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1. Introduction 

Recently, the scarcity and toxicity of indium, a major constituent element of ITO, has 
become a concern. Indium is a rare element that ranks 61st in abundance in the Earth’s crust 
(Kempthorne & Myers 2007). In addition, the major amounts of indium consumed by the 
industries produceing the electronic devices such as liquid crystal displays (LCDs), touch-
screens and solar cell systems are supplied by only a few countries. Furthermore, indium 
has also been suspected to induce lung disease, and particularly indium-related pulmonary 
fibrosis should be paid attention (Homma et al., 2005). 
Transparent conductive oxides have become the focus of attention as a substitute material 
for ITO currently used for optically transparent electrodes in electronic devices. In 
particular, transparent conductive ZnO films are expected to be suitable materials to achieve 
such purposes because, in contrast with indium as a major constituent element of ITO, Zn is 
an element that the human body requires and is a component of some marketed beverages, 
in addition to having being used for years in cosmetics and as a vulcanization accelerator for 
rubber products such as tires. Furthermore, conductive and transparent ZnO films have low 
electrical resistance and high optical transmittance comparable with those of ITO films 
reported by some authors (Wakeham et al., 2009; Shin et al., 1999). We have developed the 

technology to form transparent conductive ZnO films with low resistance (2.4 m for a 
100 nm thick film (Yamada, et al., 2007)), optical transmittance exceeding 95% (film-only 
transmittance without that of the glass substrate) and high heat-resistance (thermally stable 
until 300-450 °C (Yamamoto, N. et al., 2010)). The technology of transparent conductive ZnO 
films applied as alternatives to ITO electrodes for LCD panels is described in this chapter. 

2. Preparation of transparent and conductive ZnO film 

Ga-doped ZnO (GZO) and Al-doped (AZO) films have been widely studied as the most 
promising transparent conductive films as alternatives to ITO films used in electronics 
devices such as LCDs, LEDs and solar cells. 

2.1 Magnetron sputtering system 
Conventional magnetron sputtering systems, planar- and cylindrical-types (Carousel-type), 
were used to form transparent ZnO thin films. A schematic diagram of the cylindrical-type 
magnetron sputtering system is shown in Fig. 1 (a). In the cylindrical-type magnetron 
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sputtering system, a drum with samples set on its surface is rotated concentrically in the 
chamber with the sputtering target set on the inside wall. A film can be formed by 
sputtering with dc power (noted as dc MS) and radio frequency power combined with dc 
power (noted as rf+dc MS) applied to the sputtering target. 

2.2 Reactive plasma deposition system 
Figure 1 (b) shows a schematic diagram of the reactive plasma deposition system (RPD) 
(Yamamoto, T. et al., 2008)., which is a type of ion-plating method. An Ar plasma stream is 
generated by a pressure gradient arc plasma source (Uramoto gun) at the cathode is 
introduced by control of the electric and the magnetic field to the evaporation source tablet 
inset in the hearth at the anode. The particles evaporated from the source are deposited onto 
the substrate set on the tray traveling in front of the heater. 
 

 

Fig. 1. Schematic diagrams of the deposition systems for the transparent conductive ZnO films. 

The specifications for the formation of conductive transparent ZnO film using the 
magnetron sputtering systems and the RPD system are summarized in Table 1 
 

 
Magnetron Sputtering (MS) 

RPD 
dc MS rf+dc MS 

Ga2O3/Al2O3 content in ZnO 
source (wt%) 

Ga2O3: 3.0 - 6.0 
Ga2O3: 3.0 - 5.0 

Al2O3: 2.0 - 5.0 

Power (kW) 0.1 - 2.0 
rf: 0.1 - 1.5, dc: 0.1 - 1.5 

rf/dc = 0.5 - 2.0 
discharge current: 

140 - 150 (A) 

Operation pressure (Pa) 0.1 - 0.8 0.1 - 0.8 0.4 - 0.6 

Operation temperature (C) 25 - 350 25 - 350 25 - 250 

Table 1. Specifications for the formation of GZO or AZO films (Yamamoto. N. et al., 2011a & 
2011c). 
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An Ar plasma stream is generated by a pressure gradient arc plasma source (Uramoto gun) 
at the cathode is introduced by control of the electric and the magnetic field to the 
evaporation source tablet inset in the hearth at the anode. The particles evaporated from the 
source are deposited onto the substrate set on the tray traveling in front of the heater. 
The specifications for the formation of conductive transparent ZnO film using the 
magnetron sputtering systems and the RPD system are summarized in Table 1  

3. Basic characteristics of transparent conductive ZnO film 

The fundamental characteristics of transparent conductive ZnO films for application to LCD 
panels are discussed in this section.  

3.1 Crystalline structure of transparent conductive ZnO film 
X-ray diffraction (XRD; ATX-G, Rigaku) and transmission electron microscopy (TEM; H-
9000UHR; Hitachi High-technologies Co.) were applied for analysis of the crystalline 
structures of transparent conductive ZnO films. 
The crystalline structures and orientations of the GZO films were analyzed using both out-

of-plane XRD (widely used X-ray diffraction analysis) and in-plane XRD (grazing-incidence 

wave-dispersive X-ray analysis (Ofuji et al., 2002)). For measurement using the in-plane 

XRD technique, a Cu Kα X-ray beam with a wavelength of 0.154184 nm was irradiated at a 

low angle of incidence to the surface of the sample (0.35°). The incident angle is close to the 

total reflection angle of X-ray for ZnO. 

XRD patterns obtained from the GZO films deposited by dc MS, rf+dc MS or RPD were 

almost identical and had the wurtzite crystalline structure, as with the ZnO films. A typical 

XRD pattern obtained from a GZO film is shown in Fig. 2. 

The in-plane XRD diffraction pattern shows that no diffraction peaks from the ZnO(00x) 

crystal planes were evident (Fig. 2(a)). In contrast, the out-of plane XRD pattern shows only 

the (002) and (004) diffraction peaks of the GZO film (Fig. 2(b)). 

The appearance of these diffraction peaks clarified that (1) the GZO polycrystalline film 

consists of the wurtzite structure. (2) the c-axes of the wurtzite structure coincides with the 

direction normal to the GZO film surface, and (3) the a-axes of the wurtzite cell structure 

coincides with the direction in the plane of the film. The TEM image in Fig. 3(a) and the cell 

structure shown in Fig. 3(b) explains the structure. Columnar grains comprise the interior of 

the polycrystalline GZO films (Yamamoto. N. et al., 2008). Such crystalline structures also 

appeared in films formed in the temperature range of 150-250 °C using dc MS, rf+dc MS and 

RPD. 

The lattice constants for the c- and a-axes, and the volume of the wurtzite crystalline unit cell 

in 100 nm thick GZO films prepared at 180 °C by dc MS, rf+dc MS and RPD were derived 

using the XRD peaks diffracted from the (00x) and (x00) crystalline planes and are compared 

in Fig. 4 (Yamamoto, N. et al., 2010). The lattice constants of the GZO films prepared by RPD 

were shorter than those of the films formed by magnetron sputtering (Fig. 4(a)). The c-axis 

of the rf+dc MS film was especially expanded toward the direction normal to the surface of 

the substrate compared with the other films. The a-axis was also expanded toward in the 

direction of the plane of the film. As a result, the cell volume of the wurtzite structure in the 

films prepared by rf+dc MS were larger than those formed by dc MS and RPD, as shown in 

Fig. 4 (b). 
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Fig. 2. Typical XRD profile of a 150 nm thick GZO film prepared at 180 °C using dc MS. 

 

 

Fig. 3. (a) Cross-sectional TEM image of GZO film formed by dc MS and (b) the wurtzite cell 
structure. 

 

 

Fig. 4. Comparison of the a-axis, c-axis lattice constants and the unit cell volumes in 
crystalline ZnO-based wurtzite structures of films prepared using dc MS, rf+dc MS and RPD 
(Yamamoto,N. et al 2010). 
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3.2 Resistance of transparent conductive ZnO film 
The resistivity of the film is one of the most important characteristics required for 
application of alternative transparent electrodes to ITO used in LCDs. The resistivity of ITO 

transparent films is in the range of 1.3–3.8 m (Wakeham, et al.. 2009; Shin et al., 1999). 
Therefore, transparent conductive ZnO films as an alternative must have a resistivity of less 

than ca. 3.8 m. 
In the case of thin films, the resistivity is generally derived from the carrier-flow in the plane 
of the films. The resistivities of even metal films increase with the decrease in film thickness, 
especially less than ca. 100 nm. Such a phenomenon is caused by the increase in the 
frequency of collisions or scattering with the carrier–flow and the film surface, the interface 
with the substrate and irregular crystalline structures in the region of the substrate. The 
resistivity of the GZO film also shows a similar dependency on the film thickness, as shown 
in Fig. 5(a). 
 

 

Fig. 5. Electrical characteristics of GZO film as a function of the film thickness. 

As the film thickness decreases, the carrier mobility and concentration in the film decreases, 
as shown in Figs. 5(b) and (c). The data in Fig. 5 was obtained from GZO films prepared 
using RPD at 180 °C. The electrical characteristics of transparent conductive ZnO films 
formed by the magnetron sputtering showed similar dependencies on the film thickness, 
although the values were significantly affected by the formation conditions, i.e., type of 
dopant and its concentration, the deposition equipment, temperature, pressure and the 
electrical power supplied to the source during deposition. 
Figure 6 shows a comparison of the resistivities of GZO and AZO films formed with an Ar 
sputtering pressure of 0.66 Pa at room temperature or at 180 °C using the conventional 
planar magnetron sputtering system. The ZnO sputtering target materials for the deposition 
of GZO or AZO contained 4 wt% Ga2O3 or 2 wt% Al2O3, respectively. The total sputtering 
power used in both cases of dc MS and rf+dc MS was set to 200 W.  
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The resistivities of the AZO films were 1.5 times or more higher than those of the GZO films. 
The resistivities of the films formed by rf+dc MS were lower than those of films formed by 
dc MS (Yamamoto, N. et al., 2011a & 2011c). However, this relationship does not correspond 
to the lattice constants and cell volumes of the wurtzite structures of the GZO films formed 
by rf+dc MS, which were larger than those of the films formed by dc MS, as shown in Figs. 
4(a) and (b). It is generally considered that the probability of carrier hopping among atoms 
decreases with distance from each atomic site, and as a result, the resistivity of the film 
decreases with the length of the lattice constant. The reason for the contradiction between 
the resistivity and the lattice constant (length) is yet to be clarified. 
 

 

Fig. 6. Comparison of resistivity for ca. 150 nm thick transparent ZnO films formed by dc 
MS and rf+dc MS 

3.3 Visible light transmittance of transparent conductive ZnO film 
Alternative materials to the ITO electrodes used for LCDs are required to have 
transmittance for visible light comparable with that of ITO films. The optical transmittance 
of the films was analyzed using an optical spectrophotometer (U-4100 UV-Visible-NIR 
spectrophotometer, Hitachi High-tech. Co. Ltd.). The transmittance of the GZO films in the 
wavelength range of ultraviolet (UV) to near-infrared (NIR) is shown in Fig. 7(a) The 
transmittance values presented in this section include the transmittance of the glass 
substrate. The absorption edges in the spectra are shifted slightly to the shorter side from the 
wavelength (ca. 370 nm) corresponding to the bandgap of undoped-ZnO according to the 
Burstein–Moss effect (Moss 1980). 
On the other hand, the transmittance in the NIR region was significantly reduced from an 
increase of reflectance due to the plasma resonance of electron gas in the conduction band in 
the films with highly density carriers (electrons) of 81026 to 1.51027 m-3 (Jin et al., 1988; 
Dong & Fang 2007). The transmittance spectra in the wavelength region of visible light are 
scaled up in Fig. 7(b). Undulations in the transmittance spectra as a function of wavelength 
appeared due to optical interference phenomena caused at the surface and at the interface 
with the glass substrate because the dependency of the 110 nm thick sample on the 
wavelength differed from those of the ca. 150 nm thick samples. The maximum, minimum 
and average transmittance of each sample in the range of 400–800 nm were 90.5 – 91.4, 73.1 – 
86.4, 87.2 – 87.8, respectively. 
The transmittance of a 150 nm thick GZO film formed at 200 °C by conventional dc MS on a 
1.1 mm thick Corning #1737 glass substrate was compared with polycrystalline and 
amorphous ITO films with ca. 150nm thickness formed using a similar sputtering system, 
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Fig. 7. Comparison of optical transmittance of films formed at 180 °C using rf+dc MS and dc 
MS on 0.7 mm thick Corning #1737 glass substrates. 

and the results are shown in Fig. 8 (Yamamoto, N. et al., 2011a & 2011c). The exact 

deposition conditions is proprietary and therefore limited to announcement by Geomatec 

Co., Ltd. Japan. The amorphous and polycrystalline ITO films were formed at 

approximately 50-70 and 250-300 °C, respectively. The optical transmittance of the GZO film 

surpassed those of the ITO films in the entire wavelength range of visible light. Visible light 

in the range of 400-550 nm was transmitted through the GZO film with 2-7% higher 

transmittance than those of the ITO films. 

 

 
Fig. 8. Comparison of the optical transmittance of transparent GZO and ITO films.  

3.4 Residual stress in transparent conductive ZnO film 
The development of transparent conductive films that are resistant against external forces 
and forces induced by thermal processes (maximum temperature: ca. 250 °C) during LCD 
fabrication requires investigation of the fundamental mechanical characteristics of the films, 
such as residual stress, thermal stress, strain, Young’s modulus, coefficient of thermal 
expansion, adhesive force and creep. In this section, the residual stress of GZO films is 
discussed. The conventional optical lever method was applied for residual stress analysis 
using a HeNe-laser beam at 633 nm (F2300, Flexus Co.). The Si wafer substrate was used as a 
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reflector for the laser beam. The substrate with film was placed on the three projections 
attached with an equilateral-triangular layout on the surface of the heater plate. The radius 
of curvature of the Si wafer was measured by detecting the reflected beam. The stress in the 
film was then derived using the curvature radius, the linear coefficient of thermal expansion 
(3.34×10−6 K−1) and the Young’s modulus (160 GPa) of the Si substrate (Wortman & Evans 
1965). 
The wafer was heated from 25 to 500 °C and subsequently cooled to 25 °C for heat-cycle 
testing of the film, and the curvature radius of the Si wafer was measured in situ during 
testing. The residual stresses of all the as-deposited films were artificially set to compressive, 
according to the controlled deposition processing factors. The residual stress in a film is 
dependent on the degree of energetic particle bombardment, that is, energy striking the 
condensing film during deposition by magnetron sputtering or RPD with plasma discharge 
discharge (Thornton, & Hoffman, 1977; Yamamoto, N. et al., 1986). 
The residual stress properties of the films were clarified by applying heat-cycle testing. 
Heat-cycle testings was applied twice to each sample. The samples were heated at a rate of 
2.8 °C/min until thermal equilibrium (thermally quasi-static condition) and in situ 
measurements of residual stresses in the films were conducted during heat-cycle testing. 
The residual stresses of the films formed at 180 °C using rf+dc MS, dc MS and RPD had 
following similar behaviors, as shown in Fig. 9 (Yamamoto, N. et al., 2008 & 2010). (I) the 
residual stress in the films was significantly reduced in the range from 200 to 400 °C during 
the first heating-up process (step 1); there was an increasing tendency toward strongly 
compressive residual stress, which changed abruptly to the tensile direction upon heating. 
This critical temperature of change is dependent on the deposition method of the films. (II) 
the stress decreased monotonically with cooling from 500 °C (step 2), and (III) the 
dependence of the stress in each film on the temperature during the second heat-cycle (steps 
(3) and (4)) almost coincided with that in step (2). These phenomena present evidence that 
the extrinsic stress components in each film are removed by annealing during the first 
heating step to 500 °C, and the resulting stress is composed of only thermal stress, i.e., 
intrinsic stress. The thermal stress is caused by the difference in the linear coefficient of 
thermal expansion between the GZO film and the Si substrate. 
On comparatively thicker GZO films (ca. 500 nm in Fig. 9) formed by dc MS and RPD, the 
temperature dependencies in step (1) were closer to those in the second cycle testing. The main 
component of internal stress in such thick films was thermal stress (intrinsic stress), even 
before heat-cycle testing of the as-deposited film. The GZO films approached the ideal 
crystalline structure as the thickness increased. The overall temperature dependency change of 
the residual stresses according with the film thickness corresponds approximately with the 
increase in crystalline irregularity with the distance from the interface to the substrate. On the 
other hand, the GZO film thicker than 500 nm formed by rf+dc MS did not provide the same 
stress behavior in step (1) in the GZO closed to those in steps (2) to (4). High strain or irregular 
crystalline structures were present until a far distance from the substrate surface of the film. 

4. Fabrication of LCD panels with transparent ZnO electrodes on RGB color 
filters 

4.1 Intrinsic weakness of transparent conductive ZnO film in the LCD manufacturing 
environment 
The fundamental properties of GZO films as an alternative to ITO transparent electrodes 

have been clarified with experimental results. However, the properties required for 
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Fig. 9. Comparison of residual stress behavior during heat-cycle testing from room 
temperature to 500°C in an Ar atmosphere. 

application in the production of the LCDs have not yet been discussed thoroughly. ZnO or 
materials based on ZnO have significant impediments to LCD applications. Such materials 
have amphoteric properties, so that their films have the extremely low tolerability to the 
various process conditions and environments used for manufacturing and operating LCD 
panels, i.e., acidic, basic and highly humid environments. Furthermore, Zn atoms are easily 
volatilized from materials by heating processes at relatively low temperature such as 300-
400 °C. Transparent electrode films are required to endure manufacturing processes at ca. 
250 °C for the fabrication of LCDs. A diagrammatic cross-sectional illustration of an LCD is 
shown in Fig. 10. 
 

 

Fig. 10. Schematic cross-sectional view of an LCD. 
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The transparent conductive films on the RGB color filter is generally used without 
patterning. On the other hand, the transparent electrode on the TFT pixel array is formed by 
patterning the film using wet-chemical etching techniques. Therefore, as the first stage of 
transparent ZnO electrode development, the GZO films were applied as only the 
transparent electrode on the RGB color filter in an LCD. In this case, the conventional ITO 
electrode was used on the TFT pixel array. Concurrently, a technique to form the fine-line 
patterns of the transparent conductive ZnO film was developed using wet-chemical etching. 

4.2 Heat resistance against thermal processing during LCD fabrication 
Figure 9 should be referred to again for discussion regarding the heat resistance of GZO 
films, especially with regards to the behavior of 100 nm thick GZO films because this 
thickness is close to that used for transparent electrodes in LCDs. During the first heating 
(step (1)) in the heating cycle test, the compressive residual stress started to reduce suddenly 
at a specific temperature. The temperature range in which a detectable reduction in the 
compressive stress occurred in each type of film formed by rf+dc MS, dc MS and RPD was 
200-250, 250-300 and 350-400 °C, respectively. 
The cause of the decrease in the residual stress with heating to higher than the critical 
temperature was analyzed using thermal desorption spectrometry (TDS; EMD-
WA1000S/W, ESCO Co., Ltd.). The dependence of the amount of Zn mass fragment in the 
TDS mass spectra on the temperature had the highest correlation with stress for various 
materials subliming from each GZO film, as shown in Fig. 11(a) (Yamamoto. N. et al., 2008). 
The temperature at which an observable change in the amount of Zn in the three film types 
due to volatilization was at 200-250, 250-300 and 300-400 °C, respectively (indicated with 
arrows). Therefore, it was concluded that the volatilization of Zn from the films at these 
temperatures during step 1 in the heat-cycle test caused the decrease in the compressive 
residual stress. The correlation indicates that shrinkage of the film volume accompanied the 
volatilization of Zn, which resulted in a reverse of the temperature-dependence of the 
residual stress from increasing compressive stress toward tensile stress. 
The order among the critical temperatures at which the change of residual stress and the 
amount of volatilized Zn began to become significant for the three film types has a good 
correlation with the order among the lengths of the lattice constant or the wurtzite cell 
volume as shown in Fig. 4. Longer distances between the atoms in the wurtzite structure is 
likely to cause weakening of the atomic binding forces, which results in lowering of the 
heat-resistance of the material. 
The heat-resistant properties of the three film types derived from these experimental results 
were in following order: rf+dc MS < dc MS < RPD. The order of the heat-resistance with 
respect to the electrical characteristics was exactly the same as that with respect to Zn 
volatilization and the residual stress. The change in the resistivity, carrier concentration and 
carrier mobility caused by annealing (heat cycle testing) are compared for films formed by 
rf+dc MS and RPD in Fig. 11(b). The critical temperatures estimated from the electrical 
characteristics for the three film types were 200-250 °C (rf+dc MS) < 250-300 °C (dc MS) < 350-
400 °C (RPD). This order corresponded exactly with the release of compressive residual stress 
and Zn volatilization in step (1) during the heat-cycle testing (Yamamoto, N. te al 2010). 
Therefore, the films formed by dc MS and RPD have heat resistance properties that are 
suitable for use as an ITO substitute material for optically transparent electrodes in LCDs. In 
the case of the film formed by rf+dc MS, the heat resistance characteristics were on the 
borderline for LCD application. It would be necessary to improve the properties of the rf+dc 
MS film by some process. 

www.intechopen.com



 
Transparent ZnO Electrode for Liquid Crystal Displays 

 

35 

 

Fig. 11. (a) Comparison of TDS mass spectra for the volatilization of Zn plotted as a function 
of temperature for 100 nm thick GZO films formed by rf+dc MS, dc MS and RPD at 180 °C. 
(b) Degradation rates of resistivities, carrier concentrations and carrier mobilities in the films 
formed by rf+dc MS and RPD at 180 °C as a function of temperature when annealed in 
flowing Ar (Yamamoto, N. et al., 2010). 

4.3 Fabrication of LCDs with transparent ZnO electrode 
As the first stage of transparent ZnO electrode development, the GZO electrodes were only 

applied on the RGB color filter for the manufacture of the LCDs. Conventional ITO films 

were used as the electrode on the TFT pixel arrays in the LCDs. Among the three film types, 

the films formed by RPD have the best suited characteristics, such as low electrical 

resistance and high heat-resistance. However, the current RPD system is not in the usable 

field for the large size motherglass (1500×1800 mm2, 2160×2400 mm2 and 2850×3050 mm2) 

used in the production lines of large size LCD TVs, such 6G (generation), 8G and 10G. 

Therefore, the conventional dc MS technique, which is used for the formation of ITO 

transparent electrodes used in commercially available LCDs, was used for the fabrication of 

LCDs with the GZO electrodes on RGB color filters. 

150 nm thick transparent GZO films were formed on the RGB color filters at 150 °C using dc 

MS. The LCDs were fabricated without change to the process flow, except for the GZO 

deposition. The fabrication process flow is generally kept an industrial secret. Therefore, the 

order of the most basic process steps for manufacturing the LCDs are shown as a reference 

in Fig. 12 (Yamamoto, N. et al., 2010).  

The fabrication of the RGB color filter side module and the TFT pixel array side module 
were carried out separately from each other. After the fabrication reached the final step in 
each side-module process flow, the two side modules are combined with each other. 
Consequently, the liquid crystal material is poured into the gap between both substrate 
sides. LCD fabrication is accomplished through hinging the bezel and attaching various 
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Fig. 12. Basic process flow for manufacture of an LCD with GZO on the RGB color filters. 

controlling circuits. Finally the completed LCDs are tested for long term at 50-70 °C in a 
high humidity (90-95%) environment. 
Figure 13 shows the typical display of 3 inch size LCDs and the motherglass before cutting 
each 3 inch panel part (Yamamoto, N. et al., 2010). The production procedure and process 
conditions were the same as those for commercially available TFT-LCDs with conventional 
ITO transparent electrodes, except for the processing step for the formation of transparent 
conductive GZO films. 
 

 

Fig. 13. (a) Display pictures of 3 inch LCDs with transparent GZO electrodes on the RGB 
color filters. (b) Schematic of 24 sealed 3 inch LCD sandwiched by the motherglass on both 
sides. 
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The displays of 20 inch size LCD TVs with GZO transparent electrodes on the RGB color 
filters are compared with those of commercially available LCD TVs with ITO electrodes in 
Fig. 14 (Yamamoto, N. et al., 2011a & 2011c). 
 

 

Fig. 14. Comparison of the display pictures between 20 inch LCD TVs with GZO and ITO 
electrodes on the RGB color filter. 

The various display properties, such as the contrast ratio of the module, and the 
chromaticity diagram characteristics, of the LCD TVs with the GZO electrodes were 
equivalent to those of the LCD TVs with conventional ITO electrodes. The average visible 
light transmittance of the TV module with the GZO transparent electrode exceeded that of 
the conventional TV modules with ITO electrodes by 4–5%. These superior characteristics of 
the GZO module were confirmed by the experimentally measured transmittance of the GZO 
film in the short wavelength (blue) region of visible light, which exceeded that of 
polycrystalline and amorphous ITO films (Fig. 8). 
The major difference between the 3 inch size LCDs and the 20 inch LCD TVs are the 
spacers set at the inter-gaps between both side modules. Bead type spacers are distributed 
between the modules to form a space to inject the liquid crystal, as shown in Fig. 13(b). In 
the case of the 20 inch LCD TVs, column (rib) type spacers were formed on the plates of 
the RGB color filters using a conventional photolithography patterning technique. The 
process steps and the detailed flow for the manufacture of LCD TVs does deviate from 
that presented in Fig. 12; however, this is proprietary knowledge and the intellectual 
property of each company. 
The display performance of the completed 3 inch LCDs and the 20 inch LCD TVs did not 
degrade even after long-term operating tests for over 1000 h (on gong) at 50-65 °C in a high 
humidity (90-95%) environment. Prior to the long-term operation testing, there was some 
concern regarding degradation of the display performance due to the high humidity 
environment because the resistance and transmittance of the transparent ZnO film 
deteriorates under high humidity (Nakagawa, et al., 2009). However, the long-term 
operation testing results for the LCDs confirmed that transparent ZnO electrodes sealed in 
the modules of LCDs were not affected by the external environment. 
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5. Formation of transparent ZnO electrodes with fine-line patterns on TFT 
pixel arrays 

Transparent films formed on the TFT pixel array must be finely patterned using wet-
chemical etching techniques. GZO is amphoteric and has low resistance to such agents; 
therefore, there are no reports on the formation of transparent ZnO patterns with line-

widths finer than approximately 10 m. Thus, the fine-patterning of GZO thin films by wet-
chemical etching is a significant developmental challenge. 
Fine-patterns of transparent conductive ZnO films were formed by the process flow shown 
in Fig. 15 (Yamamoto, N. et al., 2011a; 2011b & 2011c). At first, a positive-type novolac-
photoresist layer was formed on a transparent conductive ZnO film using a spin-coating 
applicator for the formation of fine-patterned films. A contact aligner (UV-light exposure 
system) was used to print the designed mask patterns onto the photoresist layer. The UV-
exposed parts in the photoresist layer were removed with a photoresist-developer 
containing tetramethyl ammonium hydroxide (TMAH, (CH3)4NOH). The unexposed parts 
remained as photoresist patterns. Patterning of the GZO films was conducted using a wet-
chemical etching technique with organic-acidic etchants; carboxylic acid agents with the 
photoresist-patterns as the etching mask. The patterning-mask photoresist remaining on the 
ZnO material patterns was subsequently removed using a photoresist-stripper containing 
an amine (ELM-R10-F22, produced by Mitsubishi Gas Chemical (MGC) Co., Inc.). The key to 
realize fine-patterns with widths of a few micrometers is fulfilled by the following three 
requirements. (1) Development or choice of a suitable developer for the photoresist, i.e., 
alkaline solution. An aqueous solution prepared by the addition of TMAH to deionized 
pure water was used as the developer. (2) Development or choice of an acidic solution 
(etchant) for wet-etching (patterning) of the transparent conductive ZnO films. Solutions 
based on organic acids and inorganic acid with different pH values were prepared in this 
work. (3) Optimization of the photolithography and etching processes for GZO films. 
 

 

Fig. 15. Process flow for patterning GZO films using wet-chemical etching techniques 

The technology for fabricating fine-patterns of transparent conductive ZnO films developed 
in this work is summarized as follows. The key factors are (1) the development or selection 
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of appropriate chemical agents, and (2) the determination of an appropriate pH range for 
each agent (Yamamoto, N. et al., 2011a; 2011b & 2011c). 
1. Alkaline chemicals for photolithography process 

a. Developer: TMAH aqueous solution   pH: 12.0-13.0 

b. Stripper:  Amine chemical solution   pH: 11.0-12.0 

(ELM-R10-F22, MGC Inc.) 

2. Acidic agent for wet-chemical etching (patterning)  pH: 5.5-6.8 

a. Organic acidic etchants (carboxylic acid series)  prepared by MGC Inc.  

(Chemical composition: nondisclosur. Not for sale at the present stage) 

b. Inorgabic acidic etchants    prepared by Naoki Yamamoto 

3. Optimization and control of conditions related to lithography process (UV light 

exposure, baking of photoresist) and etching process (temperature of etchant, rinsing 

and drying after etching) 

Fine-patterns with line and space widths of a few micrometers were successfully formed 

using this technology, as shown in the optical micrographs in Fig. 16 (Yamamoto, N. et al., 

2011a; 2011b & 2011c).  

 

 

Fig. 16. Typical GZO patterns formed using a weakly acidic etchant (pH 5.5 – 6.8). 

Micrographs (a) and (b) show typical meander patterns with line and space widths of 5 m 

and comb-like line and space widths of 3 m, respectively. 

Figure 16(c) and (d) shows dense 2 μm line and space patterns of 120 nm- and 150nm- thick 

GZO film formed successfully using the developed wet-chemical etching technique. 

It should be noted here that the patterns shown in Fig. 16 had smooth edges and no residues 

were observed on the glass substrates after etching of the GZO films. In addition, the 2 m 

width line patterns of the GZO film are comparable to the narrowest ITO transparent 

electrodes formed by wet-etching techniques using leading-edge proximity exposure 

systems available in commercial LCD production lines. 
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6. Summary 

GZO and AZO films are considered to be the most suitable conductive ZnO films for the 
current purpose of LCD fabrication. Particular focus was made on the GZO films, because 
the resistivities of GZO films are lower than those of AZO films. 
GZO films have the wurtzite structure as with ZnO films. The resistivity of the GZO films 

reached approximately 2.4 m, which is in the range of 1.7–3.8 m reported for ITO films 
formed at temperatures lower than 250 °C. 
Conductive ZnO films are amphoteric and are therefore susceptible to acidic and alkaline 
environments. Therefore, the most important issue for the development of transparent GZO 
electrodes for LCDs is the development of wet-chemical etching techniques to form fine-
patterns with widths of a few micrometers. 
The fabrication of LCDs includes process steps that require heating up at 200-250 °C. The 
thermal resistance of GZO films was investigated from the residual stresses behavior of the 
films and the volatilization of Zn in the films during heat-cycle testing between room 
temperature and 500 °C. During the first heating step, the critical temperature where 
significant Zn volatilization from the GZO film begins coincided with the temperature where 
significant changes begin to appear in the residual stress and electrical characteristics, that is, 
resistivity, carrier mobility and carrier concentration. The relationship of these changes with 
the volatilization of Zn caused by heating the films was clarified. The temperature at which 
significant change occurs is the critical temperature of the GZO film. The critical temperature 
was dependent on the method of film formation as follows. The critical temperatures of the 
films were in the order of 250 °C (rf+dc MS film) < 300 °C (dc MS film) < 400 °C (RPD film). 
Films formed using dc MS and RPD would therefore be resistant to the thermal process steps 
conducted at a maximum temperature of 250 °C for the manufacture of LCD panels (TV sets). 
The transmittance of the GZO film exceeded that of the conventional ITO electrode by ca. 2-7% 
in the short wavelength region of visible light. As the first development stage of the 
transparent ZnO electrode, ca. 150 nm thick GZO films were used as only the transparent 
electrodes on the RGB color filters in 3 inch LCDs and 20 inch LCD TVs. Conventional ITO 
electrodes were used as the transparent electrodes on the TFT pixel arrays. The initial display 
performance of both the 3 inch LCDs and the 20 inch LCD TVs was maintained even after 
long-term operation testing (>2000 h) at 50-65 °C in a high humidity (90-95%) environment. 
A wet-chemical etching technique was developed concurrently for the formation of fine-line 
dense patterns with widths of a few micrometer using the amphoteric GZO films as the 2nd 
stage of transparent ZnO electrode development. This involved (1) development or selection of 
appropriate alkaline chemicals for photolithographic processing, (2) development of acidic 
chemicals for the etching of transparent ZnO films, and (3) optimization of the 
photolithography and etching processes. The suitable pH range of each chemical agent was 
determined experimentally, and included the following: (1) TMAH photoresist-developer: pH 
12.0–13.2, (2) an etchant for patterning the transparent ZnO film: pH 5.1-6.8, and (3) photoresist 

remover (stripper): pH 11.0–12.0. Fine line dense patterns with 2 m line/2 m space widths 
were successfully fabricated from 50–150 nm GZO films using these selected reagents and the 
developed technique. AZO fine-line patterns with the same widths could be also formed using 
the pattering techniques, because the CD loss (the critical dimension loss is defined as the 
distance encroached in the ZnO conductive films by acidic etchant from the edge of the patterns 
under the photoresist layer. reffer Fig.15) dependency rates of AZO films on the over-etched 
times processed using the acidic etchant were the same as those of the GZO films. 
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7. Future perspective of transparent ZnO electrode technology 

It is expected that LCD TVs manufactured in near future will have the transparent ITO 
electrodes replaced with transparent ZnO electrodes. Furthermore, the successful 
development of fine-patterning technology for transparent ZnO films should realize the 
application of transparent ZnO electrodes to not only LCD TVs that are operated by the VA 
(vertical alignment) method, but also LCD TVs driven by the IPS (in-plane switching) 
method. In addition, it is expected that this fine-patterning technology will enable the 
application of transparent ZnO electrodes to not only LCDs, but also organic LEDs (OLEDs), 
touch panels LEDs and solar batteries. This technology may also contribute to the 
development of discrete electronic devices and integrated circuits consisting of ZnO or 
derivative semiconductors. 
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