G., Oxman L. E. & M. C. Rocca, M. C. (1999). Coupling of tachyons to
electromagnetism International Journal of Theoretical Physics, Vol. 38, No. 2, (February
1999) pp. 777-791, ISSN 0020-7748

Bollini, C. G. & Rocca, M. C. (2004). Convolution of Lorentz invariant ultradistributions and
field theory. International Journal of Theoretical Physics, Vol. 43, No. 4, (April 2004) pp.
1019-1051, ISSN 0020-7748

Borsányi, Sz., Patkós, A., Polónyi, J. & Szép, Zs. (2000). Fate of the classical false vacuum.
Physical Review D, Vol. 62, No. 8, (October 2000) p. 085013, ISSN 0556-2821

Borsányi, Sz., Patkós, A & Sexty, D. (2002). Goldstone excitations from spinodal instability.
Physical Review D, Vol. 66, No. 2, (July 2002) p. 025014, ISSN 0556-2821

Borsányi, Sz., Patkós, A & Sexty, D. (2003). Nonequilibrium Goldstone phenomenon in
tachyonic preheating. Physical Review D, Vol. 68, No. 6, (September 2003) p. 063512,
ISSN 0556-2821

Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Mahumdar, A., Maris, H. J., Merlin,
R. & Phillpot, S. R. (2003). Nanoscale thermal transport. Journal of Applied Physics, Vol.
93, No. 2, (January 2003) pp. 793-818, ISSN 0021-8979

Chen, G. (2001). Ballistic-diffusive heat-conduction equations. Physical Review Letters, Vol. 86,
No. 11, (March 2001) pp. 2297-2300, ISSN 0031-9007

Eckart, C. (1940). The thermodynamics of irreversible processes. III. Relativistic theory of the
simple fluid. Physical Review, Vol. 58, No. 10, (November 1940) pp. 919-924

Felder, G., Kofman, L. & Linde, A. D. (1999). Inflation and preheating in nonoscillatory
models. Physical Review D, Vol. 60, No. 10, (November 1999) p. 103505, ISSN
0556-2821

Felder, G., Kofman, L. & Linde, A. D. (2001). Tachyonic instability and dynamics of
spontaneous symmetry breaking Physical Review D, Vol. 64, No. 12, (December 2001)
p. 103505, ISSN 0556-2821

Felder, G., Frolov, A., L. Kofman, L. & Linde, A. (2002). Cosmology with negative potentials.
Physical Review D, Vol. 66, No. 2, (July 2002) p. 023507, ISSN 0556-2821

Gambár, K. & Márkus, F. (1994). Hamilton-Lagrange formalism of nonequilibrium
thermodynamics. Physical Review E, Vol. 50, No. 2, (August 1994) pp. 1227-1231, ISSN
1063-651X

Gambár, K. (2005). Least action principle for dissipative processes, pp. 245-266, in Variational and
Extremum Principles in Macroscopic Systems (Eds. Sieniutycz, S. & Farkas, H.), Elsevier,
ISBN 0080444881, Oxford.

174 Heat Conduction – Basic Research

www.intechopen.com



Can a Lorentz Invariant Equation Describe Thermal Energy Propagation Problems? 21

Gambár, K. & Márkus, F. (2007). A possible dynamical phase transition between the
dissipative and the non-dissipative solutions of a thermal process. Physics Letters A,
Vol. 361, No. 4-5, (February 2007) pp. 283-286, ISSN 0375-9601

Gambár, K. & Márkus, F. (2008). A simple mechanical model to demonstrate a dynamical
phase transition. Reports on Mathematical Physics, Vol. 62, No. 2, (October 2008) pp.
219-227, ISSN 0034-4877

Gambár, K. (2010). Change of the dynamics of the systems: dissipative – non-dissipative
transition. Informatika, Vol. 12, No. 2, (2010) pp. 23-26, ISSN 1419-2527

Gradshteyn, S. & Ryzhik, I. M. (1994). Tables of Integrals, Series, and Products, Academic Press,
ISBN 012294755X, San Diego.

Jerri, A. J. The Gibbs Phenomenon in Fourier Analysis, splines, and wavelet approximations, Kluwer,
ISBN 0792351096, Dordrecht.

Joseph, D. D. & Preziosi, L. (1989). Heat waves. Reviews of Modern Physics, Vol. 61, No. 1,
(January 1989) pp. 41-73, ISSN 0034-6861

Jou, D., Casas-Vázquez & Lebon, G. (2010). Extended irreversible thermodynamics, Springer,
ISBN 9789048130733, New York, USA.

Lima, J. A. S. & Trodden , M. (1996). Decaying vacuum energy and deflationary cosmology
in open and closed universes. Physical Review D, Vol. 53, No. 8, (April 1996) pp.
4280-4286, ISSN 0556-2821

Linde, A. D. (1982). A new inflationary universe scenario — A possible solution of the horizon,
flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B,
Vol. 108, No. 6, (February 1982) pp. 389-393, ISSN 0370-2693

Linde, A. D. (1990). Particle Physics and Inflationary Cosmology , Harwood Academic Publishers,
ISBN 3718604892, Chur, Switzerland.

Linde, A. D. (1994). Hybrid inflation. Physical Review D, Vol. 49, No. 2, (January 1994) pp.
748-754, ISSN 0556-2821

Liu, W. & Asheghi, M. (2004). Phonon-boundary scattering in ultrathin single-crystal silicon
layers. Applied Physics Letters, Vol. 84, No. 19, (May 2004) pp. 3819-3821, ISSN
0003-6951

Ma, S.-k. (1982). Modern Theory of Critical Phenomena, Addison-Wesley, ISBN 0805366717,
California, USA.

Márkus, F. & Gambár, K. (1991). A variational principle in the thermodynamics. Journal
of Non-Equilibrium Thermodynamics, Vol. 16, No. 1, (March 1991) pp. 27-31, ISSN
0340-0204

Márkus, F. & Gambár, K. (2004). Derivation of the upper limit of temperature from the field
theory of thermodynamics. Physical Review E, Vol. 70, No. 5, (November 2004) p.
055102(R), ISSN 1063-651X

Márkus, F. (2005). Hamiltonian formulation as a basis of quantized thermal processes, pp. 267-291,
in Variational and Extremum Principles in Macroscopic Systems (Eds. Sieniutycz, S. &
Farkas, H.), Elsevier, ISBN 0080444881, Oxford, England.

Márkus, F. & Gambár, K. (2005). Quasiparticles in a thermal process. Physical Review E, Vol. 71,
No. 2, (June 2005) p. 066117, ISSN 1539-3755

Márkus, F., Vázquez, F. & Gambár, K. (2009). Time evolution of thermodynamic temperature
in the early stage of universe. Physica A, Vol. 388, No. 11, (June 2009) pp. 2122-2130,
ISSN 0378-4371

175Can a Lorentz Invariant Equation Describe Thermal Energy Propagation Problems?

www.intechopen.com



22 Will-be-set-by-IN-TECH

Márkus, F. & Gambár, K. (2010). Wheeler propagator of the Lorentz invariant thermal energy
propagation. International Journal of Theoretical Physics, Vol. 49, No. 9, (September
2010) pp. 2065-2073, ISSN 0020-7748

Morse, Ph. M. & Feshbach, H. (1953). Methods of Theoretical Physics, McGraw-Hill, New York,
USA.

Sandoval-Villalbazo, A. & García-Colín L. S. (2000). The relativistic kinetic formalism
revisited. Physica A Vol. 278, No. 3-4, (April 2000) pp. 428-439, ISSN 0378-4371

Schwab, K., Henriksen, E. A., Worlock, J. M. & Roukes, M. L. (2000). Measurement of the
quantum of thermal conductance. Nature, Vol. 404, No. 6781, (April 2000) pp. 974-977,
ISSN 0028-0836

Sieniutycz, S. (1994). Conservation laws in variational thermo-hydrodynamics, Kluwer Academic
Publishers, ISBN 0792328027, Dordrecht, The Netherlands.

Sieniutycz, S. & Berry, R. S. (2002). Variational theory for thermodynamics of thermal waves.
Physical Review E, Vol. 65, No. 4, (April 2002) p. 046132, ISSN 1063-651X

Vázquez, F., Márkus, F. & Gambár, K. (2009). Quantized heat transport in small systems: A
phenomenological approach. Physical Review E, Vol. 79, No. 3, (March 2009) p. 031113,
ISSN 1539-3755

Wheeler, J. A. & Feynman, R. P. (1945). Interaction with the absorber as the mechanism of
radiation Reviews of Modern Physics, Vol. 17, No. 2-3, (April-July 1945) pp. 157-181

Wheeler, J. A. & Feynman, R. P. (1949). Classical electrodynamics in terms of direct
interparticle action. Reviews of Modern Physics, Vol. 21, No. 3, (July 1949) pp. 425-433

176 Heat Conduction – Basic Research

www.intechopen.com



Heat Conduction - Basic Research

Edited by Prof. Vyacheslav Vikhrenko

ISBN 978-953-307-404-7

Hard cover, 350 pages

Publisher InTech

Published online 30, November, 2011

Published in print edition November, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The content of this book covers several up-to-date approaches in the heat conduction theory such as inverse

heat conduction problems, non-linear and non-classic heat conduction equations, coupled thermal and

electromagnetic or mechanical effects and numerical methods for solving heat conduction equations as well.

The book is comprised of 14 chapters divided into four sections. In the first section inverse heat conduction

problems are discuss. The first two chapters of the second section are devoted to construction of analytical

solutions of nonlinear heat conduction problems. In the last two chapters of this section wavelike solutions are

attained.The third section is devoted to combined effects of heat conduction and electromagnetic interactions

in plasmas or in pyroelectric material elastic deformations and hydrodynamics. Two chapters in the last section

are dedicated to numerical methods for solving heat conduction problems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ferenc Ma ́rkus (2011). Can a Lorentz Invariant Equation Describe Thermal Energy Propagation Problems?,

Heat Conduction - Basic Research, Prof. Vyacheslav Vikhrenko (Ed.), ISBN: 978-953-307-404-7, InTech,

Available from: http://www.intechopen.com/books/heat-conduction-basic-research/can-a-lorentz-invariant-

equation-describe-thermal-energy-propagation-problems-



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


