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1. Introduction 

Jet impingement heat transfer has been used extensively in many industrial applications for 

cooling because it provides high local heat transfer coefficients at low flow rates. Several 

experimental and theoretical studies on liquid jet impingement heat transfer have been 

reported in the literature (Louahlia & Baonga, 2008, Chen et al., 2002, Lin & Ponnappan, 

2004, Liu & Zhu, 2004, Pan & Webb, 1995). Numerous studies are conducted in average heat 

transfer, but local heat transfer analysis for steady and unsteady states has not been much 

attention. Jet impingement heat transfer is influenced by different physical parameters such 

as: (i) the velocity turbulent fluctuations (Oliphant et al. 1998, Stevens & Webb, 1989), (ii) the 

difference between the temperatures of inlet jet and heat exchange surface (Siba et al. 2003, 

MA et al. 1997), (iii) the surface geometry and the jet orientation (MA et al. 1997b, Elison & 

Webb, 1994), (iv) the liquid flow rate and Prandtl number (Elison & Webb, 1994, Fabbri et al. 

2003, Stevens & Webb, 1993), and (v) the nozzle diameter (Stevens & Webb, 1993, 1992). 

2. Hydrodynamic characteristics of the jet impinging on a horizontal surfarce 

When a liquid jet impinges on a horizontal surface, three distinct regions can be identified as 

shown in Figure 1. The first zone is the free jet region where the flow is accelerated because 

of the gravitational force. The second zone is the impingement region where the interaction 

between the jet and the heat exchange surface produces a strong deceleration of the flow. 

After this zone, the liquid wets the surface and flows in a parallel direction to the heat 

exchange surface. Heat transfer efficiency in each zone is related to the flow velocity and its 

structure. In the impingement zone, jet diameter could be measured using flurescence 

induced laser (Baonga et al. 2006) combined to the images processing. In this method, liquid 

impinging the heat exchange surface is illuminated by a laser sheet in the axial direction as 

shown by Figure 2. Rhodamine B with low concentration must be used as the fluerescent 

substance added to the liquid jet. In this case, fluorescent substance becomes visible when 

liquid jet is illuminated with light. A CCD camera can be used to record the flow video 

images. Video images are treated in order to extract the profiles of the jet as shown by 

Figure 1. 
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Fig. 1. Schematic of flow developing from nozzle to heated disk. 
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Fig. 2. Flow visualization system. 

2.1 Axial flow structure 

For inlet Reynolds number ranging from 1520 to 5900 (the corresponding values of the inlet 

mean velocity are in the range of 3.24 to 12.5 m/s), Figure 3 shows effect of the jet flow rate 

on the distribution of the jet diameter along the axial direction. The nozzle diameter is of 

4 mm. The nozzle-heat exchange surface spacing is of 13 mm. Reynolds number is 

calculated as follow :  

 
i L

4m
Re

d 



 (1) 

where: di is the inner diameter of the nozzle, L  is the dynamic viscosity, m  is the total 

mass flow rate of the jet. Physical properties are used at the inlet jet temperature measured 

at the nozzle exit.  
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Fig. 3. Evolution of the jet diameter along the z direction. 

It can be seen from figure 3 that for the same axial position (z), the jet diameter increases 

with inlet Reynolds number because gravitational force increases with flow velocity and 

becomes higher than surface tension force at the jet free surface. For lower Reynolds 

number (Re=1521), it shows that instability starts and waves appears on the jet free 

surface because capillarity force increases and becomes non-negligible compared to 

gravitational force. 

Along the falling jet, no evaporation has been produced and the mass flow rate is conserved. 

In this case, axial distribution of the flow velocity can be deduced from the following 

equation: 

    2

L j

d z
m V z

4
    (2) 

At each axial position (z),  jV z  is the average velocity of the jet,  d z  is the jet diameter, 

L  is the jet density. Figure 4 shows evolution of  j j ,inletV z / V  from the injection zone to 

the heat exchange surface for various inlets Reynolds numbers. j ,inletV  refers liquid velocity 

of the jet at the nozzle exit. For each Reynolds number, velocity is high near the 

impingement zone where the jet diameter is low. The free jet is accelerated after the nozzle 

exit because the gravity force effect is very pronounced. After this zone, the jet velocity 

decelerates quickly because liquid flow is retained on the heat exchange surface under the 

effect of the capillarity force and the wall friction. 
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Fig. 4. Dimensionless axial velocity of the jet. 

2.2 Wall parallel flow structure 

Turning now to the characterisation of the local liquid layer depth near the heat exchange 
surface and the velocity profile along the radial direction where the heat transfer occurs.  
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Fig. 5. Local evolution of the dimensionless liquid layer depth. 

Figure 5 shows an example of the local liquid layer depth (  r ) measured for three values 

of the inlet Reynolds number (Re=6733, Re=3408, and Re=2791). The nozzle diameter is of 
2.2 mm for theses experiments. The jet inlet temperature is of 32°C and the nozzle-heat 
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exchange surface spacing is of 95 mm. Figure 5 shows three distinct zones: the impingement 
zone, the zone where the liquid layer depth is approximately uniform, and the final zone 
where a hydraulic jump is formed. The radius, at which the liquid layer depth increases, is 
termed as the hydraulic jump radius. For higher Reynolds number, hydraulic jump is not 
appeared on the heat exchange surface because it is certainly higher than the radius of the 
heat exchange surface. Location of hydraulic jump on the surface is an interest physical 
phenomenon. In the previous work, some authors (Stevens & Webb, 1992, 1993, Liu et al. 
1991, 1989, Watson, 1964) show the influence of the jet mass flow rate on the hydraulic jump 
radius that is defined at the radius location where the liquid layer depth attains a highest 
value in the parallel flow (Figure 6a). 
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Fig. 6. a- Schematic of the hydraulic jump radius, b- Dimensionless hydraulic jump radius. 
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For Reynolds number ranging from 700 to 5000, Figure 6b shows dimensionless hydraulic 
jump radius as a function of Reynolds number. It shows that the hydraulic jump radius 
increases with the Reynolds number because flow is accelerated in the radial direction and 
the hydraulic jump is moved far from the stagnation zone. The difference between the 
present results and the experimental data of Stevens and Webb can be due to the uncertainty 
in the data of Stevens and Webb estimated of ±0.5 cm. The present results are defined with a 
maximum uncertainty of 2% and revealed an approximation dependence of the hydraulic 

jump radius on the Reynolds number as 0.62Re : 

 
hyd 0.62

i

R
0.046Re

d
  (3) 

Equation (3) estimates hydraulic jump radius with a maximum uncertainty of ±7%. 
Distribution of the liquid velocity along the radial direction is determined by assuming 
conservation of the mass flow rate of liquid jet. For parallel flow: 

    L jm U r 2 r r     (4) 

Where L  is the jet density,  jU r  is the jet average velocity in the radial direction, r is the 

radial coordinate,  r  is the liquid layer depth on the surface. 

Figure 7 shows profiles of dimensionless velocity and shows for each inlet Reynolds 
number, radial velocity profiles reaches a maximum value which is very pronounced for 
higher Reynolds number. 
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Fig. 7. Local evolution of the dimensionless radial velocity. 
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Fig. 8. Comparison of the experimental results with Watson’s theory: (a) liquid layer depth 
(b) dimensionless radial mean velocity. 

For the same radial position, Figure 7 shows effect of the hydraulic jump on the flow 
velocity. It shows that in the zone of the hydraulic jump, radial velocity is the lowest and 
approximately uniform for Re=3408 and Re=2791. For all data, the maximum dimensionless 
velocity is obtained for radius ranging from 2 to 4 times nozzle diameter. In the previous 
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work, Stevens and Webb (1989) found this maximum at r/di of 2.5 for the horizontal 
impinging jet on the vertical surface. Figure 7 also indicates that in the parallel flow, radial 
velocity is not uniform and it is lower than inlet jet velocity at the nozzle exit. The present 
results contradicts the assumption of some authors (Liu et al. 1989, Liu et al. 1991) assuming 
that the flow is fully developed before the hydraulic jump, and the free surface velocity is 
equal to the exit average jet velocity. 
Experimental results are compared with the laminar and the turbulent theories predictions 
defined by Watson (1964) in figures 8a and b. It shows that laminar theory provides the best 
agreement with experimental data but sub-estimates the liquid layer depth. However, the 
turbulent theory underestimates liquid velocity along the radial direction and sub-estimates 
the liquid layer depth.  
For all experiences showed in this section, it can be seen that when a circular liquid free jet 

strikes a flat plate, it spreads radially in very thin film along the heated surface, and the 

hydraulic jump that is associated with a Rayleigh-Taylor instability, can be appeared. Three 

distinct regions are identified and flow velocity is varied along the jet. Therefore, local 

distribution of heat flux and heat transfer coefficient is variable following the liquid layer 

depth and flow velocity.  

There has been little information available in the published literature on local heat 

transfer for cooling using evaporation of impinging free liquid jet. The reason is that the 

liquid film spreads radially on the heated surface in very thin film, and determination of 

local heat flux on the wetted surface requires measurement of the temperature profiles 

along the axial and radial directions without perturbing the flow. Therefore, inverse heat 

conduction problem (IHCP) has been solved in order to determine locally distribution of 

thermal boundary conditions at the wetted surface using only temperatures measured 

inside the wall. 

3. Determination of the thermal boundary conditions 

In the previous work (Chen et al., 2001, Martin & Dulkravich, 1998, Louahlia-Gualous et al., 

2003, Louahlia & El Omari, 2006), IHCP is used to estimate the thermal boundary conditions 

in various applications of science and engineering when direct measurements are difficult. 

IHCP could determine the precise results with numerical computations and simple 

instrumentation inside the wall.  

In this study, experiments were investigates using a disk heated at its lower surface. The 
disk is 50 mm in diameter and 8 mm thick (Figure 9). It is thermally insulated with Teflon 
on all faces except the cooling face in order to prevent the heat loss. Liquid jet impactes 
perpendicularly in the center of the heat exchange surface (top surface of the disk). 
Temperatures inside the experimental disk are measured using 7 Chromel-Alumel 

thermocouples of 200 µm diameter (uncertainty of 0.2°C). As shown in Figure 9, 
thermocouples are placed at 0.6 mm below the wetted surface at radial intervals of 
3.5 mm.  
The experimental disk is heated continually and the wall temperatures are monitored. When 
thermal steady state is reached, the heat exchange surface is quickly cooled with the liquid 
jet. Time-dependent local wall temperatures are recorded, until the experimental disk 

reaches a new steady state. The local surface temperature and heat flux are determined by 
solving IHCP using these measurements. 
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Fig. 9. Physical model. 

Physical model of a unsteady heat conduction process is given by the following system of 
equations: 

 
       2 2

p

2 2

C T r,z, t T r,z, t T r,z, t T r,z, t1

t r rr z

    
  

   
, (4) 

where 0 r R  , 0 z E   

 
T

(0,z, t) 0
r





, where f0 t t  , 0 z E   (5) 

 
T

(R,z, t) 0
r





, where f0 t t  , 0 z E   (6) 

 0T(r,z,0) T , where : 0 r R  , 0 z E   (7) 

 w

T
(r,E, t) Q (r,E, t)

z


 


, where : f0 t t  , 0 r R   (8) 

 T(r,0, t) f(r, t) , where : f0 t t  , 0 r R   (9) 

Distribution of local heat flux wQ (r,E,t)  at the heat exchange surface (z=E) is unknown. It is 

estimated by solving the IHCP using temperatures meas n nT (r ,z , t)  measured at nodes (rn, zn) 

inside the disk (Figure 9). Solution of the inverse problem is based on the minimization of 

the residual functional defined as: 

  
f

0

tN
2

n n
n 1 t

J(C(T), (T)) T(X ,t;C(T), (T)) f (t) dt min


       (10) 

where n n wT(r ,z ;Q )  are temperatures at the sensor locations computed from the direct 

problem (4-9). Minimization is carried out by using conjugate gradient algorithm (Alifanov 
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et al., 1995). Heat flux wQ (r,E,t)  is approximated in the form of a cubic B-spline and the 

IHCP is reduced to the estimation of a vector of B-Spline parameters. Conjugate gradient 

procedure is iterative. For each iteration, successive improvements of desired parameters 

are built. Descent parameter is computed using a linear approximation as follows: 

 

f meas

f meas

t N
it it

n n w meas n n n n w
n 1it 0

t N
it 2

n n w
n 10

T (r ,z , t;Q ) T (r ,z , t) (r ,z , t; Q ) dt

(r ,z , t; Q ) dt





    
  

 




 (11) 

Variation of temperature at the sensor locations it
n n w(r ,z , t; Q )   resulting from the 

variation of heat flux ( , , )wQ r E t  is determined by solving variational problem. Variation of 

functional  wJ Q  resulting from temperature variation is given by: 

  
fmeas

0

tN

w w n n w meas n n n n
n 1 t

J(Q , Q ) T(r ,z , t,q ) T (r ,z , t) (r ,z , t)dt


       (12) 

where it
n n w(r ,z , t; Q )   is determined at the sensor locations  n nr ,z  by solving variational 

problem that defined by the following equations: 

 
       2 2

p

2 2

C r,z, t r,z, t r,z, t r,z, t1

t r r r z

      
  

    
 (13) 

where 0 r R  , 0 z E  , f0 t t   

 (0,z, t) 0
r





, where f0 t t  , 0 z E   (14) 

 (R,z, t) 0
r





, where f0 t t  , 0 z E   (15) 

 (r,z,0) 0  , where : 0 r R  , 0 z E   (16) 

 (r,E, t) 0
z


 


, where : f0 t t  , 0 r R   (17) 

 (r,0, t) 0  , where : f0 t t  , 0 r R   (18) 

3.1 Lagrangian functional and adjoint problem 

Using Lagrange multiplier method, Lagrangian functional is defined as: 

 
f

0

tN
2

n n
n 1 t

J(C(T), (T)) T(X ,t;C(T), (T)) f (t) dt min


       
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+
ft R 2

p2

0 0

T TT
(r,z, t) r C dr dz dt

r r r z t

     
      

      
   

+  
ft R

0 0

(r, t) T(r,0, t) f r, t dr dt     
ft E

0 0

T
(z,t) (R,z, t) dz dt


  

   

+
ft R

w

0 0

T
(r, t) (r,E, t) Q (r,E,t) dr dt

z

 
    

 
ft E

0 0

T
(z, t) (0,z, t) dz dt

r

 
    
   

  
R E

0

0 0

(r,z) T(r,z,0) T dr dz     (19) 

Let ( , , )r z t , ( , )r t , (z, t) , ( , )z t , (r,z)  and ( , )r t  be the Lagrange multipliers.  

The necessary condition of the optimization problem is obtained from the following 
equation: 

 w wL(Q , Q ) 0    (20) 

where w wL(Q , Q )   is the variation of Lagrangian functional. Equation (19) requires that all 

coefficients of the temperature variation  r,z, t  be equal to 0. To satisfy this condition the 

necessary conditions of optimization are defined in the form of adjoint problem. 

 
 pC r,z, t

t

 
 

 

2 2

2 2 2

1 1
S(r,z, t)

r rr r z

   
    

 
 (21) 

where:  
measN

n n
n 1

S(r,z, t) (r,r ;z,z )


     n n w meas n nT(r ,z , t;Q ) T (r ,z , t) ,   

0 r R  , 0 z E  , f0 t t   

 (0,z, t) (0,z, t)
r r

 



, where f0 t t  , 0 z E   (22) 

 (R,z, t) (R,z, t)
r r

 



, where f0 t t  , 0 z E   (23) 

 f(r,z, t ) 0  , where : 0 r R  , 0 z E   (24) 

 (r,E, t) 0
z


 


, where : f0 t t  , 0 r R   (25) 

 (r,0, t) 0  , where : f0 t t  , 0 r R   (26) 

where ( , , )r z t  is the Lagrange multiplier,  
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 
f

0

tN
2

n n
n 1 t

J(C(T), (T)) T(X ,t;C(T), (T)) f (t) dt min


        

 

is the Dirac Function, S(r,z, t)  is the deviation between temperature measurements and 

computed temperatures. S(r,z, t)  is equal to 0 everywhere in the physical domain except at 

sensor locations n n(r ,z ) .  

The Dirac function is defined by 

  
f

0

tN
2

n n
n 1 t

J(C(T), (T)) T(X ,t;C(T), (T)) f (t) dt min


       (27) 

where (0) 1  ,   0r   for r 0  and   0z   for 0z    

If the direct problem and the adjoint problem are verified, variation of the Lagrangian 
functional becomes: 

 
ft R

w w w

0 0

(Q , Q ) (r,E, t) Q (r,E, t) dr dt      L  (28) 

Vector gradient can be verified by the following equation: 

 
wQJ ' (r,E, t) (r,E, t)   (29) 

3.2 Gradient vector computation 

Variation of functional  wJ Q  can be approximated in the form:  

 w wJ(Q , Q )  
 ft E R 2 2

p

2 2 2

0 0 0

C r,z, t 1 1
(r,z, t) dr dz dt

t r r r r z

     
            
    (30) 

Integration by parts gives, the variation of functional becomes using Eqs (21-26): 

 
f 2t R

w w

0 0

(r, t)
J(Q , Q ) (r, t) (r, t) drdt

z z

  
         

   (31) 

 

Substituting Eqs. (25) and (17) into Eq. (31), w wJ(q , q )   becomes: 

ft R

w w w

0 0

(Q , Q ) (r,E, t) Q (r,E, t) drdt      J  

 w w(Q , Q )  L  (32) 

Variation of functional is defined as: 
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f 2

w

t R

w w Q w

0 0

J(Q , Q ) J' (r,E, t) Q (r,E, t) drdt       (33) 

Equations (32) and (33) imply that: 

 
wQJ ' (r,E, t) (r,E, t)   (34) 

Vector gradient can verified the following equation: 

 
wQJ ' (r,E, t) (r,E, t)   (35) 

3.3 Algorithm 

The following iterative procedure is adopted to solve the inverse heat conduction  

problem: 

i. solution of the direct problem, 
ii. calculation of the residual functional, 
iii. solution of the adjoint problem, 
iv. calculation of the components of the functional gradient, 
v. calculation of the parameter in descent direction, 
vi. calculation of the component of descent direction, 
vii. solution of the variational problem to determine the descent parameter, 
viii. the new value of the heat flux density is corrected. 
If the convergence criteria is not satisfied the iterative procedure is repeated until the 
functional is minimized. The minimal value of the functional depends on the temperature 
measurement errors.  
The direct problem, adjoint problem, and variational problem are solved using the control 

volume method (Patankar, 1980) and the implicit fractional-step time scheme proposed by 

(Brian, 1961).  

3.4 Regularization 

The inverse problem is ill-posed and numerical solution depends on the fluctuation 

occurring in the measurements. The iterations are stopped at the optimal value of the 

residual functional which satisfies the criteria: 

 
f meas

t N
2

w n n
n 10

1
J(Q ) (r ,z , t) dt

2 

   (36) 

Here, 2
n n(r ,z , t)  is the standard deviation of measurement errors for the temperatures 

measured at locations n n(r ,z ) . 

4. Inverse estimation of the boundary conditions 

4.1 Numerical verification of the solution procedure 

The numerical procedure is verified by using a known heat flux varying with time and the 
radius of the disk. Heat flux is imposed at the top surface of the disk (z = E) as shown in 
Figure 10 by the continuous curve. The bottom surface (z=0) is assumed to be at the constant 
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temperature of T(r,0,t)= 40°C. For each numerical application, time step size is chosen with 
respect to delta Fourier number condition defined by the following equation: 

 
 2p meas

t
Fo 0.001

C E H

 
 
 

 (37) 

The delta Fourier number is based on the sensor depth, thermal characteristics of the solid, 

and time step (Williams & Beck, 1995, Beck & Brown, 1996). 
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Fig. 10. Heat flux variation with radius on the top surface. Verification of the IHCP: solid 
line (“measurements”), symbols (“estimations using inverse method”). 

In order to validate inverse estimation procedure, it is assumed that temperatures calculated 

from the direct problem at the measurement points are used as the measured temperatures 

( meas n n n n nT (r ,z , t) f (r ,z , t) ) for solving ICHP. Figure 10 shows that the estimated heat flux is 

closed with the exact heat flux for different times. This validation is carried out for the 

number of approximation parameters equal to 9x9. The maximum deviation between the 

computed temperatures and the simulated measured temperatures is of 0.03°C. The 

evolution of the residual functional wJ(Q )  is a function of the number of iterations that are 

continued till the convergence criteria is satisfied. 

4.2 Inverse estimation of evaporation local heat transfer for jet impingement 
4.2.1 Evaporation local heat transfer for unsteady state 

For inlet Reynolds number of 7600, Figure 11 shows an example of temporal temperatures 

measured for different radial locations at 0.6 mm below the heat exchange surface. During 

experiments, heat flux imposed inside the experimental disk is 45 W, the nozzle-heat 

exchange surface spacing is 30 mm, and the liquid inlet temperature is 42°C. At the steady 
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state, wall temperatures are 78°C. When the heat exchange surface is wetted, the wall 

temperatures decrease continually and reach a stable value during a short period. 

Temperature at the stagnation zone is lower than the temperature measured far from the 

impingement zone. IHCP is solved using temperatures measured at Hmeas = 7.4mm (Figure 

11) in order to estimate the local surface temperature and heat flux. These local thermal 

characteristics are estimated using the temperatures measured at the bottom surface (z=0) as 

the boundary condition to solve the direct problem.  
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Fig. 11. Temperatures measured inside the solid at z = Hmeas. 

Figures 12 and 13 show, respectively, the unsteady evolution of the predicted surface heat 

flux and temperature at different radial locations on the cooling surface (z = E =8 mm). 

Surface temperature is low in the stagnation and in impingement zone where heat flux is 

high. The difference between the wall and liquid temperatures is high at the moment when 

the liquid jet impinges the heat exchange surface. After this, heat flux decreases with time 

and follows the same trend for each radial location. Heat flux decreases after the 

impingement zone because liquid spreads along the radial direction as a very thin film. The 

experimental data for each radial location and inlet Reynolds number, follows the same 

trend. For brevity, theses curves are not shown in this figure.  
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Fig. 12. Heat flux inversely predicted at the top surface. 
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Fig. 13. Temperatures inversely predicted at the top surface. 

For both sides of the disk, radial distributions of the surface heat flux and heat transfer 
coefficients are presented in Figures 14a and 14b for different times. Local heat flux and heat 
transfer coefficients are not uniform along the radial direction, and they are high in the 
impingement zone.  
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(b) 

Fig. 14. Radial distribution inversely predicted at the top surface (z = E) : (a) heat flux and 
(b) heat transfer coefficient. 

After the impingement zone, heat transfer decreases because the liquid jet covers the entire 
heat exchange surface. Therefore, local liquid flow rate decreases in spite of the decrease of 
the film thickness. When the radius r becomes higher than approximately 0.018 mm, heat 
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transfer is reduced because of the hydraulic jump formation where the velocity of the flow 
becomes relatively negligible. At each time, the local heat flux and heat transfer coefficient 
follow the same trend. Beyond 64s, the curves of the heat flux and those of the heat transfer 
coefficient are independent on the time because of the steady state. 

4.2.2 Evaporation local heat transfer for steady state 

For steady state, Figure 15 shows the local distributions of the surface temperature and heat 
transfer coefficient. For each radial location, the local heat transfer coefficient is determined 
from the surface heat flux and temperature as follows: 

 w,r
r

s,r e

Q
h

T T



 (38) 

where hr is the local heat transfer coefficient, Qw,r is the local heat flux, Ts,r is the local surface 
temperature, and Te is the liquid temperature at the nozzle exit.  
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Fig. 15. Local thermal characteristics for steady state. 

The surface temperature is low in the stagnation zone compared to all the zones of the heat 

exchange surface. The maximum heat transfer coefficient is occurred in the stagnation point. 

For different flow rates, Figure 16 illustrates the unsteady evolution of the surface 

temperatures for two radial locations. The first one is at the stagnation point where the 

surface temperature is low. The second is far from the impingement zone (at r=0.82R), 

where the heat transfer coefficient is deteriorated because of the hydraulic jump. The surface 

temperature in this zone is higher than in the stagnation point. It is shown that the surface 

temperature is less influenced by the flow rate at the stagnation zone than for r=0.82R where 

the film thickness is small. The normalized heat transfer coefficient is determined as the 

fraction of the local heat transfer coefficient and h0 that is defined at the stagnation zone 

(Figure 17). For each tested flow rate, the heat transfer coefficient decreases from h0 to 50% 

of h0 at radial location approximately equal to 0.6R. 
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Fig. 16. Local surface temperatures inversely predicted at the top surface. 
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Fig. 17. The normalized heat transfer coefficient distribution as a function of water jet flow 
rate. 

5. Conclusion 

Various theoretical and experimental investigations on convective local heat transfer have 

been published in the literature where local heat transfer coefficient is determined from total 

heat flux or using direct estimation (Fourier’s law). In this case, heat flux is assumed to be 

dissipated only in the axial direction and constant along the heat exchange surface.  
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In this work, local heat transfer is analyzed by solving inverse heat conduction problem and 
using only sensors responses placed inside the experimental disk. Iterative regularization 
method is used to solve the inverse problem under analysis. Solution procedure is based on 
the conjugate gradient method used to minimize the residual functional and the residual 
discrepancy principal as the regularizing stopping criterion.  
For each radial location, local heat transfer coefficient is determined using local heat flux 
and surface temperature. The heat flux and heat transfer coefficient are high in the 
impingement zone and decrease after this zone because liquid flow spreads along the radial 
direction as a very thin film. At each time, surface temperature is low in the stagnation zone 
and the highest heat transfer coefficient occurs in the stagnation zone and falls off with the 
radial location because local flow rate decreases. For different tested flow rates, the heat 
transfer coefficient decreases from h0 to 50% of h0 at the radial location approximately equal 
to 0.6R. 
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