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1. Introduction  

Abstract: A complexity metric for concurrent software controlled systems is defined and 

derived. It is equivalent or comparable to the Shannon information metric, which 

essentially measures entropy of a system, but uses a novel and efficient technique based 

on a FFT to calculate its value. This can be extended to other temporal realizations of 

behaviour. 

For concurrent software, the amount of context switching that occurs indicates the level of 

complexity of the program. If the program consists of a fixed period cyclic scheduler, 

context switches will occur very predictably at those same fixed intervals. However, if the 

program consists of a mix of periods, some long, some short, and some perhaps sporadically 

aperiodic, the complexity of such a program will be much greater. Further, the greater the 

spread between short periods and long periods will indicate that the program will be much 

harder to verify, as the shorter cycles will accumulate more testing coverage than the longer 

or sporadic interval context switching.  

In some sense, this is what makes clock-driven synchronous logic much easier to test.  The 
state space of possible events is reduced in direct relation to the reduction of available slots 
for computation. As the context switching and potential interactions between threads occurs 
only at these slots, a simplification of the temporal behaviour here will result in a better 
chance to verify the correctness of its execution. 
By the same token, any concurrent program will show greater non-determinism than an 
equivalent sequential program. The benefits of making a concurrent program more 
synchronous grants a greater predictability in its execution semantics. In terms of meeting 
hard real-time constraints, a synchronously designed program will have predictable points 
for schedulability, allowing for techniques such as rate-monotonic scheduling (Klein, 1993) 
to meet strict timing deadlines.  These categories of techniques grant a concurrent program 
the same possibilities for verification as a sequential one. 
Even though these strict scheduling programs are effective for their problem domains, they 

are difficult to maintain and do not scale that well for the large software systems required. 

In fact most interactive programs and other soft real-time systems use the concept of event-

driven semantics, which can allow interruption at any point in time. These have the benefit 

of dealing with interactions only upon demand, and so scale better, especially in terms of 

not placing a huge computational or communication load on the system when not needed.  
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New events can also be handled well, either by adding a new thread or task or interrupt to 

watch for their occurrence or by adding an event handler to a queue. 

Unfortunately these benefits of scalability and flexibility detract from being able to reason 
about the execution semantics of a program, thus leading to an element of non-determinism.  
One can thus consider the obvious potential for introducing stochastic ideas to qualitatively 
and quantitatively understand how complex a design has become. If we can attach a simple 
and fundamental measure to this complexity and thus generate a useful metric, it has the 
capacity for comparing software designs or of providing a continuous benchmark of 
growing potential complexity. That leads to the notion of supplying an entropy-based 
measure to characterize the behaviour of a concurrent software system. 

2. Approach – The context-switching entropy measure 

The premise is to evaluate the complexity of a concurrently executing program. A novel 
approach of creating such a complexity metric involves the analysis of the context-switching 
frequency spectrum. We take a Fourier transform (FT) of the temporally distributed context 
switching events, c(t), and treat that as a probability density function (Feller, 1957) in 
frequency space (i.e. a normalized power spectrum). 

ሺ݂ሻ݌  = หܶܨ൫ܿሺݐሻ൯ห = ห׬ ܿሺݐሻ ∙ ݁ି௜ଶగ௙௧	݀ݐஶିஶ ห (1) 

Then the Shannon information entropy (S) of p(f) (Leon-Garcia, 2008) will generate a simple 
complexity measure. 

 ܵ = − ׬ ሺ݂ሻ݌ ∙ ln൫݌ሺ݂ሻ൯ ݂݀ஶ଴  (2) 

The entropy of a spectrum has meaning because the power spectrum itself transforms the 
autocorrelation of the signal in the time domain. The autocorrelation is nothing more than 
the probability of a time-shift occurring between points of interest. Thus by transforming the 
time domain information to the frequency domain  we do not lose the essential information 
pertaining to order and disorder in the signal, in particular when it comes to comparing one 
waveform against another. The information containing the essential order is largely retained 
across the transformation. 

ሻݐሺܾ݋ݎ݌  ≈ ሻ൯ݐ൫ܿሺ݊݋݅ݐ݈ܽ݁ݎݎ݋ܿ݋ݐݑܽ = 	 ׬ ܿሺݐሻ ∙ ܿሺݐ + ߬ሻ݀߬ஶ଴  (3) 

So the Fourier transform represents the same probabilities as that of the autocorrelation but 
computed in the frequency domain. For any captured sequence of events, the Fourier 
transform of the autocorrelation is practically obtained as the magnitude of the Fourier 
transform of the waveform.  

ሺ݂ሻ݌  = ሻ൯ݐሺܾ݋ݎ݌൫ܶܨ =  ሻሻ| (4)ݐሺܿሺܶܨ|

For a given mean frequency <f>, the value of S will be the greatest when the probability 

spread of the context switching frequency components is maximized. In this case, 

complexity tracks entropy and the maximum entropy principle (Jaynes, 2003) can be applied 

to understand the trend toward greater complexity. By Parseval’s theorem, we do not lose 

the integrated signal when we take the Fourier transform.  

This general approach is also known as Frequency Domain Entropy (Bao, 2004). 
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Table 1. Mapping of signal entropies to their corresponding frequency domain entropies. 
The trend of increasing entropies with increasing disorder is maintained through the 
transformation process. 
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Fig. 1. Example of context-switching waveforms with low entropy (left) and high entropy 
(right). The low entropy signals are more regular. 

In practice using a discrete Fourier transform such as the Fast Fourier Transform (FFT) 
(Brigham & Morrow, 1967) allows us to then use the summation variant of the entropy, 
where N is the order of the FFT. 

 ܵ = − ∑ ሺ݌ ௜݂ሻ ∙ ln൫݌ሺ ௜݂ሻ൯ே௜ୀଵ  (5) 
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The utility of the frequency domain approach is apparent when we consider that the frequency 
domain is partitioned into FFT bins and we have a very fast way of computing the metric, and 
in many cases more convenient than by calculating the autocorrelation, or by   traditional 
periodogram (Schuster, 1898).  If we did have the extra processing time, it may make sense to 
calculate the entropy off the autocorrelation as that would definitely retain more of the 
information measure, and thus not losing information due to the transformation process. In 
practice, however, many times we want to know only relative entropy measures, so the loss in 
precision is not as important as long as we maintain the relative ordering or rank.  
As an intuitive interpretation of this measure consider that a value of S near 0 (if <f> 
normalized to 1) indicates that the program is very specialized and is only trying to a few 
things at once. As S approaches 1 it becomes a general purpose application that attempts to 
control many different behaviours or responds to events of a more random nature. If S goes 
much greater than 1, then the temporal complexity turns even more random, even 
approaching fractal. It becomes progressively harder to test such systems because of the 
diverging spread in time scales.  
This turns into a useful metric since any sufficiently capable controller program or event-
driven system will try to accommodate as much real-world functionality as possible, and 
since the real world tends to disorder and to maximize entropy, this will track an 
increasingly complex scenario. So in practice, we will have fast cycles interspersed with 
slower cycles corresponding perhaps to human events or sporadic signals.  
 

 

Fig. 2. Variation of power spectrum with increasing disorder. (a) Ordered signal with 
harmonics generates a low entropy signal. (b) Disordered signal generates a larger intropy. 

In further practical terms, to apply the metric we need to run a simulation or collect data from 
a real or prototype system to gather the statistics. It may be possible to evaluate a program 
statically but that would require an introspective analysis of a program's structure, a task 
much more involved than collecting the statistics during typical use or as a test scenario. 
The possibility of using this approach on non-concurrent programs such as a single-tasking 
event-driven program exists but these have less inherent complexity due to their sequential 
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nature. When the concurrency becomes an integral aspect of the system and in particular 
when threads must interact with one another does the complexity start to increase quickly. 
That becomes the essence of the disorder or entropy that we try to capture. 
System designers will use tools such as state diagrams, activity diagrams, and Petri nets 
(Peterson 1981) to architect concurrency behaviors. A typical Petri net is shown below which 
illustrates the parallel activities and synchronous behaviors. These have various levels of 
contol, in that they can abstract some of the temporal scale differences by encapsulation of 
behaviours (Pukite & Ludwig, 2007). However, the actual synchronization will always 
reveal itself in the realized system. 
 

 

Fig. 3. A typical concurrent automata represented by a Petri net. Multiple threads are 
represented by filled tokens (places), and context switches occur when threads meet at 
synchronization points (bars). For large systems, the complexity of interactions canl grow 
well beyond this level. 

2.1 Application 
To effectively put the temporal complexity measure into practice, the program or simulation 
implementation will need a way to time stamp and data log context switches during 
execution. An implementation of a discrete event task scheduler such as the public source 
Degas (Ludwig & Pukite, 2006) provides such an instrumentation facility. 
The simplest input stream is a list of events signified by time-stamps, which will serve to 
capture the c(t) signal. The values for c(t) can be as simple as delta functions with a value of 
unity indicating a context switch. 

2.2 Computation 
This algorithm needs a FFT routine. The following pseudo-code guides the calculation 
calling a generic FFT routine named Fourier8. This assumes that each line contains the 
number of events that occur in the time step and is read through standard input. (This is set 
to read in exactly 2N lines, where N is an order 15 FFT) If sparse input is provided with time 
stamps then the data must be transferred into a discrete set of lines with either 0 or N events 
on each line, due to the nature of the discrete time FFT. 
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Fig. 4. Pseudo-code algorithm for calculating the context-switching entropy using a library 
package FFT routine 
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Note that for a running simulator, if the data is provided continuously through an output 
port or pipe, then a suitably fast FFT can report a context switching metric in real time. This 
is useful for diagnostics, for example correlating the detection of errors with high 
complexity regimes. 

2.3 Example of use 

We evaluated hypothetical systems with 15 concurrent tasks. One system featured 
asynchronous events. The other system had tasks cyclically scheduled at different periods. 
The asynchronous system always had higher switching entropy. The context switching 
metric distinguishes complicated but synchronized architectures from those with complex 
temporal behaviour  
For this metric, by computing the entropy of the phase spectrum in addition to the 
amplitude may help in discriminating between complexity and noise. That would be 
straightforward to include because right now we discard the phase information. Any 
stationary signal that shows asymmetry must have some peculiar phase relationships going 
on. So it might be easier to discount randomness in favour of more complex phase 
relationships if we were to include both the amplitude spectrum and the phase spectrum in 
the final metric. 
Another simple alternative that works on the timing alone is the gzip program. This looks at 
the distribution complexity in times and calculates the entropy metric. The usage of this 
application is trivial. Take the output file, if a sequence of discrete inputs (zeros and number 
of values), run it through gzip and record the size (Benedetto, et al, 2003). Comparisons of 
two different sequences of identical length will suggest that the less complex program is the 
one of the smaller zipped size. 

3. Complementary approach – the multi-scale entropy measure 

An alternate approach to measuring the temporal complexity involves the application of the  
multi-scale entropy metric suggested by (Costa, 2005).  This differs from the just described 
context-witching metric in that it measures the complexity of a temporal behaviour or signal 
over a wide range of fundamental periods. Whereas the single-scale metric works best over 
a single-decade frequency spectrum scale, a multi-scale metric offers up the possibility of 
looking at complexities at a variety of time scales, ranging over potentially orders of 
magnitude. This is definitely useful but it can't be boiled down into a single complexity 
metric; instead we will need to depict this graphically over what amounts to a logarithmic 
frequency scale. 
The basis for the multi-scale entropy metric is that many real-world behaviours often occur 
over time scales of varying dynamic ranges.  Costa originally applied this to a biomedical 
application, trying to extract the temporal complexities of cardiac-driven circulatory 
systems. When such a pulsed cardiac signal is multi-scale, it is actually composed of a 
fundamental pulse and various arrhythmias, leading to a complicated spectrum of events. 
The signal actually appears buried amongst competing behavioural periodicities at different 
time scales and so it becomes that much harder to extract the information.  
At first glance, we would imagine that a Fourier transform would work well to extract the 
periods but in fact a typical FFT algorithm actually works best over a limited dynamic 
range. By expanding the scope to a multi-scale level, Costa showed that this complexity 
measure has use in a real-world application and we contend that it may also prove useful 
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for cyber-physical applications such as a complex event-driven system.  In this case, the time 
scales can range from fast interrupt-processing, to human-scale interactivity, to the even 
more sporadic environmental influences.  
 

 

 

Fig. 5. Context switching metric distinguishes complicated but synchronized architectures 
from those with complex temporal behaviour.  
(top) High Entropy (S ~ 15) 15 tasks with Poisson events  
(bottom) Lower Entropy (S ~ 12-13) 15 tasks, randomized events 
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The multi-scale aspect senses the different temporal frequencies in the underlying signal, 
comparable to what the contest-switching metric does, but instead pairs or groups the data 
points to measure a different coarse graining effect. This works out fairly straightforwardly 
in terms of a autocorrelation. The essential algorithm groups adjacent time samples together 
in a window of length Scale as the coarse graining or moving average measure. Then it 
counts the number of times, n, that the amplitude will change from one coarse-grained time 
step to the next. 
If the amplitudes don't change for a given coarse-grain then it is predictable and the entropy 
will be low. To calculate the sample entropy they calculate  

ሺ݈ܵܿܽ݁ሻݕݐ݅ݔ݈݁݌݉݋ܿ  = 	 − log ቀ௡ሺௌ௖௔௟௘ାଵሻ௡ሺௌ௖௔௟௘ሻ ቁ (6) 

over each of the scale factors Scale = 1 .. maxScaleFactor. 

3.1 Usage domains 

A graph of the multi-scale entropy will appear flat if it is measuring "1/f" (van der Ziel, 
1950) or the so-called pink noise as the underlying behaviour.  Pink noise shows a 
predictable constant change of amplitude density per scale factor; in other words it has a 
constant energy per frequency doubling while white noise shows constant per frequency 
interval (Montroll & Shlesinger, 2002).  
In comparison to the structure-less noise, if structure does exist in the signal, you will see 
observable changes in the entropy from one scale factor to the next. For example a 
superimposed sine wave would show a spike downward in sample entropy when it crossed 
a harmonic in the scale factor. 
A simple interpretation suggests that we scale the measured results relative to the 1/f noise 

part of the signal. The 1/f noise includes the greatest variety of frequencies of any behaviour 

known and therefore the highest entropy (Milotti, 2002). So by providing a good 

visualization or graph that plots the 1/f asymptotic value we can immediately gauge the 

complexity of a signal. Costa et al discuss the difficulty of distinguishing between 

randomness and increasing complexity, which has importance in the realm of event-driven 

systems.  

 

 
This is a key insight and one echoed by researchers in complexity theory (Gell-Mann, 1994) 
in that the most interesting and challenging complexity measures occupy the middle range 
of the complexity scale.  In other words, the most ordered signals can be described by a few 
harmonic periods and at the other extreme, the complexity reduces to simple stochastic 
measures akin to statistical mechanics (Reif, 1965). In between these extremes, we require a 
different level of sophistication. 

"In fact, entropy-based metrics are maximized for 
random sequences, although it is generally 
accepted that both perfectly ordered and 
maximally disordered systems possess no 
complex structures. A meaningful physiologic 
complexity measure, therefore, should vanish for 
these two extreme states." 
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3.2 Comparison to single-scale metric 
The same inputs as that for the Context-Switching Metric described earlier result in the 
following Figure 6.  Note that in this case as well, the sample entropy is always higher for the 
disordered signal than for the ordered signal. The reference 1/f noise level is shown on the 
plot to indicate the asymptotic maximum entropy level achievable. 
 

 

Fig. 6. For the same pair of inputs we used on the context-switching metric, the multiscale 
entropy appears as the following graph. It shows greater variety than the context-switching 
metric over the time scales because the metric compares at different levels of resolution.  

In practice, the multi-scale algorithm requires only a basic periodogram method invoked 
over different time scales. The output is one value per temporal scale factor so the results are 
best displayed as a graph, via a spreadsheet or bar-charting software for example. The 
calculation is somewhat more brute force compared to the FFT, with complexity o(n2) versus 
o(n*ln(n)). The context-switching metric operates over a narrower time scale so gets rolled 
into a single value, simplifying the presentation into a classical scalar metric.  

4. Discussion 

Interacting concurrent activities can produce behaviour that is difficult to anticipate. The 
combinatorial capacities of just the ordering of parallel thread execution will exhaust any 
brute force attempt at testing the possible permutations. Moreover, the possibilities of rare 
anomalies attributed to corner cases of executions may take non-determinant times to 
reveal, or worse, are not easily repeatable. The sporadic defect that occurs rarely in the lab 
usually has a real origin and should never be ignored (Kuhn, et al, 2004). 
The figure below shows a representative timeline trace of the interacting subsystems on a 
typical automated ground vehicle. The task interactions are interleaved and pipelined. 
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Fig. 7. GANTT chart of a typical vehicle system execution trace showing interacting threads. 
Time proceeds left to right, and one thread exists per horizontal entry. The lines indicate 
thread synchronization points. This diagram is only meant to give a notional idea of 
complexity, and the text description along the left edge is irrelevant to the discussion. 
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4.1 Applications to design 

The difficulty in designing and debugging of such systems necessitates practical simulation 
tools and simplified metrics such as the entropy measures described here. Both of these 
entropy metrics are potentially useful during system development as an analysis of 
alternatives or design space exploration tool.  If several concurrent options are available for a 
design, either of these metric could provide criteria to establish the least complex design. In 
that sense, it serves as a simple utility function to measure unwanted or creeping complexity 
much like a duty-cycle utilization measures processor contention.  

4.2 Applications to test and verification 

A close connection exists between the entropy metrics and usage modelling (Whittaker, 
1994) for program verification. Most non-exhaustive testing requires a mix of tests taken 
during nominal conditions along with tests sampled according to potentially rare 
conditions. This consideration takes into account the number of test vectors and the path 
coverage for testing. Any characterization at this stage will provide useful inputs to 
generating a stochastic measure of reliability. This could incorporate stochastic usage 
models and a log-likelihood metric is often used to compare between two state space 
probabilities. Between an entropic measure and a usage model, we can cover the temporal 
and path dimensions of a program's execution and its programmatic complexity. 

4.3 Applications to diagnostics 

As a diagnostic tool, the context switching metric can also detect potential complexities 

during execution. Since the FFT can easily compute in real-time for typical sample sizes N, 

parallel execution of the entropy algorithm with the context switching data can reveal 

deviations from expected operation. For example, if an execution profile shows a high 

regularity of frequent context switches during some interval and then transitions to a more 

irregular sequence of switches with the same overall density, the expected entropy measure 

will definitely increase. In that sense, the entropy metric measures an intrinsic property of 

the signal, and that strictly speaking, density fluctuations such as expected increases in the 

rate of context switches will not influence the measure.  In other words, density alone does 

not affect the complexity.  

By the same token, the multi-scale metric has obvious benefit for detecting long term 

complexity changes or short-term bursts buried in a nominally sampled signal. The idea of 

using frequency domain entropy for diagnostics of complex machinery is further explored 

in (Shen, 2000). 

5. Conclusion 

We described a complexity metric for concurrent software controlled systems or concurrent 
realizations of behaviour. The novel approach of creating a complexity metric for context 
switching involves the analysis of the switching frequency spectrum. We take a Fourier 
transform of the temporally distributed context switching events (c(t)) and treat that as a 
probability density function in frequency space (i.e. a normalized power spectrum). Then 
the entropy (S) of p(f) will generate a simple complexity measure. 
The context switching metric can be used during system development as an analysis of 
alternative utility function. If several design options or algorithms are available, the context-
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switching metric can be used as selection criteria to minimize inherent algorithmic 
complexity.  It is comparable or equivalent to the Shannon information metric, which 
essentially measures entropy of a system.  
As an alternative approach we compared this against a multi-scale entropy measure. 
Although more involved in construction, the multi-scale entropy can be used as an 
orthogonal metric, perhaps more useful for measuring temporal behaviours of a wide 
dynamic range or as a more detailed diagnostic tool. This will reveal finer structures in 
complexity than the single-scale metric can. 
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