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1. Introduction 

“The most incomprehensible thing about the world is that it is at all comprehensible” (Albert 

Einstein), but the question is how do we fully understand incomprehensible things? 

Nonlinear science provides some clues in this regard (He, 2009). 

The world around us is inherently nonlinear. For instance, nonlinear evolution equations 

(NLEEs) are widely used as models to describe complex physical phenomena in various 

fields of sciences, especially in fluid mechanics, solid-state physics, plasma physics, plasma 

waves, and biology. One of the basic physical problems for these models is to obtain their 

travelling wave solutions. In particular, various methods have been utilized to explore 

different kinds of solutions of physical models described by nonlinear partial differential 

equations (PDEs). For instance, in the numerical methods, stability and convergence should 

be considered, so as to avoid divergent or inappropriate results. However, in recent years, a 

variety of effective analytical and semi-analytical methods have been developed to be used 

for solving nonlinear PDEs, such as the variational iteration method (VIM) (He, 1998; He et 

al., 2010), the homotopy perturbation method (HPM) (He, 2000, 2006), the homotopy 

analysis method (HAM) (Abbasbandy, 2010), the tanh-method (Fan, 2002; Wazwaz, 2005, 

2006), the sine-cosine method (Wazwaz, 2004), and others. Likewise, He and Wu (2006) 

proposed a straightforward and concise method called the Exp-function method to obtain 

the exact solutions of NLEEs. The method, with the aid of Maple or Matlab, has been 

successfully applied to many kinds of NLEE (He & Zhang, 2008; Kabir & Khajeh, 2009; 

Borhanifar & Kabir, 2009, 2010; Borhanifar et al., 2009; Kabir et al., 2011). Lately, the (G′/G)-

expansion method, first introduced by Wang et al. (2008), has become widely used to search 

for various exact solutions of NLEEs (Bekir & Cevikel, 2009; Zhang et al., 2009; Zedan, 2010; 

Kabir et al., 2011). The results reveal that the two recent methods are powerful techniques 

for solving nonlinear partial differential equations (NPDEs) in terms of accuracy and 

efficiency. This is important, since systems of NPDEs have many applications in 

engineering. 
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The generalized forms of the nonlinear heat conduction equation can be given as 

 ( ) 0, 0 , 1n n
t xxu a u u u a n       (1.1) 

and in (2 + 1)-dimensional space 

  ( ) ( ) 0.n n n
t xx yyu a u a u u u       (1.2) 

The heat equation is an important partial differential equation which describes the 

distribution of heat (or variation in temperature) in a given region over time. The heat 

equation is a consequence of Fourier's law of cooling. In this chapter, we consider the heat 

equation with a nonlinear power-law source term. The equations (1.1) and (1.2) describe 

one-dimensional and two-dimensional unsteady thermal processes in quiescent media or 

solids with the nonlinear temperature dependence of heat conductivity. In the above 

equations, u= u(x,y,t) is temperature as a function of space and time; tu  is the rate of change 

of temperature at a point over time; xxu  and yyu  are the second spatial derivatives (thermal 

conductions) of temperature in the x and y directions, respectively; also xu  and yu  are the 

temperature gradient. 

Many authors have studied some types of solutions of these equations. Wazwaz (2005) used 

the tanh-method to find solitary solutions of these equations and a standard form of the 

nonlinear heat conduction equation (when 3n   in Eq. (1.1)). Also, Fan (2002) applied the 

solutions of Riccati equation in the tanh-method to obtain the travelling wave solution when 

2n   in Eq. (1.1). More recently, Kabir et al. (2009) implemented the Exp-function method 

to find exact solutions of Eq. (1.1), and obtained more general solutions in comparison with 

Wazwaz’s results. 

Considering all the indispensably significant issues mentioned above, the objective of this 

paper is to investigate the travelling wave solutions of Eqs. (1.1) and (1.2) systematically, 

by applying the (G'/G)-expansion and the Exp-function methods. Some previously 

known solutions are recovered as well, and, simultaneously, some new ones are also 

proposed. 

2. Description of the two methods 

2.1 The (G'/G)-expansion method 

Suppose that a nonlinear PDE, say in two independent variables x and t, is given by 

 ( , , , , , , ) 0,t x xx tt txP u u u u u u    (2.1) 

or in three independent variables x, y and t, is given by 

 ( , , , , , , , , , ) 0,t x y xx yy tt tx tyP u u u u u u u u u   (2.2) 

where P is a polynomial in its arguments, which include nonlinear terms and the highest 
order derivatives. 
Introducing a complex variable   defined as 

www.intechopen.com



Exact Travelling Wave Solutions for  
Generalized Forms of the Nonlinear Heat Conduction Equation 

 

113 

 ( , ) ( ) , ( )u x t U k x ct      (2.3) 

or 

 ( , , ) ( ) , ( )u x y t U k x y ct        (2.4) 

Eq. (2.1) and (2.2) reduce to the ordinary differential equations (ODEs) 

 
2 2 2 2( , , , , , , ) 0,P U kcU kU k U k c U k cU          (2.5) 

and 

 
2 2 2 2 2 2( , , , , , , , , , ) 0,P U kcU kU kU k U k U k c U k cU k cU             (2.6) 

respectively, where k  and c  are constants to be determined later. According to the (G'/G)-

expansion method, it is assumed that the travelling wave solution of Eq. (2.5) or (2.6) can be 

expressed by a polynomial in 
'G

G

 
 
 

 as follows: 

 0
1

'
( ) , 0

im

i m
i

G
U

G
   



    
 

    (2.7) 

where 0 , and i , for 1, 2, ... ,i m , are constants to be determined later, and ( )G   

satisfies a second-order linear ordinary differential equation (LODE): 

 

2

2

( ) ( )
( ) 0

d G dG
G

dd

   


     (2.8) 

where   and   are arbitrary constants. Using the general solutions of Eq. (2.8), we 

have 

 

2 2

1 2
2

2

2 2

1 2

2 2

1 2
2

2

1

4 4
sinh cosh

2 24
, 4 0,

2 24 4
cosh sinh

2 2
'( )

( )
4 4

sin cos
2 24

2 4
cos

2

C C

C C

G

G
C C

C C

    
    

    

     

 

  

         
            
         
        
        
       
   
 
 

2

2

2

, 4 0,
24

sin
2

  
  










 
 
 
                

(2.9) 
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and it follows from (2.7) and (2.8), that 

  

1 1

1

2 1
2

1 2
1 2

' ' '
,

' ' '
( 1) (2 1) ( 2 )

' '
(2 1) ( 1)

i i im

i
i

i i i

m

i i i
i

G G G
U i

G G G

G G G
i i i

G G G
U i

G G
i i

G G

  

  


 

 



 

 


                
       

                
         

               




  (2.10) 

and so on. Here, the prime denotes the derivative with respective to  . 

To determine u explicitly, we take the following four steps: 

Step 1. Determine the integer m by substituting Eq. (2.7) along with Eq. (2.8) into Eq. (2.5) or 

(2.6), and balancing the highest-order nonlinear term(s) and the highest-order partial 

derivative. 

Step 2. Substitute Eq. (2.7) with the value of m determined in Step 1, along with Eq. (2.8) into 

Eq. (2.5) or (2.6) and collect all terms with the same order of 
'G

G

 
 
 

 together; the left-hand 

side of Eq. (2.5) or (2.6) is converted into a polynomial in 
'G

G

 
 
 

. Then set each coefficient of 

this polynomial to zero to derive a set of algebraic equations for 0, ,k c   and i , for 

1, 2, ... ,i m . 

Step 3. Solve the system of algebraic equations obtained in Step 2, for 0, ,k c   and i , for 

1, 2, ... ,i m , by use of Maple. 

Step 4. Use the results obtained in the above steps to derive a series of fundamental 

solutions ( )u  of Eq. (2.5) or (2.6) depending on 
'G

G

 
 
 

; since the solutions of Eq. (2.8) have 

been well known for us, we can obtain exact solutions of Eqs. (2.1) and (2.2). 

2.2 The Exp-function method 

According to the classic Exp-function method, it is assumed that the solution of ODEs (2.5) 

or (2.6) can be written as 

 

exp( )
exp( ) exp( )

( ) ,
exp( ) exp( )

exp( )

g

n
n f f g

q
p q

m
m p

a n
a f a g

u
b p b q

b m


 


 



 





  
 

  






   (2.11) 

where , ,f g p and q  are positive integers which are unknown, to be further determined, and 

na and mb  are unknown constants. 
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3. A generalized form of the nonlinear heat conduction equation 

3.1 Application of the (G'/G)-expansion method 

Introducing a complex variable   defined as Eq. (2.3), Eq. (1.1) becomes an ordinary 

differential equation, which can be written as 

 
2( ) 0, 0n nkcU ak U U U a        (3.1) 

or, equivalently, 

 
2 2 2 2 1( 1) 0,n n nkcU ak n n U U ak nU U U U           (3.2) 

To get a closed-form analytic solution, we use the transformation (Kabir & Khajeh, 2009; 

Wazwaz, 2005) 

 

1

1( ) ( ),nU V 

  (3.3) 

which will convert Eq. (3.2) into 

  
2 2 2 2 2 3 2 2( 1) (1 2 ) ( 1) ( 1) ( 1) 0,kc n V V ak n n V ak n n VV n V n V             (3.4) 

According to Step 1, considering the homogeneous balance between VV  and 2V V  in Eq. 

(3.4) gives 

 2 2 3 1,m m     (3.5) 

so that 

 1.m     (3.6) 

Suppose that the solutions of (3.4) can be expressed by a polynomial in 
'G

G

 
 
 

 as follows: 

  0 1 1

'
( ) , 0.

G
V

G
       

    (3.7) 

where 0  and 1 , are constants which are unknown, to be determined later. 

Substituting Eq. (3.7) along with Eq. (2.8) into Eq. (3.4) and collecting all terms with the same 

power of 
'G

G

 
 
 

 together, the left-hand side of Eq. (3.4) is converted into a polynomial in 

'G

G

 
 
 

. Equating each coefficient of this polynomial to zero yields a set of simultaneous 

algebraic equations for 0 , 1 , , ,k c   and  . Solving the system of algebraic equations 

with the aid of Maple 12, we obtain the following. 

www.intechopen.com



 
Heat Conduction – Basic Research 

 

116 

Case A: When 
2 4 0    

Case A-1. 

 0 1
2 2 2

1 1 1 1
, , . ,

2 2 4 4 4

n
k c a

n a

 
     


     

  
   (3.8) 

where   and   are arbitrary constants. 

By using Eq. (3.8), expression (3.7) can be written as 

  
2 2

1 1 '
( ) ,

2 2 4 4

G
V

G


   

     
  

  (3.9) 

Substituting the general solution of (2.9) into Eq. (3.9), we get the generalized travelling 

wave solution as follows: 

  

2 2

1 2

2 2

1 2

4 4
sinh cosh

2 21
( ) 1 ,

2 4 4
cosh sinh

2 2

C C

V

C C

    


    

           
           
           

          

 (3.10) 

where 

  
2

1 1
.

4

n
x at

n a


 


  


. 

inserting Eq. (3.10) into Eq. (3.3), it yields the following exact solution of Eq. (1.1): 

 

   

   

1

1

1 2

1 2

1 1
sinh cosh

1 2 2
( , ) 1

1 12
cosh sinh

2 2

nn n
C x at C x at

n a n a
u x t

n n
C x at C x at

n a n a


                 

       
                        

  (3.11) 

in which 1C  and 2C  are arbitrary parameters that can be determined by the related initial 

and boundary conditions. 

Now, to obtain some special cases of the above general solution, we set 2 0C  ; then (3.11) 

leads to the formal solitary wave solution to (1.1) as follows: 

  
1

11 1
( , ) 1 tanh

2 2

nn
u x t x at

n a


         

   
, (3.12) 
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and, when 1 0C  , the general solution (3.11) reduces to 

   
1

11 1
( , ) 1 coth

2 2

nn
u x t x at

n a


         

   
, (3.13) 

Comparing the particular cases of our general solution, Eqs. (3.12) and (3.13), with 

Wazwaz’s results (2005), Eqs. (73) and (74), it can be seen that the results are exactly the 

same. 
Case A-2. 

 0 1
2 2 2

1 1 1 1
, , . ,

2 2 4 4 4

n
k c a

n a

 
     

 
      

  
  (3.14) 

Inserting Eq. (3.14) into (3.7) yields 

 
2 2

1 1 '
( ) ,

2 2 4 4

G
V

G


   

     
  

  (3.15) 

Substituting the general solution of (2.9) into Eq. (3.15), we obtain 

  

2 2

1 2

2 2

1 2

4 4
sinh cosh

2 21
( ) 1 ,

2 4 4
cosh sinh

2 2

C C

V

C C

    


    

           
           
           

          

  (3.16) 

where  
2

1 1
.

4

n
x at

n a


 


 


 . 

Substituting Eq. (3.16) into the transformation (3.3) leads to the generalized solitary wave 
solution of Eq. (1.1) as follows: 

 

   

   

1

1

1 2

1 2

1 1
sinh cosh

1 2 2
( , ) 1

1 12
cosh sinh

2 2

nn n
C x at C x at

n a n a
u x t

n n
C x at C x at

n a n a


               

       
                      

 

 
   (3.17) 

Similarly, to derive some special cases of the above general solution (3.17), we choose 

2 0C  ; then (3.17) leads to 

  
1

11 1
( , ) 1 tanh

2 2

nn
u x t x at

n a


        

   
 ,  (3.18) 
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and, when 1 0C  , the general solution (3.17) reduces to 

  
1

11 1
( , ) 1 coth

2 2

nn
u x t x at

n a


        

   
 ,  (3.19) 

Validating our results, Eqs. (3.18) and (3.19), with Wazwaz’s solutions (2005), Eqs. (71) and 
(72), we can conclude that the results are exactly the same. 

Case B: When 
2 4 0    

Case B-1. 

  0 1
2 2 2

1 1
, , . ,

2 2 4 4 4

i i n i
k c a

n a

 
     


     

  
  (3.20) 

Inserting Eq. (3.20) into (3.7) results 

 
2 2

1 '
( ) ,

2 2 4 4

i i G
V

G


   

     
  

  (3.21) 

Substituting the general solution of (2.9) for 2 4 0    into Eq. (3.21), we get 

 

2 2

1 2

2 2

1 2

4 4
sin cos

2 21
( ) 1 ,

2 4 4
cos sin

2 2

C C

V i

C C

    


    

            
           
           

          

 (3.22) 

where  

 
2

1
.

4

n i
x at

n a


 


  


. 

Using the following transformation, 

  
2 2

2 2

,

4 4
sinh sin ,

2 2

4 4
cosh cos .

2 2

i

i

 

   
 

   
 



        
   
   
       
   
   

  (3.23) 

in Eq. (3.22) and substituting the result into (3.3), we obtain the following exact solution of 
Eq. (1.1): 
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   

   

1

1

1 2

1 2

1 1
sinh cosh

1 2 2
( , ) 1

1 12
cosh sinh

2 2

nn n
C x at C i x at

n a n a
u x t

n n
C x at C i x at

n a n a


                 

       
                        

 (3.24) 

We note that if we set 2 0C   and 1 0C   in the general solution (3.24), we can recover the 

solutions (3.12) and (3.13), respectively. 
Case B-2. 

  
0 1

2 2 2

1 1
, , . ,

2 2 4 4 4

i i n i
k c a

n a

 
     

 
      

  
  (3.25) 

Inserting Eq. (3.25) into (3.7) leads to 

 
2 2

1 '
( ) ,

2 2 4 4

i i G
V

G


   

     
  

 (3.26) 

Substituting the general solution of (2.9) for 2 4 0    into Eq. (3.26), we have 

 

2 2

1 2

2 2

1 2

4 4
sin cos

2 21
( ) 1 ,

2 4 4
cos sin

2 2

C C

V i

C C

    


    

            
           
           

          

  (3.27) 

in which  
2

1
.

4

n i
x at

n a


 


 


 . 

Using the transformation (3.23) into Eq. (3.27), and substituting the result into (3.3) yields 

the following exact solution: 

 

   

   

1

1

1 2

1 2

1 1
sinh cosh

1 2 2
( , ) 1

1 12
cosh sinh

2 2

nn n
C x at C i x at

n a n a
u x t

n n
C x at C i x at

n a n a


               

       
                      

 

 
 (3.28) 

Similarly, if we set 2 0C   and 1 0C   in the general solution (3.28), we arrive at the same 

solutions (3.18) and (3.19), respectively. 

3.2 Application of the Exp-function method 

In order to determine values of f  and p , we balance the term 3v  with vv  in Eq. (3.4); we have 

  3 1

2

exp(3 )
,

exp(3 )

c f
v

c p











  (3.29) 
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3

4

exp([2 3 ] )
,

exp(5 )

c f p
vv

c p




  



    (3.30) 

where ic  are determined coefficients only for simplicity. Balancing the highest order of the 

Exp-function in Eqs. (3.29) and (3.30), we have 

 3 2 2 3 ,f p f p      (3.31) 

which leads to the result 

 ,p f   (3.32) 

Similarly, to determine values of g  and q , we have 

 
3 1

2

exp( 3 )
,

exp( 3 )

d g
v

d q




 


 

    (3.33) 

   
3

4

exp( [2 3 ] )
,

exp( 5 )

d g q
vv

d p




   
 


    (3.34) 

where id  are determined coefficients for simplicity. Balancing the lowest order of the Exp-

function in Eqs. (3.33) and (3.34), we have 

   3 2 2 3 ,g q g q     (3.35) 

which leads to the result 

   .q g  (3.36) 

Case A: 1, 1p f q g     

We can freely choose the values of p  and q . For simplicity, we set 1p f   and 1q g  , 

so Eq. (2.11) reduces to 

  
1 0 1

0 1

exp( ) exp( )
( ) ,

exp( ) exp( )

a a a
v

b b

 
 





  


  
  (3.37) 

Substituting Eq. (3.37) into Eq. (3.4), and making use of Maple, we arrive at 

  
4 3 2 1 0 1

2 3 4

1
[ exp(4 ) exp(3 ) exp(2 ) exp( ) exp( )

exp( 2 ) exp( 3 ) exp( 4 )] 0,

c c c c c c
A

c c c

    

  



  

     

      
 (3.38) 

in which 

 
4

0 1[exp( ) exp( )] ,A b b       (3.39) 
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And the nc  are coefficients of exp( )n . Equating to zero the coefficients of all powers of 

exp( )n  yields a set of algebraic equations for 0 0 1 1 1, , , , ,a b a a b k  , and c . Solving the 

system of algebraic equations with the aid of Maple 12, we obtain: 

Case 1. 

 0 0 1 1 1 1 1

1
0, 0, 0, , , ,

2

n
a b a a b b b k c a

n a
   


           (3.40) 

Substituting Eq. (3.40) into (3.37) and inserting the result into the transformation (3.3), we 

get the generalized solitary wave solution of Eq. (1.1) as follows: 

 

1

1
1

1

exp( )
( , ) ,

exp( ) exp( )

nb
u x t

b


 








 
    

 (3.41) 

where  1

2

n
x at

n a
 
    and 1b  is an arbitrary parameter which can be determined by 

the initial and boundary conditions. 

If we set 1 1b   and 1 1b    in (3.41), the solutions (3.18) and (3.19) can be recovered, 

respectively. 

Case 2. 

  0 0 1 1 1 1

1
0, 0, 1, 0, , ,

2

n
a b a a b b k c a

n a
  


           (3.42) 

By the same procedure as illustrated above, we obtain 

 

1

1

1

exp( )
( , ) ,

exp( ) exp( )

n
u x t

b


 






 
    

  (3.43) 

in which  1

2

n
x at

n a
 
    and 1b  is a free parameter. 

If we set 1 1b   and 1 1b    in (3.43), then it can be easily converted to the same solutions 

(3.12) and (3.13), respectively. 

Case 3. 

  1 1 0 0 0 0 1 0 0

1
0, 0, , , , ,

n
a b a a b b a a b k c n a

n a
 


          (3.44) 

and consequently we get 
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1

1
0 0 0

0

exp( )
( , ) ,

exp( )

na a b
u x t

b





  

   
  (3.45) 

where  1n
x n at

n a
 
    and 0 0,a b , are arbitrary parameters; for example, if we put 

0 0b  , solution (3.45) reduces to 

  
1

1
0( , ) cosh sinh ,nu x t a  


      (3.46) 

Case 4. 

 

1 0 0 0 0 1 0 0 0 1 0 0 00, , , ( ), ( ),

1
,

a a a b b b a a b a a a b

n
k c a

n a

         


      (3.47) 

and 

 

1

1
0 0 0 0

0 0 0 0

( )exp( )
( , ) ,

exp( ) ( )exp( )

na a a b
u x t

b a a b


 


   

      
  (3.48) 

where  1n
x at

n a
 
    and 0a , 0b  are free parameters; for example, if we set 

0 01, 0a b   in Eq. (3.48), it can be easily converted to 

 

1

11
( , ) (1 coth csc ) ,

2

n
u x t h 


     

  (3.49) 

Case 5. 

 1 0 0 0 1 1

1
1, 0, , 0, 0, ,

n
a a b b b a k c a

n a
 


          (3.50) 

and finally we obtain 

 

1

1

0

exp( )
( , ) .

exp( )

n
u x t

b





 

   
  (3.51) 

in which  1n
x at

n a
 
    and 0b  is a free parameter. 

Case B:  2, 1p f q g     
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Since the values of g  and f  can be freely chosen, we can put 2p f  and 1q g  , the 

trial function, Eq. (2.11) becomes 

  
2 1 0 1

1 0 1

exp(2 ) exp( ) exp( )
( ) ,

exp(2 ) exp( ) exp( )

a a a a
v

b b b

  


  




   


   
 (3.52) 

By the same manipulation as illustrated above, we have the following sets of solutions: 

Case 1. 

 1 0 0 0 1 1 2 1

1
0, , 0, 0, 0, 0, 0, ,

2

n
a a a b b a a b k c n a

n a
 


              (3.53) 

Substituting Eq. (3.53) into (3.52), we have 

 0( ) exp( 2 ),v a     (3.54) 

Substituting Eq. (3.54) into Eq. (3.3), we get the generalized solitary wave solution of Eq. 

(1.1) as 

 

1

1
0( , ) [ exp( 2 )] ,nu x t a 


   (3.55) 

where 
1

( )
2

n
x n at

n a
 
    and 0a  is an arbitrary parameter. Using the transformation 

exp( ) cosh sinh

exp( ) cosh sinh

  
  
 

   
, Eq. (3.55) yields the same solution (3.46). 

Case 2. 

 1 0 0 0 0 1 1 2 1

1
0, , , 0, 0, 0, 0, ,

2

n
a a b b b b a a b k c a

n a
 


             (3.56) 

Substituting Eq. (3.56) into (3.52), we have 

 
0

0

( ) ,
exp(2 )

b
v

b






 (3.57) 

Inserting Eq. (3.57) into (3.3), it admits to the generalized solitary wave solution of Eq. (1.1) 

as follows: 

 

1

1
0

0

( , ) ,
exp(2 )

nb
u x t

b


 

   
  (3.58) 

where 
1

( )
2

n
x at

n a
 
    and 0b  is a free parameter. 
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We note that if we set 0 0a b  in Eq. (3.48), we can recover the solution (3.58). 

Case 3. 

 1 0 0 1 1 1 1 2 1

1
0, 0, 0, , , 0, 0, ,

3

n
a a b b b a b a b k c a

n a
   


             (3.59) 

Substituting Eq. (3.59) into (3.52) we obtain 

 
1

1

exp( )
( ) ,

exp(2 ) exp( )

b
v

b


 







 
  (3.60) 

and by inserting Eq. (3.60) into (3.3), we get the generalized solitary wave solution of (1.1) as 

  

1

1
1

1

exp( )
( , ) ,

exp(2 ) exp( )

nb
u x t

b


 








 
    

 (3.61) 

in which 
1

( )
3

n
x at

n a
 
    and 1b  is a free parameter that can be determined by the 

initial and boundary conditions. 

4. The generalized nonlinear heat conduction equation in  
two dimensions 

4.1 Application of the (G'/G)-expansion method 

Using the wave variable (2.4) transforms Eq. (1.2) to the ODE 

 
22 ( ) 0, 0n nkcU ak U U U a         (4.1) 

or, equivalently, 

 
2 2 2 2 12 ( 1) 2 0,n n nkcU ak n n U U ak nU U U U           (4.2) 

Then we use the transformation (3.3), which will convert Eq. (4.2) into 

 
2 2 2 2 2 3 2 2( 1) 2 (1 2 ) 2 ( 1) ( 1) ( 1) 0,kc n V V ak n n V ak n n VV n V n V              (4.3) 

By the same manipulation as illustrated in Section 3.1, we obtain the following sets of 

solutions. 

Case A: When 
2 4 0    

Case A-1. 

 0 1
2 2 2

1 1 1 1
, , . , 2

2 22 4 4 4

n
k c a

n a

 
     


     

  
  (4.4) 
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By the same procedure as illustrated in Case A-1 of Section 3.1, Eqs. (3.9) and (3.10), we can 

finally find the generalized solitary wave solution of Eq. (1.2) as 

 
   

   

1

1

1 2

1 2

1 1
sinh 2 cosh 2

1 2 2 2 2
( , , ) 1

1 12
cosh 2 sinh 2

2 2 2 2

nn n
C x y at C x y at

n a n a
u x y t

n n
C x y at C x y at

n a n a


                   

       
                          

 (4.5) 

in which 1C  and 2C  are arbitrary parameters that can be determined by the related initial 

and boundary conditions. 

Now, to obtain some special cases of the above general solution, we set 2 0C  ; then (4.5) 

leads to 

  
1

11 1
( , , ) 1 tanh 2

2 2 2

nn
u x y t x y at

n a


          

   
,  (4.6) 

and, when 1 0C  , the exact solution (4.5) reduces to 

  
1

11 1
( , , ) 1 coth 2

2 2 2

nn
u x y t x y at

n a


          

   
,  (4.7) 

Comparing the particular cases of our general solution, Eqs. (4.6) and (4.7), with Wazwaz’s 

results (2005), Eqs. (87) and (88), it can be seen that the results are exactly the same. 
Case A-2. 

 0 1
2 2 2

1 1 1 1
, , . , 2

2 22 4 4 4

n
k c a

n a

 
     

 
      

  
   (4.8) 

By the similar process as illustrated in Case A-2 of Section 3.1, Eqs. (3.15) and (3.16), we can 

easily gain the following exact solution of Eq. (1.2): 

   

   

1

1

1 2

1 2

1 1
sinh 2 cosh 2

1 2 2 2 2
( , , ) 1

1 12
cosh 2 sinh 2

2 2 2 2

nn n
C x y at C x y at

n a n a
u x y t

n n
C x y at C x y at

n a n a


                 

       
                        

 

 
(4.9) 

Similarly, to derive some special cases of the above general solution, we choose 2 0C  ; then 

(4.9) leads to the formal solitary wave solution as follows: 

  
1

11 1
( , , ) 1 tanh 2

2 2 2

nn
u x y t x y at

n a


         

   
 ,  (4.10) 
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and, when 1 0C  , the general solution (4.9) reduces to 

  
1

11 1
( , , ) 1 coth 2

2 2 2

nn
u x y t x y at

n a


         

   
 , (4.11) 

Validating our results, Eqs. (4.10) and (4.11), with Wazwaz’s solutions (2005), Eqs. (85) and 

(86), it can be seen that the results are exactly the same. 

Case B: When 
2 4 0    

Case B-1. 

   0 1
2 2 2

1 1
, , . , 2

2 22 4 4 4

i i n i
k c a

n a

 
     


     

  
   (4.12) 

By the same manipulation as illustrated in Case B-1 of Section 3.1, Eqs. (3.21)-(3.23), we can 

finally obtain the following exact solution: 

   

   

1

1

1 2

1 2

1 1
sinh 2 cosh 2

1 2 2 2 2
( , , ) 1

1 12
cosh 2 sinh 2

2 2 2 2

nn n
C x y at C i x y at

n a n a
u x y t

n n
C x y at C i x y at

n a n a


                   

       
                          

(4.13) 

We note that, if we set 2 0C   and 1 0C   in the general solution (4.13), we can recover the 

solutions (4.6) and (4.7), respectively. 

Case B-2. 

 0 1
2 2 2

1 1
, , . , 2

2 22 4 4 4

i i n i
k c a

n a

 
     

 
      

  
  (4.14) 

Similar to Case B-2 of Section 3.1, we can find the following result: 

   

   

1

1

1 2

1 2

1 1
sinh 2 cosh 2

1 2 2 2 2
( , , ) 1

1 12
cosh 2 sinh 2

2 2 2 2

nn n
C x y at C i x y at

n a n a
u x y t

n n
C x y at C i x y at

n a n a


                 

       
                        

 

 
(4.15) 

In particular, if we take 2 0C   and 1 0C   in the general solution (4.15), we arrive at the 

same solutions (4.10) and (4.11), respectively. 

4.2 Application of the Exp-function method 

By the same manipulation as illustrated in Section 3.2, we obtain the following sets of 

solutions. 
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Case 1. 

 1 1 1 0 0 1 1

1
, 0, 0, 0, , , 2

2 2

n
a a a a b b a k c a

n a
   


           (4.16) 

Substituting Eq. (4.16) into (3.37) and inserting the result into the transformation (3.3), we 

get the generalized solitary wave solution of Eq. (1.2) as follows: 

 

1

1
1

1

exp( )
( , , ) ,

exp( ) exp( )

na
u x y t

a


 








 
    

 (4.17) 

where  1
2

2 2

n
x y at

n a
 
     and 1a  is an arbitrary parameter which can be 

determined by the initial and boundary conditions. 

If we set 1 1a   and 1 1a    in (4.17), the solutions (4.10) and (4.11) can be recovered, 

respectively. 

Case 2. 

 0 0 1 1 1 1

1
0, 0, 1, 0, , , 2

2 2

n
a b a a b b k c a

n a
  


          (4.18) 

By the same process as illustrated in the previous case, we obtain 

 

1

1

1

exp( )
( , , ) ,

exp( ) exp( )

n
u x y t

b


 






 
    

 (4.19) 

in which  1
2

2 2

n
x y at

n a
 
     and 1b  is a free parameter. 

If we set 1 1b   and 1 1b    in (4.19), then it can be easily converted to the same solutions 

(4.6) and (4.7), respectively. 

Case 3. 

 1 1 1 0 1 0

1
, 0, 0, 0, 0, , 2

2 2

n
a a a a b b k c n a

n a
  


          (4.20) 

and consequently we get 

     
11

111 1( , , ) exp( 2 ) cosh 2 sinh 2 ,nnu x y t a a  

          (4.21) 

where  1
2

2 2

n
x y n at

n a
 
     and 1a  is an arbitrary parameter. 

www.intechopen.com



 
Heat Conduction – Basic Research 

 

128 

Case 4. 

 
2

1 0
1 0 0 1 1 1 0

0

1
1, , 0, , , , 2

2

b a n
a a a a b b b k c a

a n a


  
 

          (4.22) 

and 

  

1

1

0
2

1 0
1

0

exp( )
( , , ) ,

exp( ) exp( )

n

a
u x y t

b a
b

a



 







 
  
 

   
 

 (4.23) 

where  1
2

2

n
x y at

n a
 
     and 0a , 1b  are free parameters. 

Case 5. 

 
2

1 0
1 1 1 0 0 1 1 0

0

1
0, , , , , , 2

2

a a n
a a a a a b a b k c a

a n a


   
 

          (4.24) 

and finally we obtain 

  

1

1

0 1
2

1 0
1

0

exp( )
( , , )

exp( ) exp( )

n

a a
u x y t

a a
a

a



 









 
   
 

   
 

 (4.25) 

in which 
1

( 2 )
2

n
x y at

n a
 
     and 0 1,a a  are free parameters. 

Remark 1. We have verified all the obtained solutions by putting them back into the original 

equations (1.1) and (1.2) with the aid of Maple 12. 

Remark 2. The solutions (3.12), (3.13), (3.18), (3.19), (4.6), (4.7), (4.10), (4.11) have been 

obtained by the tanh method (Wazwaz, 2005); the other solutions are new and more general 

solutions for the generalized forms of the nonlinear heat conduction equation. 

5. Conclusions 

To sum up, the purpose of the study is to show that exact solutions of two generalized forms 

of the nonlinear heat conduction equation can be obtained by the (G'/G)-expansion and the 

Exp-function methods. The final results from the proposed methods have been compared 

and verified with those obtained by the tanh method. New exact solutions, not obtained by 

the previously available methods, are also found. It can be seen that the Exp-function 

method yields more general solutions in comparison with the other method. Overall, the 

results reveal that the (G'/G)-expansion and the Exp-function methods are powerful 

mathematical tools to solve the nonlinear partial differential equations (NPDEs) in the terms 
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of accuracy and efficiency. This is important, since systems of NPDEs have many 

applications in engineering. 

6. References 

Abbasbandy, S. (2010). Homotopy analysis method for the Kawahara equation. Nonlinear 

Analysis: Real World Applications, 11, 1, 307-312. 

Bekir, A., Cevikel, C. (2009). New exact travelling wave solutions of nonlinear physical 

models. Chaos, Solitons and Fractals, 41, 1733–1739. 

Borhanifar, A., Kabir, MM. (2009). New periodic and soliton solutions by application of Exp-

function method for nonlinear evolution equations. Journal of Computational & 

Applied Mathematics, 229, 158-167. 

Borhanifar, A., Kabir, MM., Vahdat Lasemi, M. (2009). New periodic and soliton wave 

solutions for the generalized Zakharov system and (2+1)-dimensional Nizhnik–

Novikov–Veselov system. Chaos, Solitons & Fractals, 42, 1646–1654. 

Borhanifar, A., Kabir, MM. (2010). Soliton and Periodic solutions for (3+1)-dimensional 

nonlinear evolution equations by Exp-function method. Applications and Applied 

Mathematics: International Journal (AAM), 5, 1, 59-69. 

Fan, E. (2002). Traveling wave solutions for nonlinear equations using symbolic 

computation. Comput. Math. Appl., 43, 671–680. 

He, JH. (1998). Approximate analytical solution for seepage flow with fractional derivatives 

in porous media. Comput. Methods Appl. Mech. Eng., 167, 57-68. 

He, JH. (2000). A coupling method of a homotopy technique and a perturbation technique 

for non-linear problems. Int. J. Non-Linear Mechanics, 35, 37-43. 

He, JH. (2006). New interpretation of homotopy perturbation method. Int. J. Mod. Phys. B, 

20, 18, 2561–2568. 

He, JH., Wu, XH. (2006). Exp-function method for nonlinear wave equations. Chaos, Solitons 

& Fractals, 30, 3, 700–708. 

He, JH., Zhang, LN. (2008). Generalized solitary solution and compacton-like solution of the 

Jaulent–Miodek equations using the Exp-function method. Physics Letters A, 372, 

1044–1047. 

He, JH. (2009). Nonlinear science as a fluctuating research frontier. Chaos, Solitons and 

Fractals, 41, 2533–2537. 

He, JH., Wu, GC., Austin, F. (2010). The variational iteration method which should be 

followed. Nonlinear Science Letters A, 1, 1, 1–30. 

Kabir, MM., Khajeh, A. (2009). New explicit solutions for the Vakhnenko and a 

generalized form of the nonlinear heat conduction equations via Exp-function 

method. International Journal of Nonlinear Sciences & Numerical Simulation, 10, 10, 

1307-1318. 

Kabir, MM., Khajeh, A., Abdi Aghdam, E., Yousefi Koma, A. (2011). Modified Kudryashov 

method for finding exact solitary wave solutions of higher-order nonlinear 

equations. Mathematical Methods in the Applied Sciences, 34, 213-219. 

Kabir, MM., Borhanifar, A., Abazari, R. (2011). Application of (G'/G)-expansion method to 

Regularized Long Wave (RLW) equation. Computers and Mathematics with 

Applications, 61, 8, 2044–2047. 

www.intechopen.com



 
Heat Conduction – Basic Research 

 

130 

Wang, M., Li, X., Zhang, J. (2008). The (G'/G)-expansion method and traveling wave 

solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A, 

372, 417–423. 

Wazwaz, AM. (2004). A sine-cosine method for handling nonlinear wave equations. Math. 

Comput. Model, 40, 499–508. 

Wazwaz, AM. (2005). The tanh method for generalized forms of nonlinear heat 

conduction and Burgers–Fisher equations. Applied Mathematics and Computation, 

169, 321–338. 

Wazwaz, AM. (2006). New solitary wave solutions to the Kuramoto–Sivashinsky and the 

Kawahara equations. Appl Math. Comput., 182, 1642-1650. 

Zedan, HA. (2010). New classes of solutions for a system of partial differential equations by 

G'/G)-expansion method. Nonlinear Science Letters A, 1, 3, 219–238. 

Zhang, S., Wang, W., Tong, J. (2009). A generalized (G'/G)-expansion method and its 

application to the (2+1)-dimensional Broer-Kaup equations. Appl. Math. Comput., 

209, 399-404. 

www.intechopen.com



Heat Conduction - Basic Research

Edited by Prof. Vyacheslav Vikhrenko

ISBN 978-953-307-404-7

Hard cover, 350 pages

Publisher InTech

Published online 30, November, 2011

Published in print edition November, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The content of this book covers several up-to-date approaches in the heat conduction theory such as inverse

heat conduction problems, non-linear and non-classic heat conduction equations, coupled thermal and

electromagnetic or mechanical effects and numerical methods for solving heat conduction equations as well.

The book is comprised of 14 chapters divided into four sections. In the first section inverse heat conduction

problems are discuss. The first two chapters of the second section are devoted to construction of analytical

solutions of nonlinear heat conduction problems. In the last two chapters of this section wavelike solutions are

attained.The third section is devoted to combined effects of heat conduction and electromagnetic interactions

in plasmas or in pyroelectric material elastic deformations and hydrodynamics. Two chapters in the last section

are dedicated to numerical methods for solving heat conduction problems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mohammad Mehdi Kabir Najafi (2011). Exact Travelling Wave Solutions for Generalized Forms of the

Nonlinear Heat Conduction Equation, Heat Conduction - Basic Research, Prof. Vyacheslav Vikhrenko (Ed.),

ISBN: 978-953-307-404-7, InTech, Available from: http://www.intechopen.com/books/heat-conduction-basic-

research/exact-travelling-wave-solutions-for-generalized-forms-of-the-nonlinear-heat-conduction-equation



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


