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1. Introduction

The Fourier series representation of a function is a classic representation which is widely
used to approximate real functions (Stein & Shakarchi, 2003). In digital signal processing
(Oppenheim & Schafer, 1975), the sampling theorem states that any real valued function f can
be reconstructed from a sequence of values of f that are discretely sampled with a frequency
at least twice as high as the maximum frequency of the spectrum of f . This theorem can also
be applied to functions over finite domains (Stankovic & Astola, 2007; Takimoto & Maruoka,
1997). Then, the range of frequencies of f can be expressed in more detail by using a bounded
set instead of the maximum frequency. A function whose range of frequencies is confined to
a bounded set I is referred to as “bandlimited to I”. Ukita et al. obtained a sampling theorem
for bandlimited functions over Boolean (Ukita et al., 2003) and GF(q)n domains (Ukita et al.,
2010a), where q is a prime power and GF(q) is Galois field of order q. The sampling theorem
can be applied in various fields as well as in digital signal processing, and one of the fields is
the experimental design.
In most areas of scientific research, experimentation is a major tool for acquiring new
knowledge or a better understanding of the target phenomenon. Experiments usually aim
to study how changes in various factors affect the response variable of interest (Cochran
& Cox, 1992; Toutenburg & Shalabh, 2009). Since the model used most often at present in
experimental design is expressed through the effect of each factor, it is easy to understand
how each factor affects the response variable. However, since the model contains redundant
parameters and is not expressed in terms of an orthonormal system, a considerable amount of
time is often necessary to implement the procedure for estimating the effects.
In this chapter, we propose that the model of experimental design be expressed as an
orthonormal system, and show that the model contains no redundant parameters. Then, the
model is expressed by using Fourier coefficients instead of the effect of each factor. As there
is an abundance of software for calculating the Fourier transform, such a system allows for a
straightforward implementation of the procedures for estimating the Fourier coefficients by
using Fourier transform. In addition, the effect of each factor can be easily obtained from
the Fourier coefficients (Ukita & Matsushima, 2011). Therefore, it is possible to implement
easily the estimation procedures as well as to understand how each factor affects the response
variable in a model based on an orthonormal system. Moreover, the analysis of variance can
also be performed in a model based on an orthonormal system (Ukita et al., 2010b). Hence,
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2 Will-be-set-by-IN-TECH

it is clear that two main procedures in the experimental design, that is, the estimation of the
effects and the analysis of variance can be executed in a description of experimental design on
the basis of an orthonormal system.
This chapter is organized as follows. In Section 2, we give preliminaries that are necessary
for this study. In Section 3, we provide an introduction to experimental design and describe
the characteristic of the previous model in .experimental design. In Section 4, we propose
the new model of experimental design on the basis of an orthonormal system and clarify the
characteristic of the model. Finally, Section 5 concludes this chapter.

2. Preliminaries

2.1 Fourier analysis on finite Abelian groups

Here, we provide a brief explanation of Fourier analysis on finite Abelian groups. Characters
are important in the context of finite Fourier series.

2.1.1 Characters

Let G be a finite Abelian group (with additive notation), and let S1 be the unit circle in the
complex plane. A character on G is a complex-valued function X : G → S1 that satisfies the
condition

X (x + x
′) = X (x)X (x

′) ∀x, x
′ ∈ G. (1)

In other words, a character is a homomorphism from G to the circle group.

2.1.2 Fourier transform

Let Gi, i = 1, 2, . . . , n, be Abelian groups of respective orders |Gi| = gi, i = 1, 2, . . . , n, g1 ≤
g2 ≤ · · · ≤ gn, and let

G = ×n
i=1Gi and g =

n

∏
i=1

gi. (2)

Since the character group of G is isomorphic to G, we can index the characters by the elements
of G, that is, {Xa(x)|a ∈ G} are the characters of G. Note that X0(x) is the principal character
and identically equal to 1. The characters {Xa(x)|a ∈ G} form an orthonormal system:

1

g ∑
x∈G

Xa(x)X ∗
b
(x) =

{

1, a = b,
0, a �= b,

(3)

where X ∗
b
(x) is the complex conjugate of X

b
(x).

Any function f : G → C, where C is the field of complex numbers, can be uniquely expressed
as a linear combination of the following characters:

f (x) = ∑
a∈G

faXa(x), (4)

where the complex number

fa =
1

g ∑
x∈G

f (x)X ∗
a(x) (5)

is the a-th Fourier coefficient of f .
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A Description of Experimental Design on the Basis of an Orthonormal System 3

2.2 Fourier analysis on GF(q)n

Assume that q is a prime power. Let GF(q) be a Galois field of order q which contains a finite
number of elements. We also use GF(q)n to denote the set of all n-tuples with entries from
GF(q). The elements of GF(q)n are referred to as vectors.

Example 1. Consider GF(3) = {0, 1, 2}. Addition and multiplication are defined as follows:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

Moreover, consider n = 5.

GF(3)5 = {00000, 10000, · · · , 22222}, (6)

and |GF(3)5| = 243. �

Specifying the group G in Section 2.1.2 to be the support group of GF(q)n and g = qn, the
relations (3), (4) and (5) also hold over the GF(q)n domain.

3. Experimental design

In this section, we provide a short introduction to experimental design.

3.1 Model in experimental design

Let F1, F2, . . . , Fn denote n factors to be included in an experiment. The levels of each factor can
be represented by GF(q), and the combinations of levels can be represented by the n-tuples
x = (x1, x2, . . . , xn) ∈ GF(q)n.

Example 2. Let Machine (F1) and Worker (F2) be factors that might influence the total amount of the
product. Assume each factor has two levels.
F1 : new machine (level 0), old machine (level 1).
F2 : skilled worker (level 0), unskilled worker (level 1).
For example, x = 01 represents a combination of new machine and unskilled worker.
Then, the effect of the machine, averaged over both workers, is referred to as the effect of main factor F1.
Similarly, the effect of the worker, averaged over both machines, is referred to as the effect of main factor
F2. The difference between the effect of the machine for an unskilled worker and that for a skilled worker
is referred to as the effect of the interaction of F1 and F2. �

Let the set A ⊆ {0, 1}n represent all factors that might influence the response of an experiment.
The Hamming weight w(a) of a vector a = (a1, a2, . . . , an) ∈ A is defined as the number of
nonzero components. The main factors are represented by MF = {l|al = 1, a ∈ A1}, where
A1 = {a|w(a) = 1, a ∈ A}. The interactive factors are represented by IF = {{l, m}|al =
1, am = 1, a ∈ A2}, where A2 = {a|w(a) = 2, a ∈ A}.

Example 3. Consider A = {000, 100, 010, 001, 110}. Then, A1 = {100, 010, 001} and MF =
{1, 2, 3}, A2 = {110} and IF = {{1, 2}}.
For example, 1 ∈ MF indicates the main factor F1, and {1, 2} ∈ IF indicates the interactive factors F1

and F2. �
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It is usually assumed that the set A satisfies the following monotonicity condition (Okuno &
Haga, 1969).

Definition 1. Monotonicity

a ∈ A → b ∈ A ∀b (b ⊑ a), (7)

where (b1, b2, . . . , bn) ⊑ (a1, a2, . . . , an) indicates that if ai = 0 then bi = 0, i = 1, 2, . . . , n. �

Example 4. Consider A = {00000, 10000, 01000, 00100, 00010, 00001, 11000, 10100, 10010}.
Since the set A satisfies (7), A is monotonic. �

Let y(x) denote the response of the experiment with level combination x. Assume the model

y(x) = µ + ∑
l∈MF

αl(xl) + ∑
{l,m}∈IF

βl,m(xl , xm) + ǫx, (8)

where µ is the general mean, αl(xl) is the effect of the xl-th level of Factor Fl , βl,m(xl , xm) is
the effect of the interaction of the xl-th level of Factor Fl and the xm-th level of Factor Fm and
ǫx is a random error with a zero mean and a constant variance σ2.
Since the model is expressed through the effect of each factor, it is easy to understand how
each factor affects the response variable. However, because the constraints

q−1

∑
ϕ=0

αl(ϕ) = 0, (9)

q−1

∑
ϕ=0

βl,m(ϕ, ψ) = 0, (10)

q−1

∑
ψ=0

βl,m(ϕ, ψ) = 0, (11)

are assumed, the model contains redundant parameters.

Example 5. Consider q = 3, n = 5 and A = {00000, 10000, 01000, 00100, 00010, 00001, 11000,
10100, 10010}. Then,
µ, α1(0), α1(1), α1(2), α2(0), α2(1), α2(2), α3(0), α3(1), α3(2), α4(0), α4(1), α4(2), α5(0), α5(1),
α5(2), β1,2(0, 0), β1,2(0, 1), β1,2(0, 2), β1,2(1, 0), β1,2(1, 1), β1,2(1, 2), β1,2(2, 0), β1,2(2, 1),
β1,2(2, 2), , β1,3(0, 0), β1,3(0, 1), β1,3(0, 2), β1,3(1, 0), β1,3(1, 1), β1,3(1, 2), β1,3(2, 0), β1,3(2, 1),
β1,3(2, 2), β1,4(0, 0), β1,4(0, 1), β1,4(0, 2), β1,4(1, 0), β1,4(1, 1), β1,4(1, 2), β1,4(2, 0), β1,4(2, 1),
β1,4(2, 2)
are parameters. The number of parameters is 43, but the number of the independent parameters is 23
by the constraints. �

In experimental design, we are presented with a model of an experiment, which consists of a
set A ⊆ {0, 1}n. First, we determine a set of level combinations x ∈ X, X ⊆ GF(q)n. The set X
is referred to as a design. Then, we perform a set of experiments in accordance to the design
X and estimate the effects from the obtained results {(x, y(x))|x ∈ X}.
An important standard for evaluating experimental design is the maximum of the variances of
the unbiased estimators of effects, as calculated from the results of the conducted experiments.
It is known that, for a given number of experiments, this criterion is minimized when using
orthogonal design (Takahashi, 1979). Hence, there has been extensive research focusing on
orthogonal design (Hedayat et al., 1999; Takahashi, 1979; Ukita et al., 2003; 2010a;b; Ukita &
Matsushima, 2011).
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3.2 Orthogonal design

Definition 2. (Orthogonal design)
Define v(a) = {i|ai �= 0, 1 ≤ i ≤ n}. For A ⊆ {0, 1}n, let HA be the k × n matrix

HA =

⎡

⎢

⎢

⎢

⎣

h11 h12 . . . h1n

h21 h22 . . . h2n
...

...
. . .

...
hk1 hk2 . . . hkn

⎤

⎥

⎥

⎥



. (12)

The components of this matrix, hij ∈ GF(q) (1 ≤ i ≤ k, 1 ≤ j ≤ n), satisfy the following conditions.

1. The set {h·j|j ∈ v(a′ + a′′)}1, where h·j is the j-th column of HA, is linearly independent over

GF(q) for any given a′, a′′ ∈ A.

2. The set {hi·|1 ≤ i ≤ k}, where hi· is the i-th row of HA, is linearly independent over GF(q).

An orthogonal design C⊥ for main and interactive factors A ⊆ {0, 1}n is defined as

C⊥ = {x|x = rHA, r ∈ GF(q)k}, (13)

and |C⊥| = qk. �

Example 6. We consider the case q = 3, n = 5 and

A = {00000, 10000, 01000, 00100, 00010, 00001, 11000, 10100, 10010}. (14)

In this case,

HA =

⎡

⎣

1 0 0 0 0
0 1 0 1 1
0 0 1 1 2

⎤

 , (15)

satisfies the conditions in Definition 2. Therefore,

C⊥ = {00000, 00112, 00221, 01011, 01120, 01202, 02022, 02101, 02210, 10000, 10112,

10221, 11011, 11120, 11202, 12022, 12101, 12210, 20000, 20111, 20221, 21011,

21120, 21202, 22022, 22101, 22210},

is an orthogonal design for A. �

Many algorithms for constructing HA have been proposed (Hedayat et al., 1999; MacWilliams
& Sloane, 1977; Takahashi, 1979; Ukita et al., 2003). However, it is still an extremely difficult
problem to construct HA when the number of factors n is large and a large number of
interactions are included in the model. In this regard, algorithms for the construction of
orthogonal design are not presented here since this falls outside the scope of this chapter.

1 For a1 = (a11, a12, . . . , a1n), a2 = (a21, a22, . . . , a2n) ∈ {0, 1}n, the addition of vectors a1 and a2 is defined
as a1 + a2 = (a11 ⊕ a21, a12 ⊕ a22, . . . , a1n ⊕ a2n), where ⊕ is the exclusive OR operator.
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3.3 Estimation of effects in experimental design

First, we adopt the following definitions.

Y = ∑
x∈C⊥

y(x), (16)

where |C⊥| = qk.
Yl(ϕ) = ∑

x∈C⊥
l (ϕ)

y(x), (17)

where C⊥
l (ϕ) = {x|xl = ϕ, x ∈ C⊥} and |C⊥

l (ϕ)| = qk−1.

Yl,m(ϕ, ψ) = ∑
x∈C⊥

l,m(ϕ,ψ)

y(x), (18)

where C⊥
l,m(ϕ, ψ) = {x|xl = ϕ, xm = ψ, x ∈ C⊥} and |C⊥

l,m(ϕ, ψ)| = qk−2.

Let ȳ = 1
qk Y, ȳl(ϕ) = 1

qk−1 Yl(ϕ), ȳl,m(ϕ, ψ) = 1
qk−2 Yl,m(ϕ, ψ). Then, the unbiased estimators of

the parameters in (8) are given as

µ̂ = ȳ, (19)

α̂l(ϕ) = ȳl(ϕ)− µ̂, (20)

β̂l,m(ϕ, ψ) = ȳl,m(ϕ, ψ)− α̂l(ϕ)− α̂m(ψ)− µ̂. (21)

Example 7. Consider the case that a set A is given by (14) and the result of experiments is given by
Table 1.

x y(x) x y(x) x y(x)
00000 93 10000 99 20000 87
00112 97 10112 109 20111 86
00221 98 10221 112 20221 90
01011 90 11011 102 21011 85
01120 96 11120 111 21120 82
01202 102 11202 111 21202 94
02022 97 12022 105 22022 84
02101 95 12101 104 22101 88
02210 95 12210 101 22210 83

Table 1. Result of experiments

First, using (16)–(18),

Y = 2596, Y1(0) = 863, Y1(1) = 954, Y1(2) = 779,
Y2(0) = 871, Y2(1) = 873, Y2(2) = 852, Y3(0) = 842,
Y3(1) = 868, Y3(2) = 886, Y4(0) = 873, Y4(1) = 848,
Y4(2) = 875, Y5(0) = 847, Y5(1) = 864, Y5(2) = 885,
Y1,2(0, 0) = 288, Y1,2(0, 1) = 288, Y1,2(0, 2) = 287, Y1,2(1, 0) = 320,
Y1,2(1, 1) = 324, Y1,2(1, 2) = 310, Y1,2(2, 0) = 263, Y1,2(2, 1) = 261,
Y1,2(2, 2) = 255, Y1,3(0, 0) = 280, Y1,3(0, 1) = 288, Y1,3(0, 2) = 295,
Y1,3(1, 0) = 306, Y1,3(1, 1) = 324, Y1,3(1, 2) = 324, Y1,3(2, 0) = 256,
Y1,3(2, 1) = 256, Y1,3(2, 2) = 267, Y1,4(0, 0) = 290, Y1,4(0, 1) = 282,
Y1,4(0, 2) = 291, Y1,4(1, 0) = 314, Y1,4(1, 1) = 312, Y1,4(1, 2) = 328,
Y1,4(2, 0) = 269, Y1,4(2, 1) = 254, Y1,4(2, 2) = 256.
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Next, the following values are obtained.

ȳ = 96.15, ȳ1(0) = 95.89, ȳ1(1) = 106.00, ȳ1(2) = 86.56,
ȳ2(0) = 96.78, ȳ2(1) = 97.00, ȳ2(2) = 94.67, ȳ3(0) = 93.56,
ȳ3(1) = 96.44, ȳ3(2) = 98.44, ȳ4(0) = 97.00, ȳ4(1) = 94.22,
ȳ4(2) = 97.22, ȳ5(0) = 94.11, ȳ5(1) = 96.00, ȳ5(2) = 98.33,
ȳ1,2(0, 0) = 96.00, ȳ1,2(0, 1) = 96.00, ȳ1,2(0, 2) = 95.67, ȳ1,2(1, 0) = 106.67,
ȳ1,2(1, 1) = 108.00, ȳ1,2(1, 2) = 103.33, ȳ1,2(2, 0) = 87.67, ȳ1,2(2, 1) = 87.00,
ȳ1,2(2, 2) = 85.00, ȳ1,3(0, 0) = 93.33, ȳ1,3(0, 1) = 96.00, ȳ1,3(0, 2) = 98.33,
ȳ1,3(1, 0) = 102.00, ȳ1,3(1, 1) = 108.00, ȳ1,3(1, 2) = 108.00, ȳ1,3(2, 0) = 85.33,
ȳ1,3(2, 1) = 85.33, ȳ1,3(2, 2) = 89.00, ȳ1,4(0, 0) = 96.67, ȳ1,4(0, 1) = 94.00,
ȳ1,4(0, 2) = 97.00, ȳ1,4(1, 0) = 104.67, ȳ1,4(1, 1) = 104.00, ȳ1,4(1, 2) = 109.33,
ȳ1,4(2, 0) = 89.67, ȳ1,4(2, 1) = 84.67, ȳ1,4(2, 2) = 85.33.

Last, by using (19)–(21),

µ̂ = 96.15, α̂1(0) = −0.26, α̂1(1) = 9.85, α̂1(2) = −9.59,
α̂2(0) = 0.63, α̂2(1) = 0.85, α̂2(2) = −1.48, α̂3(0) = −2.59,
α̂3(1) = 0.30, α̂3(2) = 2.30, α̂4(0) = 0.85, α̂4(1) = −1.93,
α̂4(2) = 1.07, α̂5(0) = −2.04, α̂5(1) = −0.15, α̂5(2) = 2.19,

β̂1,2(0, 0) = −0.52, β̂1,2(0, 1) = −0.74, β̂1,2(0, 2) = 1.26, β̂1,2(1, 0) = 0.04,

β̂1,2(1, 1) = 1.15, β̂1,2(1, 2) = −1.19, β̂1,2(2, 0) = 0.48, β̂1,2(2, 1) = −0.41,

β̂1,2(2, 2) = −0.07, β̂1,3(0, 0) = 0.04, β̂1,3(0, 1) = −0.19, β̂1,3(0, 2) = 0.15,

β̂1,3(1, 0) = −1.41, β̂1,3(1, 1) = 1.70, β̂1,3(1, 2) = −0.30, β̂1,3(2, 0) = 1.37,

β̂1,3(2, 1) = −1.52, β̂1,3(2, 2) = 0.15, β̂1,4(0, 0) = −0.07, β̂1,4(0, 1) = 0.04,

β̂1,4(0, 2) = 0.04, β̂1,4(1, 0) = −2.19, β̂1,4(1, 1) = −0.07, β̂1,4(1, 2) = 2.26,

β̂1,4(2, 0) = 2.26, β̂1,4(2, 1) = 0.04, β̂1,4(2, 2) = −2.30.

�

Although there are software packages that can be used to estimate the effects on the basis of
(19)–(21), as yet no software can be used for an arbitrary monotonic set A. Therefore, it is often
necessary to implement the procedure for estimating the effects, which requires a considerable
amount of time.

3.4 Analysis of variance

When there are many factors, a comprehensive view of whether an interaction in A can be
disregarded is needed. The test procedure involves an analysis of variance. For a detailed
explanation of analysis of variance, refer to (Toutenburg & Shalabh, 2009).
The statistics needed in analysis of variance are the following. SSMean is the correction term
(the sum of squares due to the mean), SSFl

is the sum of squares due to the effect of Fl , SSFl×Fm

is the sum of squares due to the interaction effect of Fl × Fm, and SSError is the sum of squares
due to error. These can be computed as follows.

SSMean =
1

qk
Y2, (22)

SSFl
=

1

qk−1

q−1

∑
ϕ=0

Y2
l (ϕ)− SSMean, (23)

371A Description of Experimental Design on the Basis of an Orthonormal System
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SSFl×Fm
=

1

qk−2

q−1

∑
ϕ=0

q−1

∑
ψ=0

Y2
l,m(ϕ, ψ)− SSFl

− SSFm
− SSMean, (24)

SSError = ∑
x∈C⊥

y2(x)− SSMean − ∑
l∈MF

SSFl
− ∑

{l,m}∈IF

SSFl×Fm
. (25)

Example 8. Consider the case that a set A is given by (14) and the result of experiments is given by
Table 1. Then, using (22)–(25),

SSMean = 249600.6, SSF1
= 1702.3, SSF2

= 29.9, SSF3
= 108.7,

SSF4
= 50.3, SSF5

= 80.5, SSF1×F2
= 16.6, SSF1×F3

= 27.7,

SSF1×F4
= 60.8, SSError = 16.6.

�

4. Description of experimental design on the basis of an orthonormal system

In this section, we propose the model of experimental design on the basis of an orthonormal
system.

4.1 Model on the basis of an orthonormal system in experimental design

We use y(x) to denote the response of an experiment with a level combination x, and assume
the following model:

y(x) = ∑
a∈IA

faXa(x) + ǫx, (26)

where IA = {(b1a1, . . . , bnan)|a ∈ A, bi ∈ GF(q)} and ǫx is a random error with a zero mean
and a constant variance.
Then, the model is expressed by using Fourier coefficients instead of the effect of each
factor. The effects are represented by the parameters { fa|a ∈ IA}. In addition, there are
no constraints between the parameters, and the parameters are independent. Hence, it is clear
that the model contains no redundant parameters.

Example 9. Consider q = 3, n = 5 and A = {00000, 10000, 01000, 00100, 00010, 00001, 11000,
10100, 10010}. Then, IA is given by

IA = {00000, 10000, 20000, 01000, 02000, 00100, 00200, 00010, 00020, 00001, 00002, 11000,

12000, 21000, 22000, 10100, 10200, 20100, 20200, 10010, 10020, 20010, 20020},

and Fourier coefficients
f00000, f10000, f20000, f01000, f02000, f00100, f00200, f00010, f00020, f00001, f00002, f11000, f12000, f21000,

f22000, f10100, f10200, f20100, f20200, f10010, f10020, f20010, f20020

are parameters. The number of parameters is 23, and these parameters are independent. �
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4.2 Estimation of Fourier coefficients in experimental design

First, we present the following theorem (Ukita et al., 2010a).

Theorem 1. Sampling Theorem for Bandlimited Functions over a GF(q)n Domain
Assume that A ⊆ {0, 1}n is monotonic and

f (x) = ∑
a∈IA

faXa(x), (27)

where IA = {(b1a1, . . . , bnan)|a ∈ A, bi ∈ GF(q)}. Then, the Fourier coefficients can be computed
as follows:

fa =
1

qk ∑
x∈C⊥

f (x)X ∗
a(x), (28)

where C⊥ is an orthogonal design for A (|C⊥| = qk). �

When an experiment is conducted in accordance to the orthogonal design C⊥, unbiased
estimators of fa in (26) can be obtained by using Theorem 1 and assuming that E(ǫx) = 0:

f̂a =
1

qk ∑
x∈C⊥

y(x)X ∗
a(x). (29)

Then, the Fourier coefficients can be easily estimated by using Fourier transform. There are
a number of software packages for Fourier transform, which can be used to calculate (29) for
any monotonic set A.

Example 10. Consider the case that a set A is given by (14) and the result of experiments is given by
Table 1. Then,

X ∗
a(x) = e−2πi(a1 x1+a2 x2+a3 x3+a4 x4+a5 x5)/3. (30)

Using (29), (30) and e2πik = 1 for any integer k,

f̂00000 = 2596/27,

f̂10000 = (863 + 954e−2πi/3 + 779e−4πi/3)/27,

f̂20000 = (863 + 779e−2πi/3 + 954e−4πi/3)/27,

f̂01000 = (871 + 873e−2πi/3 + 852e−4πi/3)/27,

f̂02000 = (871 + 852e−2πi/3 + 873e−4πi/3)/27,

f̂00100 = (842 + 868e−2πi/3 + 886e−4πi/3)/27,

f̂00200 = (842 + 886e−2πi/3 + 868e−4πi/3)/27,

f̂00010 = (873 + 848e−2πi/3 + 875e−4πi/3)/27,

f̂00020 = (873 + 875e−2πi/3 + 848e−4πi/3)/27,

f̂00001 = (847 + 864e−2πi/3 + 885e−4πi/3)/27,

f̂00002 = (847 + 885e−2πi/3 + 864e−4πi/3)/27,

f̂11000 = (859 + 863e−2πi/3 + 874e−4πi/3)/27,

f̂12000 = (867 + 868e−2πi/3 + 861e−4πi/3)/27,

f̂21000 = (867 + 861e−2πi/3 + 868e−4πi/3)/27,

f̂22000 = (859 + 874e−2πi/3 + 863e−4πi/3)/27,

f̂10100 = (860 + 861e−2πi/3 + 875e−4πi/3)/27,

f̂10200 = (871 + 857e−2πi/3 + 868e−4πi/3)/27,

373A Description of Experimental Design on the Basis of an Orthonormal System

www.intechopen.com



10 Will-be-set-by-IN-TECH

f̂20100 = (871 + 868e−2πi/3 + 857e−4πi/3)/27,

f̂20200 = (860 + 875e−2πi/3 + 861e−4πi/3)/27,

f̂10010 = (872 + 852e−2πi/3 + 872e−4πi/3)/27,

f̂10020 = (858 + 859e−2πi/3 + 879e−4πi/3)/27,

f̂20010 = (858 + 879e−2πi/3 + 859e−4πi/3)/27,

f̂20020 = (872 + 872e−2πi/3 + 852e−4πi/3)/27.

�

In particular, when q = 2m, where m is an integer and m ≥ 1, it is possible to use the
vector-radix fast Fourier transform (FFT), which is a multidimensional implementation of the
FFT algorithm, for calculating (29) for all a ∈ IA. The complexity of the vector-radix FFT is
O(qk log qk). In addition, it can be shown that the Yates’ Method (Yates, 1937) for efficient
calculation of (19)–(21) in the case of q = 2 is equivalent to the vector-radix FFT for calculation
of (29).

4.3 The relation between the Fourier coefficients and the effect of each factor

In a description of experimental design on the basis of an orthonormal system, the model
is expressed by using Fourier coefficients. Fourier coefficients themselves do not provide a
direct representation of the effect of each factor.
On the other hand, since the previous model in experimental design is expressed through the
effect of each factor, it is easy to understand how each factor affects the response variable.
In this section, we present three theorems of the relation between the Fourier coefficients and
the effect of each factor (Ukita & Matsushima, 2011).
First, we present a theorem of the relation between the Fourier coefficient and the general
mean.

Theorem 2. Let µ̂ be the unbiased estimator of the general mean µ in the model of Sect.3.1, and let
f̂0...0 be that of the Fourier coefficient f0...0 in the model of Sect.4.1.
Then, the following equation holds:

µ̂ = f̂0...0. (31)

�

Next, we present a theorem of the relation between the Fourier coefficients and the effect of
the main factor.

Theorem 3. Let α̂l(ϕ) be the unbiased estimator of the effect of the main factor αl(ϕ) in the model of
Sect.3.1, and let f̂0...0al0...0 be that of the Fourier coefficient f0...0al0...0 in the model of Sect.4.1.
Then, the following equation holds:

α̂l(ϕ) = ∑
al∈GF(q)

al �=0

Xal
(ϕ) f̂0...0al0...0. (32)

�

Last, we present a theorem of the relation between the Fourier coefficients and the effect of the
interaction.
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Theorem 4. Let β̂l,m(ϕ, ψ) be the unbiased estimator of the effect of the interaction βl,m(ϕ, ψ) in the

model of Sect.3.1, and let f̂0...0al0...0am0...0 be that of the Fourier coefficient f0...0al0...0am0...0 in the model
of Sect.4.1.
Then, the following equation holds:

β̂l,m(ϕ, ψ) = ∑
al∈GF(q)

al �=0

∑
am∈GF(q)

am �=0

Xal
(ϕ)Xam (ψ) f̂0...0al0...0am0...0. (33)

�

From these theorems, the effect of each factor can be easily obtained from the computed
Fourier coefficients.

Example 11. Let q = 3 and n = 5. Consider the general mean, the effect of main factor F1, and the
effect of the interaction of F1 and F2. Then,

Xl(k) = e2πilk/3. (34)

First, using (31), µ̂ = f̂00000 holds.
Next, using (32) and (34), the following equations

α̂1(0) = f̂10000 + f̂20000,

α̂1(1) = e2πi/3 f̂10000 + e4πi/3 f̂20000,

α̂1(2) = e4πi/3 f̂10000 + e2πi/3 f̂20000,

hold. Hence, it is clear that the effects of main factor F1 (3 parameters) can be obtained from the
computed Fourier coefficients (2 parameters).
Last, using (33) and (34), the following equations

β̂1,2(0, 0) = f̂11000 + f̂12000 + f̂21000 + f̂22000,

β̂1,2(0, 1) = e2πi/3 f̂11000 + e4πi/3 f̂12000 + e2πi/3 f̂21000 + e4πi/3 f̂22000,

β̂1,2(0, 2) = e4πi/3 f̂11000 + e2πi/3 f̂12000 + e4πi/3 f̂21000 + e2πi/3 f̂22000,

β̂1,2(1, 0) = e2πi/3 f̂11000 + e2πi/3 f̂12000 + e4πi/3 f̂21000 + e4πi/3 f̂22000,

β̂1,2(1, 1) = e4πi/3 f̂11000 + f̂12000 + f̂21000 + e2πi/3 f̂22000,

β̂1,2(1, 2) = f̂11000 + e4πi/3 f̂12000 + e2πi/3 f̂21000 + f̂22000,

β̂1,2(2, 0) = e4πi/3 f̂11000 + e4πi/3 f̂12000 + e2πi/3 f̂21000 + e2πi/3 f̂22000,

β̂1,2(2, 1) = f̂11000 + e2πi/3 f̂12000 + e4πi/3 f̂21000 + f̂22000,

β̂1,2(2, 2) = e2πi/3 f̂11000 + f̂12000 + f̂21000 + e4πi/3 f̂22000,

hold. Hence, it is clear that the effects of the interaction of F1 and F2 (9 parameters) can be obtained
from the computed Fourier coefficients (4 parameters). �

From these theorems, the effect of each factor can be easily obtained from the Fourier
coefficients. Therefore, it is possible to implement easily the estimation procedures as well
as to understand how each factor affects the response variable in a model based on an
orthonormal system.
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4.4 Analysis of variance in experimental design

On the other hand, it is already shown that the analysis of variance can also be performed in
the model of experimental design on the basis of an orthonormal system (Ukita et al., 2010b).
We present three theorems with respect to the sum of squares needed in analysis of variance.

Theorem 5. Let SSMean be the sum of squares due to the mean in Sect.3.4, and let f̂0...0 be the unbiased
estimator of the Fourier coefficient f0...0 in the model of Sect.4.1. Then,

qk| f̂0...0|
2 = SSMean, (35)

where

f̂0...0 =
1

qk ∑
x∈C⊥

y(x)X ∗
0...0(x). (36)

�

Theorem 6. Let SSFl
be the sum of squares due to the effect of Fl in Sect.3.4, and let f̂0...0al0...0 be the

unbiased estimator of the Fourier coefficient f0...0al0...0 in the model of Sect.4.1. Then,

∑
al∈GF(q)

al �=0

qk| f̂0...0al0...0|
2 = SSFl

, l = 1, 2, · · · , n, (37)

where

f̂0...0al0...0 =
1

qk ∑
x∈C⊥

y(x)X ∗
0...0al0...0(x). (38)

�

Theorem 7. Let SSFl×Fm
be the sum of squares due to the interaction effect of Fl × Fm in Sect.3.4, and

let f̂0...0al0...0am0...0 be the unbiased estimator of the Fourier coefficient f0...0al0...0am0...0 in the model of
Sect.4.1. Then,

∑
al �=0

∑
am �=0

qk| f̂0...0al0...0am0...0|
2 = SSFl×Fm

,

l, m = 1, 2, · · · , n, (l < m), (39)

where the sums are taken over al , am ∈ GF(q) and

f̂0...0al0...0am0...0 =
1

qk ∑
x∈C⊥

y(x)X ∗
0...0al0...0am0...0(x). (40)

�

By these theorems, SSMean, SSFl
and SSFl×Fm

can be obtained in the proposed description of
experimental design. In addition, using the Parseval-Plancherel formula and these theorems,
SSError can be computed as follows.

SSError = ∑
x∈C⊥

y2(x)− SSMean − ∑
l∈MF

SSFl
− ∑

{l,m}∈IF

SSFl×Fm
. (41)
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Example 12. Consider the case that a set A is given by (14) and the result of experiments is given by
Table 1. Then, using the result of Example10, ∑

2
k=0 e2πik/3 = 0 and e2πi = 1,

| f̂00000|
2 = f̂00000 f̂ ∗00000 = (2596/27)(2596/27) = 9244.466, (42)

| f̂10000|
2 = f̂10000 f̂ ∗10000

= (863 + 954e−2πi/3 + 779e−4πi/3)(863 + 954e2πi/3 + 779e4πi/3)/272

= (8632 + 9542 + 7792 − 863 · 954 − 863 · 779 − 954 · 779)/272

= 31.52401. (43)

Similarly,

| f̂20000|
2 = 31.52401,

| f̂01000|
2 = | f̂02000|

2 = 0.552812, | f̂00100|
2 = | f̂00200|

2 = 2.013717,

| f̂00010|
2 = | f̂00020|

2 = 0.931413, | f̂00001|
2 = | f̂00002|

2 = 1.491084,

| f̂11000|
2 = | f̂22000|

2 = 0.248285, | f̂12000|
2 = | f̂21000|

2 = 0.058985,

| f̂10100|
2 = | f̂20200|

2 = 0.289438, | f̂10200|
2 = | f̂20100|

2 = 0.223594,

| f̂10010|
2 = | f̂20020|

2 = 0.548697, | f̂10020|
2 = | f̂20010|

2 = 0.577503.

Hence, using Theorem 5–7 and (41),

SSMean = 27| f̂00000|
2 = 249600.6,

SSF1
= 27(| f̂10000|

2 + | f̂20000|
2) = 1702.3,

SSF2
= 27(| f̂01000|

2 + | f̂02000|
2) = 29.9,

SSF3
= 27(| f̂00100|

2 + | f̂00200|
2) = 108.7,

SSF4
= 27(| f̂00010|

2 + | f̂00020|
2) = 50.3,

SSF5
= 27(| f̂00001|

2 + | f̂00002|
2) = 80.5,

SSF1×F2
= 27(| f̂11000|

2 + | f̂12000|
2 + | f̂21000|

2 + | f̂22000|
2) = 16.6,

SSF1×F3
= 27(| f̂10100|

2 + | f̂10200|
2 + | f̂20100|

2 + | f̂20200|
2) = 27.7,

SSF1×F4
= 27(| f̂10010|

2 + | f̂10020|
2 + | f̂20010|

2 + | f̂20020|
2) = 60.8,

SSError = 16.6.

�

Therefore, the analysis of variance can be executed in the proposed description of
experimental design.
Hence, it is clear that two main procedures in the experimental design, that is, the estimation
of the effects and the analysis of variance can be executed in a description of experimental
design on the basis of an orthonormal system.

5. Conclusion

In this chapter, we have proposed that the model of experimental design be expressed as an
orthonormal system, and shown that the model contains no redundant parameters. Then, the
model is expressed by using Fourier coefficients instead of the effect of each factor. As there
is an abundance of software for calculating the Fourier transform, such a system allows for a
straightforward implementation of the procedures for estimating the Fourier coefficients by
using Fourier transform. In addition, the effect of each factor can be easily obtained from the
Fourier coefficients. Therefore, it is possible to implement easily the estimation procedures
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as well as to understand how each factor affects the response variable in a model based
on an orthonormal system. Moreover, it is already shown that the analysis of variance can
also be performed in a model based on an orthonormal system. Hence, it is clear that two
main procedures in the experimental design, that is, the estimation of the effects and the
analysis of variance can be executed in a description of experimental design on the basis of an
orthonormal system.
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