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1. Introduction 

Over the last decade prostate cancer has become one of the most common cancer in male 
population with an estimated 1.37 million people diagnosed and 200,000 annual death rate 
worldwide ( Stewart & Kleihues, 2003). Biopsies are often advised after a Prostate Specific 
Antigen (PSA) test reveals high levels of PSA in the blood which usually indicate high risks 
of Prostatic Carcinoma (PCa). The biopsy is needed because high PSA levels can also be 
caused by other benign conditions like Benign Prostatic Hyperplasia (BPH) (Kronz, Westra 
& Epstein, 1999)  
Biopsy of the prostate, usually stained by Hematoxylin and Eosin (H&E) technique, is the 

key step for confirming the diagnosis of malignancy and grading treatment. By viewing the 

microscopic images of biopsy specimens, pathologists can determine the histological grades. 

In December 1999, a study of more than 6,000 patients by Johns Hopkins researchers found 

that up to two out of every 100 people who come to larger medical centers for treatment, 

following a biopsy, are given a diagnosis that is "totally wrong". The results suggested that 

second opinion pathology examinations not only prevent errors, but also save lives and 

money. Human assessment is time consuming and very subjective due to inter- and intra-

observer variations. At present, most diagnosis of cancer is still done by visual examination 

of radiological images, microscopy of biopsy specimens, direct observation and so on. These 

views are typically interpreted in a qualitative manner by clinicians trained to classify 

abnormal features such as structural irregularities. A more quantitative and reproducible 

approach for analyzing images is highly desired. Therefore, how to develop a more 
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objective computer-aided technique to automatically and correctly classify prostatic 

carcinoma is the goal of this research study. The aim here is to use automatic classifiers as a 

diagnosis aid along with human expertise by applying image processing and computer 

vision techniques to perform quantitative measurements of relevant features that can 

discriminate between different types of tissues that occur in biopsies. In the case of the 

prostate gland, four major classes of tissues have to be recognized and labeled by the 

pathologist (Figure 1 shows some samples of each class): 

1. stroma: STR (normal muscular tissue);  
2. benign prostatic hyperplasia: BPH (a benign condition);  
3. prostatic intraepithelial neoplasia: PIN (a precursor state for cancer);  
4. prostatic carcinoma: PCa (abnormal tissue development corresponding to cancer).  
Numerous investigations have been carried out using different approaches such as 
morphology, texture analysis, and others for the classification of prostatic samples (Bartels 
et al., 1998; Clark et al., 1987). The Gleason grading system (Gleason & Tannenbaum, 1977) is 
a well known method. In this grading system, the prostate cancer can be classified into five 
tumor grades represented by a number ranging from 1 to 5 with five being the worst grade 
possible ( O’Dowd et al., 2001). Tabech et al. proposed (Tabesh et al., 2005) an automatic 
two-stage system for prostate cancer diagnosis with the Gleason grading. The color, 
morphometric and texture features are extracted from prostate tissue images in their system. 
Then, linear and quadratic Gaussian classifiers were used to classify images into tumor/non 
tumor classes and further categorized into low/high grades for cancer images. Huang et al. 
proposed (Huang & Lee, 2009) two feature methods based on fractal dimension to analyze 
the variations of intensity and texture complexity in the regions of interest. Each image can 
be classified into an appropriate grade by using Bayesian, KNN, and support vector 
machine (SVM) classifiers, respectively. Leave on out and k fold cross-validation procedures 
were used to estimate the correct classification rates. 
However, all these studies have been performed using a color space that is limited either to 
gray-level images, or to the standard RGB channels. In both cases, the color sampling 
process results in a loss of a considerable amount of spectral information, which may be 
extremely valuable in the classification process. High throughput liquid crystal tunable 
filters (LCTF) have recently been used in pathology, enabling a complete high resolution 
optical spectrum to be generated at every pixel of a microscope image. Studies suggest that 
multispectral images can capture relevant data not present in conventional RGB images. In 
(Liu et al., 2002) the authors used a large set of multispectral texture features for the 
detection of cervical cancer. In (Barshack et al., 1999), spectral morphometric characteristics 
were used on specimen of breast carcinoma cells stained with haematoxylin and eosin 
(H&E). Their analysis showed a correlation between specific patterns of spectra and 
different groups of breast carcinoma cells. Larsh et al. (Larsh et al., 2002) suggested that 
multispectral imaging can improve the analysis of pathological scenes by capturing patterns 
that are transparent both to the human eye and the standard RGB imaging.  
In ( Boucheron et al., 2007) Boucheron et al a comparison is performed between 
multispectral and RGB data for nuclei classification of breast tissue. Using SVM classifiers, 
the authors have concluded that multispectral bands do not contain much more 
discriminatory spectral information than the RGB bands for nuclei classification. However, 
the research was concerned with the classification of single pixels and it was limited to the 
classification of nuclei of histological breast images. Masood & Rajpoot (Masood & Rajpoot, 
2008) present a study based on the comparison of two approaches: 3D spectral/spatial analysis 
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and 2D spatial analysis. They have compared the results using a textural analysis on single 
hyperspectral band against 3D spectral spatial analysis of histological colon images. However, 
the classification features were not extracted from multispectral data but rather from 
segmented 2D images obtained from multispectral data. Roula et al have described a novel 
approach, in which additional spectral data is used for the classification of prostate needle 
biopsies (Roula, 2002, 2003) which reduced overall error rate from 11.6% to 5.1%. 
 

 

Fig. 1. Images showing representative samples of the four classes. (a) Stroma. (b) BPH. (c) 
PIN. (d) PCa. 

The major problem arising in using multispectral data is high-dimensional feature vector size 
(> 100). The number of training samples used to design the classifier is small relative to the 
number of features. For such a high dimensionality problem, pattern recognition techniques 
suffer from the well-known curse-of-dimensionality (Jain et al., 2000): keeping the number of 
training samples limited and increasing the number of features will eventually result in badly 
performing classifiers. One way to overcome this problem is to reduce the dimensionality of 
the feature space. While a precise relationship between the number of training samples and the 
number of features is hard to establish, a combination of theoretical and empirical studies has 
suggested the following rule of thumb regarding the ratio of the sample size to dimensionality: 
the number of training samples per class should be greater than or equal to five times the 
features used (Dash & Liu, 1997). For example, if we have a feature vector of dimension 20, 
then we need at least 100 training samples per class to design a satisfactory classifier. 
Another way to reduce the dimensionality of the feature space is by using feature selection 
methods. The term feature selection refers to the selection of the best subset of the input 
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feature set. These methods used in the design of pattern classifiers have three goals: (1) to 
reduce the cost of extracting the features, (2) to improve the classification accuracy, and 
(3) to improve the reliability of the estimation of the performance, since a reduced feature 
set requires less training samples in the training procedure of a pattern classifier (Jain et 
al., 2000). Feature selection produces savings in the measuring features (since some of the 
features are discarded) and the selected features retain their original physical 
interpretation. 
In previous papers (Bouatmane et al., 2007), we addressed the high input dimensionality 
problem by selecting the best-subset of sequential forward selection SFS followed by a 
classification using a nearest neighbour classifier (1NN) technique. Although, this approach 
produced results superior to previously reported methods (Roula, 2002,2003) , the 
classification accuracy can be further improved by decomposing this multiclass problem 
into a number of simpler two-class problems. In this case, each subproblem can be regarded 
separately and solved using a suitable binary classifier. The outputs of this collection of 
classifiers can then be combined to produce the overall result for the original multiclass 
problem. In this paper, we propose a Round-Robin (RR) classification algorithm using a 
sequential forward selection/nearest neighbor (SFS/1NN) classifier to improve the 
classification accuracy. Round Robin classification is a technique which is suitable for use in 
multiclass problems. The technique consists of dividing the multiclass problem into an 
appropriate number of simpler binary classification problems (Furnkranz, 2002). Each 
binary classifier is implemented as an SFS/1NN classifier, and the final outcome is 
computed using majority voting technique. A key characteristic of this approach is that, in a 
binary class, the classifier attempts to find the features that only distinguish that particular 
class. Thus, different features are selected for each binary classifier, resulting in an overall 
increase in the classification accuracy. In contrast, in a multiclass problem, the classifier tries 
to find those features that distinguish all classes at once. 
The remainder of this chapter is organized as follows: Sect. 2 gives a description of the 
dataset used including texture and structural features. Section 3 is concerned with feature 
selection problem and describes the RR approach followed by the probability estimate for 
the classifier outputs and error estimation. Sect. 4 describes the image acquisition and 
dataset. Sect. 5 gives the results obtained and their analysis and discussion including a 
performance comparative study. Sect. 6 analyses the features selected and sect. 7 gives ROC 
curves and finally sect. 8 gives a summary of the chapter. 

2. Images features 

Over the last years, the most prolific and promising works in the area of cancer classification 
have been in the area of texture analysis of the nucleus (Tabesh et al., 2005; Liu et al., 20). 
This is not surprising since pre-cancerous abnormalities are manifested in visual and 
subvisual changes in cell characteristics. In fact, it is generally believed that the initial signs 
of cell neoplasia appear in the nucleus. Because nuclear chromatin and its spatial 
arrangement can be viewed as a type of texture and whether tissue samples are examined at 
low, medium or high magnification, texture is a key element in the differentiation between 
normal and malignant tissue patterns. 
However, texture features are not sufficient to classify all the groups. The complex structures 
present in BPH, PIN and also PCa need a higher level description. Thus, structural features, 
based on segmentation, have been computed for different spectral bands and consolidated in a 
large feature vector. The features used are described in the following subsections. 
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2.1 Texture feature 
To identify prostatic patterns, texture features are needed as a discriminative measurement 
for the samples. Haralick (Haralick, 1979) assumed that texture information is sufficiently 
identified by a matrix indexed by grey levels and where the elements represent the 
frequency of having two defined grey levels separated by a defined distance in a defined 
direction. This matrix is called grey level co-occurrence matrix (GLCM): 

 ( , , , )co i j d    (1) 

The above equation means that there are α pairs of pixels having i and j respectively, as grey 
levels and separated by the cylindrical co-ordinate [d, ]. The values of d, for which the 
GLCM is computed, depend on the nature of the texture. Small d values are suitable for fine 
textures, whereas larger distances are needed to measure coarse textures. 
For an image of 256 grey levels (Ng=256), there would be 65536 feature elements to use as a 
measure for the texture. Therefore, the direct use of the co-occurrence matrix is 
computationally intensive and as such is not practical. Instead, the texture features are 
represented by deriving some more meaningful measurements. A set of features was 
proposed by Haralick to characterise the homogeneity, the coarseness, the periodicity and 
the linearity of textures. These features are defined as follows: 
Angular Second Moment 
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Where , , ,x y x y    are the means and the variances of the row sums and column sums of 
the co-occurrence matrix respectively. 
Entropy or randomness 
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Inverse difference Moment: 
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2.2 Structural features 

The use of texture features alone is not sufficient to capture the complexity of the patterns in 

prostatic neoplasia. Although, the classification of stroma is relatively simple because of its 

homogenous nature at low resolution, BPH and PCa present more complex structures, as 

both can contain glandular areas and nuclei clusters as well. The glandular areas are smaller 

in regions exhibiting PCa while the nuclear clusters are much larger. The PIN pattern is an 

intermediate state between the BPH and PCa. It appears that accurate classification requires 

the quantification of these differences. Segmenting the glandular and the nuclear areas can 

achieve this quantification, as the glandular areas are lighter compared to the surrounding 

tissue, while the nuclear clusters are darker (Larsh et al., 2002; Roula et al., 2002).  

Figure 2 summarises the segmentation scheme. From the segmented images 1 and 2, two 
features, f1 and f2 can be computed 

 1 2
Nf

W
  (8) 

 2 2
Gf

W
  (9) 

Where G and N are the number of pixels segmented as glandular area and classified as nuclear 
area, respectively. W is the size of the analysis window. These two features allow the 
quantification of how much nuclear clusters and glandular areas are present in the samples. 

 

 

Fig. 2. Segmentation of nuclei and glandular areas 

Original image

Histogram equalisation 

Deriche filtering 
a=0.9, filter size=3  

Threshold 2 at 10% Threshold 1 at 90%

Image 2: segmented 
glands 

Image 1: segmented 
nuclei
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3. Classification of prostate cancer using round robin approach 

3.1 Feature selection problem 

As discussed in Section 1, the major problem arising from multispectral data is related to the 
feature vector size. Typically, with 16 bands and 8 features in each band, the feature vector 
size is 128. For such a high dimensionality problem, pattern recognition techniques suffer 
from the well-known curse-of-dimensionality problem: keeping the number of training 
samples limited and increasing the number of features will eventually result in badly 
performing classifiers (Jain et al., 2000; Jimenez, & Landgrebe, 1998).  
PCA (a well-known unsupervised feature extraction method) has been used by Roula et al. 
on the large resulting feature vectors to reduce its dimensionality to a manageable size. In 
their work, Roula et al. used PCA and a linear discrimination function on significant PCA 
components for the classification. 
Another technique to reduce the dimensionality of the feature space is by using feature 
selection methods. The term feature selection refers to the selection of the best subset of the 
input feature set. This results in a feature selection producing a smaller set of features (since 
some of the features are discarded) with the selected features retaining their original 
physical interpretation. This feature selection problem can be viewed as a multiobjective 
optimization problem since it involves minimizing the feature subset while maximizing 
classification accuracy.  

Mathematically, the feature selection problem can be formulated as follows: Suppose Y is an 

original feature vector with cardinality n, XY, J(X) is the selection criterion function for the 

new feature vector X. The goal is to optimize J(X). The choice of an algorithm for selecting 

the features from an initial set depends on n. The feature selection problem is said to be of 

small scale, medium scale, or large scale accordingly as n belongs to the intervals [0,19], 

[20,49], or [50,+∞], respectively (Duda et al., 2001; Kudo & Sklansky, 2000).  
Generally, feature selection algorithms have two components: a selection algorithm that 
generates proposed subsets of features and attempts to find an optimal subset; and an 
evaluation algorithm which determines how ‘good’ a proposed feature subset is, by 
returning some measure of goodness to the selection algorithm. However, without a suitable 
stopping criterion the feature selection process may run exhaustively or forever through the 
space of subsets. Stopping criteria can be: (i) whether addition (or deletion) of any feature does 
not produce a better subset; and (ii) whether an optimal subset according to some evaluation 
function is obtained. Ideally, a feature selection method searchs through the subsets of 
features, and tries to find the best one among all the competing candidate subsets according to 
some evaluation function. However, this procedure is exhaustive as it tries to find only the 
best one. It may be too costly and practically prohibitive, even for a medium-sized feature set 
size. Other methods based on heuristic or random search methods; attempt to reduce 
computational complexity by compromising performance (Davies & Russell, 1994).  
In (Dash & Liu, 1997) different feature selection methods are categorized into two broad 
groups (i.e., filter and wrapper) depending on the type of classification algorithm used for 
the selection of the subset. For example, the filter methods do not require a feedback from 
the classifier and estimate the classification performance by some indirect assessments, such 
as distance measures which reflect how well the classes separate from each other. On the 
other hand, the wrapper methods are classifier-dependent. Based on the classification 
accuracy, the methods evaluate the “goodness” of the selected feature subset directly, which 
should intuitively lead to a better performance. Currently, many experimental results 
reported so far use the wrapper methods.  
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In this work, an SFS algorithm, which is simple and empirically successful, is proposed for 
feature selection. It starts with an empty subset of features and performs a hill-climbing 
deterministic search. At each iteration, a feature not yet selected is individually incorporated 
in the subset to calculate a criterion. Then the feature which yields the best criterion value 
is included in the new subset. This iteration will not be stopped until no improvement of 
the criterion value is achieved. SFS is used as a wrapper approach, therefore the criterion 
employed to carry out the search is based on error estimation by the selected features 
using 1NN classifier. In addition, we propose another scheme in which the multiclass 
problem is addressed using Round Robin (RR) classification approach where the 
classification problem is decomposed into a number of binary classes. The key point is 
that it is then possible to design simpler and more efficient binary classifiers as will be 
demonstrated in the next Section. 

3.2 Round robin method 

The RR or pairwise class binarization transforms a c-class problem into c(c − 1)/2 two-class 
problems i, j with one for each set of classes i, j (i = 1, . . . , c − 1, j = i + 1, . . . , c). A binary 
classifier for problem i, j is trained with examples of classes i and j, whereas examples of 
classes k ≠ i, j are ignored for this problem (Furnkranz, 2002). Figure 3 illustrates a multiclass 
(four-class) learning problem where one classifier (SFS/1NN classifier in this study) 
separates all classes. Figure 4 shows Round Robin learning with c(c − 1)/2 classifiers. For a 
four-class problem, the Round Robin trains six classifiers, one for each pair of classes. Each 
class is trained using a feature selection algorithm based on the SFS/1NN classifier. 
 

 

Fig. 3. Multiclass learning 

 

 

Fig. 4. Round Robin learning. p: PIN. c: PCa. b: BPH. s: STR. 

PIN

STROMA 

PCa

BPH 
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The objects are then classified by applying a combination rule on the set of decisions. One 
strategy is to use voting where the object is labeled to the class with the highest number of 
votes. When classifying an unknown new sample, each classifier (1NN in this case) 
determines to which of its two classes the sample is more likely to belong. In this case, we 
are faced with the possibility of ties. To avoid these ties, a probability estimate value for 
each classification has to be used.  
In pattern recognition, 1NN is one of the simplest and most widely used algorithms. Given a 
query sample x, a 1NN algorithm determines the closest neighbor of x in the training nodes 
using some distance metric (e.g. Euclidean distance in our study) and predicts the class label 
of the nearest node. In contrast to other statistical classifiers, 1NN needs no model to fit. This 
property simplifies the structure of the training process by avoiding model training, thus 
training with a 1NN classifier only requires selecting the appropriate features.  
For the sake of probability estimates, probabilistic outputs of the classifier were required 
rather than label prediction. For 1NN, objects are assigned to the class of the nearest object 
in the training set. Posterior probabilities are estimated by comparing the nearest neighbor 
distances for all classes (Duin & Tax, 1998). A RR ensemble converts a c-class problem into a 
series of two-class problems by creating one classifier for each pair of classes. New items are 
classified by submitting them to the c(c-1)/2 binary predictors. The final prediction is 
achieved by a majority voting. The probability of a query q belonging to a class c can be 
calculated as follows (Grimaldi et al., 2003) (equation 10):  

 
( )( | ).1

( | )
( | )

m mc c
m M

m
m M

p c q

p c q
p c q










 (10) 

where M is the set of ensemble members, mc is the class predicted by m and Pm(c|q) is 

the posterior probability given by ensemble predictor m (the binary classifiers). If m does 

not involve class c, then Pm(c|q) = 0. The probability estimates of the binary classifiers 

will be combined using the maximum rule; therefore the instances are assigned to the 

class with the maximum output given by equation (10). Clearly, RR is a problem 

decomposition technique. However, there are some aggregation benefits as each class is 

focused on by c-1 classifiers. 

3.3 Error estimation 

Given a small set of samples, appropriate strategies for learning and testing become very 
critical to avoid over-fitting. Leave-one-out (LOO) and k-fold cross-validation are two 
popular error estimation procedures to reduce bias in machine learning and testing 
problems especially with small sample size (sss) (Jain et al., 2000). The procedure of LOO 
method is to take one out of n observations and use the remaining n-1 observations as the 
training set for deriving the parameters of the classifier. The classifier is then used to classify 
the removed observation. This process is repeated for all n observations in order to obtain 
the estimation of the classification accuracy. In the case of k-fold cross-validation method, 
the entire sample set is randomly partitioned into k disjoint subsets of equal size, where n is 
the total number of samples in the entire set. Then, k -1 subsets are used to train the 
classifier and the remaining subset is used to test for accuracy estimation. This process is 
repeated for all distinct choices of k subsets and the average of correct classification rates is 
calculated. Notice that k -fold cross-validation is reduced to LOO if k=n. 
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When referring to the performance of a classification model, we are interested in the model’s 
ability to correctly predict or separate the classes. When looking at the errors made by a 
classification model, the confusion matrix used in this paper gives the full picture. The 
confusion matrix shows how accurate the predictions are made by the model. The rows 
correspond to the known class of the data, i.e. the labels in the data while the columns 
correspond to the predictions made by the model. The value of each of element in the matrix 
is the number of predictions made with the class corresponding to the column, for example, 
with the correct value as represented by the row. Thus, the diagonal elements show the 
number of correct classifications made for each class, and the off-diagonal elements show 
the errors made. 
Accuracy is the overall correctness of the model and is calculated as the sum of the correct 
classifications divided by the total number of classifications. Precision is a measure of the 
accuracy provided that a specific class has been predicted. It is defined by: 

 
tp

Precision
tp fp




 (11) 

where tp and fp are the numbers of true positive and false positive predictions for the 
considered class. Recall is a measure of the ability of a prediction model to select instances of 
a certain class from a data set. It is also commonly called sensitivity, and corresponds to the 
true positive rate and can be written as:  

 
tp

Recall Sensitivity
tp fn

 


 (12) 

where tp and fn are the numbers of true positive and false negative predictions for the 
considered class. tp+ fn is the total number of test examples of the considered class. 

4. Sample preparation, image acquisition and datasets description 

Entire tissue samples were taken from prostate glands. Sections 5-µm thick were extracted 
and stained using the widely used H&E stains. These samples were routinely assessed by 
two experienced pathologists and graded histologically as showing STR, BPH, PIN, and 
PCa. From these samples, whole subimage sections were captured using a classical 
microscope and CCD camera. An LCTF (VARISPECTM) was inserted in the optical path 
between the light source and a CCD camera. The LCTF has a bandwidth accuracy of 5 nm. 
The wavelength is controllable through the visible spectrum (from 400 to 720 nm). This 
allowed for the capture of multispectral images of the tissue samples by using different 
spectral frequencies. Figure 5 shows a prostatic tissue sample viewed at different 
magnification. 
In order to offset any bias due to the different range of values for the original features, the 
input feature values are normalized over the range [1,11] using equation (13) ( Raymer et al., 
2000). Normalizing the data is important to ensure that the distance measure allocates equal 
weight to each variable. Without normalization, the variable with the largest scale will 
dominate the measure: 
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where i
jx is the jth feature of the ith pattern, ,

t
i jx is the corresponding normalized feature 

and n is the total number of patterns.  
The data were taken from a total of 10 different patients with typically 3-6 biopsies per 

patient (from different areas in the prostate) and 8-12 images were taken from each samples 

(from different areas in the image). The dataset consists of textured multispectral images 

taken at 16 spectral channels (from 500 to 650 nm) (Roula et al., 2002). Five hundred and 

ninety-two different samples (multispectral images) of size 128 × 128 have been used to 

carry out the analysis. The samples are examined at low power (40 x objective 

magnifications) by the two highly experienced independent pathologists and labelled into 

four classes: 165 cases of Stroma, 106 cases of BPH, 144 cases of PIN, and 177 cases of PCa. 

 
 

 

 

Fig. 5. Prostatic tissue sample viewed at low and medium magnifications 

5. Experiments and discussion 

The assessment of the classification performance has been made using three procedures: 4-

fold cross-validation, 10 cross-validation and leave-one-out (LOO) which was applied 

patient-wise. To obtain a k-fold cross-validation estimate of the classification performance, 

the dataset was randomly split into k sets of a roughly equal size. Splitting was carried out 

such that the proportion of samples per class was roughly equal across the sets. Each run of 

the k-fold cross-validation algorithm consisted of a classifier design on k-1 dataset subsets 

(training) while testing was performed on the remaining subset. The optimal feature subset 

for each cross-validation run was determined as the subset with the highest LOO accuracy 

estimate on the corresponding training set. 
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The first aim was to determine the optimum number of features to obtain the best 

achievable classification performance. Therefore, the feature selection algorithm SFS 

described in section 3 with a 1NN classifier was used. Figure 6 shows the results obtained 

using LOO error estimation. The curve representing the results from the feature selection 

shows a strong increase in performance for small subsets followed by slight increase up to 

medium sized subsets. Large subsets cause a drop in the recognition rate.  

For k-fold cross-validation the results show that using SFS with different training sets does 

not yield identical feature subsets. This is illustrated by the diagram in Figure 7 which 

shows the fraction of how often a feature was selected divided by the total number of 

simulations using 4 cross-validation method. One can see that the selected features originate 

from different spectral bands. 

 
 

 

 

Fig. 6. Recognition rate of SFS algorithm 

The accuracies of the selected features subsets are given in Table 1. The combination of the 

binary classifiers’ results generated by proposed Round Robin algorithm is performed using 

two methods: the voting rule using the resulted classes (Tahir & Bouridane, 2006) and the 

maximum probability obtained using equation (10). For all the cross validation estimations, 

the RR SFS/1NN with the maximum probability gives the best classification accuracy. As 

shown in Table 1, RRSFS algorithm using LOO error estimation achieves the lowest error 

rate. The overall classification error has been reduced from 3.37% to 0.17%. To gain an 

insight into the classification of different classes of prostate cancer, the confusion matrix of 

the multiclass SFS/1NN and the proposed Round Robin learning using SFS/1NN are also 

given. Table 2 depicts the results using the LOO error estimation where Table 3 gives the 

corresponding results using 4 cross-validations. Note that in all the cases, BPH and PIN 

classes present the highest error rate in terms of classification but the use of Round Robin 

algorithm reduces significantly the error rate in these classes. 
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Bagging is a general method of combining classifiers that can be applied to any base 

method. It is a relatively simple idea: n datasets are created by sampling the patterns with 

replacement from the original training set. Each of the n datasets has the same number of 

patterns as the original training set. A classifier is then trained on each dataset by combining 

the outputs using simple voting. Bagging has obtained impressive error reductions with 

decision trees such as CART (Breiman, 1996) and C4.5 (Freund & Schapire, 1996; Quinlan, 

1996) on a wide range of datasets. 
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Fig. 7. Subsets yielded by application of the SFS from 4 cross-validations 

 
 

 
4 cross-validation 
error estimation %

10 cross 
validation error 

estimation % 

Leave-one-out 
error 

estimation % 

1NN classifier 13.34 12.18 12 

SFS/1NN classifier 10.22 7.41 3.37 

Round robin SFS/1NN 
(voting rule) 

10.98 9.62 2.87 

Round robin SFS/1NN 
(maximum probability rule)

8.91 7.26 0.17 

 

Table 1. Comparison of error classification rate 

In Boosting, the classifiers in the ensemble are trained serially, with the weights on the 

training instances set adaptively according to the performance of the previous classifiers. If 
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the classifier does not directly support weighted instances, this can be simulated by 

sampling from the training set with a probability proportional to an instance weight. The 

main idea is that the classification algorithm should concentrate on the difficult instances. 

 

SFS/1NN multiclass learning Round Robin SFS/1NN learning 

Classified 
as: 

BPH PCa PIN Stroma
Error 
(%) 

BPH PCa PIN Stroma 
Error 
(%) 

BPH 101 0 0 5 4.71 106 0 0 0 0 

PCa 1 174 2 0 1.69 0 177 0 0 0 

PIN 0 2 137 5 4.86 0 0 143 1 0.69 

Stroma 5 0 0 160 3.03 0 0 0 165 0 

overall  3.37  0.17 

Table 2. Classification Error by multiclass and round robin learning using SFS/1NN and loo 
error estimation 

 

Round Robin SFS/1NN learning SFS/1NN multiclass learning 

Classified 
as: 

BPH PCa PIN Stroma
Error 
(%) 

BPH PCa PIN Stroma 
Error 
(%) 

BPH 96 0 0 10 9.43 93 3 2 8 12.26 

PCa 1 164 8 4 7.43 2 163 11 1 7.90 

PIN 0 13 129 2 10.41 3 8 122 11 15.27 

Stroma 8 1 5 151 8.48 5 1 3 156 5.45 

overall  8.91  10.22 

Table 3. Classification error by multiclass and round robin learning using SFS/1NN and 
4cross-validation 

 

C4.5 Nearest neighbor 

C4.5 Bagging Boosting NN Bagging Boosting 
RR-
SFS 

91.6 93.2 95.4 88.0 89.2 88.1 99.83 

Table 4. Classification accuracy (%) using various ensemble techniques 
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Table 4 shows the comparison between the RR-SFS/1NN versus Bagging and AdaBoost. 
Decision Tree (C4.5) ( Quinlan, 1993) and NN classifiers are used as base classifiers for 
bagging and boosting. 
Unfortunately, bagging and boosting are unable to improve the classification accuracy when 
an NN classifier is used as a base classifier (Yongguang et al., 2004). This fact is clearly seen 
from Table 6 where the classification accuracy is degraded while using AdaBoost, and only 
minor improvements are achieved when using bagging. However, the classification 
accuracy is improved by using bagging and boosting when C4.5 is used as base classifier. 
Furthermore, it is clear from the table that the proposed Round Robin ensemble technique 
using TS/1NN has outperformed both bagging and boosting ensemble-design techniques. 
A key characteristic of the proposed Round Robin approach is that different features are 
captured and used for each binary classifier in the four-class problem, thus producing an 
overall increase in the classification accuracy. In contrast, in a multiclass problem, the 
classifier tries to find those features that distinguish all four-classes at once. Furthermore, 
the inherent curse-of-dimensionality problem, which arises in a multispectral data, is also 
resolved by the RR SFS/1NN classifiers since each classifier is trained to compute and use 
only those features that distinguish its own binary classes.  
Table 5 shows the number of features used by the ensemble of binary classifiers. Different 
numbers of features have been used by the various binary classifiers producing an overall 
increase in the classification accuracy. Fc represents those features that are common in two 
or more different binary classifiers. The total number of features in the proposed Round 
Robin technique is comparable with the multiclass SFS/1NN with lower error rate, but the 
number of features used by each binary classifier is smaller than that used in other methods. 
Consequently, multispectral data is better utilized by using a Round Robin technique since 
the use of more features means more information is captured and used in the classification 
process. Furthermore, simple binary classes are also useful for analyzing features and are 
extremely helpful for pathologists in distinguishing various patterns such as BPH, PIN, STR, 
and PCa.  
 

 Feature 
selection 
method 

 Features used 

 SFS/1NN Multi-class 13 

1 
2 
3 
4 
5 
6 

SFS/1NN 

Binary-class (stroma-Bph) 
Binary-class (Stroma-Pin) 
Binary-class (stroma-PCa) 
Binary-class (Bph-Pin) 
Binary-class (Bph-PCa) 
Binary-class (Pin-PCa) 

4 
1 
4 
1 
1 
4 

 SFS/1NN Round Robin 
6

1

(15 3) 12c
i

F F


     

Table 5. Number of Features Used By Different Classifiers 
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Figure 8 shows the results of Recall and Precision measures for different algorithms 
including the results of Round Robin tabu search RR TS/1NN (Tahir & Bouridane, 2006). 
From the graphs presented one can observe that for both Precision and Recall, the values 
of RR SFS/1NN are very high for different classes of prostate cancer. In addition, one can 
notice from equations (11) and (12) that the values for FP and FN tend to zero when the 
Precision and Recall tend to 100%. Thus, the false positives and especially false negatives 
are almost null with our approach. This clearly demonstrates the efficiency of our 
proposed RR technique. 
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Fig. 8. Precision and recall measures of classification 

6. Analysis of the selected features  

Very often, it is interesting to know if the difference in the mean values for a given feature 
between two groups is accidental or due to an inherent difference between the groups 
regarding a specific feature. For example, the mean of a given image feature can be 
numerically different for normal and cancer prostate cells. But does this difference reflect a 
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real physical dissimilarity between the two groups or is it due to those specific samples? 
And in the case where it is a real physical difference, what is the level of confidence when 
making such statements?  
In this work, Student t-test (Montgomery, 1997) was used as a statistical test of significance 

for mean difference of each class pair for all the selected features. Table 6 and 7 show the 

selected features for SFS/1NN classifier and RR SFS/1NN method using LOO, respectively. 

The asterisk (*) in the table shows that this feature exhibits a significant difference in means 

for all group pairs of cancer (Stroma, BPH, PIN, PCa) with 95 % confidence (p-value<0.05) 

while (**) shows confidence in difference of means higher than 99% (p-value<0.01). For the 

round robin method, t-test was run only for the binary classes.  

In Table 6, for 9 out of the 13 features selected, the p-value exhibits values lower than 0.05, 

i.e. yields confidence levels in difference between groups >95%. Three features exhibit a 

confidence level in the mean difference superior to 99%. 

It was observed that dissimilarity, inverse difference moment, entropy and contrast are the 

texture features selected. They are all measures of homogeneity of grey level texture. This 

indicates that prostatic tissues display a clear visual difference in terms of texture. 

Consequently, neighboring pixels were more likely to have larger grey level differences for 

different grades of malignancy. Note that the features which have not asterisks exhibit 

significant difference in means, but not for all the pairs of classes. 

 
 
 

Rank Selected features Spectral band 

1 Inverse difference moment * 13 

2 structural (f2) * 9 

3 Structural (f1) 8 

4 Dissimilarity * 3 

5 Contrast 7 

6 Structural (f1) ** 7 

7 Structural (f2) 5 

8 Dissimilarity 11 

9 Contrast * 4 

10 Entropy ** 8 

11 Contrast ** 6 

12 Inverse difference moment 8 

13 Structural (f1) * 11 

 

Table 6. Selected features by SFS/1NN Classifier 
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Binary classifiers Selected features Spectral band 

(Stroma-Bph) classifier 

Structural (f2)** 11 

Dissimilarity ** 15 

Dissimilarity ** 13 

Angular second moment ** 13 

(Stroma-Pin) classifier Contrast ** 15 

(Stroma-PCa) classifier 
 

Structural (f2) ** 9 

Structural (f1)** 3 

Inverse difference moment ** 5 

Dissimilarity ** 4 

(Bph-Pin) classifier Structural (f1)** 14 

(Bph-PCa) classifier Structural (f1)** 14 

(Pin-PCa) classifier 

Inverse difference moment ** 10 

Contrast ** 2 

Dissimilarity ** 4 

Structural (f2)** 9 

Table 7. Selected features By RR-SFS/1NN Classifier 

For the RR SFS/1NN method, all the features presented in Table 7 exhibit a confidence level 
in mean difference superior to 99% for all the binary classes. This can be explained by the 
fact that the RRSFS/1NN method selects the features that distinguish only that class. In 
contrast, in multiclass SFS/1NN, the classifier tries to find those features that distinguish all 
classes at once. 
The presence of structural features can be observed, especially to discriminate BPH and PCa 
from the other classes. This is because BPH is first characterised by a conspicuous glandular 
presence. For the PCa, this is due to the predominance of nuclei clusters and the total 
absence of glands, which makes it easy to detect using the structural features. We note also 
that the texture features selected are all measures of homogeneity. Contrast is selected alone 
by Stroma-Pin classifier without the structural features since the glands are totally absent 
from Stroma. PIN, which is an intermediate state between PCa and BPH may or may not 
contain lumen glands. Correlation is totally absent from the two tables thus indicating that 
correlation is a poor discriminant feature. It can be concluded that the joint use of texture 
and structural features is an efficient method to classify all groups together.  
Finally, it is important to see the impact of the multispectral dimension on the classification; 
the features selected in both methods are from different bands. This shows that the satisfactory 
results obtained previously are not only due to the adequate choice of features but to the 
contribution of the multispectral information which characterizes the different classes. 
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7. ROC curve 

ROC curve (receiving operating characteristic) analysis has been widely used as a method 
for medical decisions making. It is a plot of false positive rate (X-axis) versus true positive 
rate (Y-axis) of a binary classifier. ROC is commonly used for visualizing and selecting 
classifiers based on their performance. The true positive rate (TPR) is defined as the ratio of 
the number of correctly classified positive cases to the total number of positive cases. The 
false positive rate (FPR) is defined as the ratio of incorrectly classified negative cases to the 
total number of negative cases (Fawcett, 2003). 
ROC curves help researchers focus on classification rules with low false positive rates, 
which are most important for early detection of cancer. 
The diagonal line y = x corresponds to a classifier which predicts a class membership by 

randomly guessing it. Hence, all useful classifiers must have ROC curves above this line.  

We assume that one of the classes is the class of interest and the objects labeled in this class 
will be called ‘positive’. This achieved by considering the BPH as the negative diagnosis 
while Pca and PIN form the positive diagnosis outcome. 
The classifier gives a continuous valued output given by equation (10) which is cut at a 
certain threshold. All objects for which the classifier output exceeds the threshold are 
labeled as positive while the remaining results are labeled as negative. By varying the 
threshold value from the minimum to the maximum value of the classifier output, one can 
construct a ROC curve. Figure 9 illustrates the ROC curves obtained with the two methods 
RRSFS/1NN and SFS/1NN using 4 cross-validation and an independent test set. The test set 
is obtained by splitting the dataset onto two equal sets, training set and test set. For cross-
validation, given the test sets generated from 4 cross-validation, we can simply merge the 
instances together by their assigned scores into one large test set and we then plot the result. 
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Fig. 9. ROC curves for SFS/1NN and RR-SFS/1NN classifier 
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The results are comparable or better than those obtained in other recent studies (Taher & 

Bouridane, 2006); this further demonstrates that our new proposed Round Robin technique 

results in an improved ability to distinguish cancer prostate tissues from healthy ones. It is 

clear from the figure that RRSFS/1NN algorithm performs better than simple SFS/1NN 

with high TPR rate. 

8. Conclusion 

In this chapter, a Round Robin SFS/1NN algorithm is proposed for the classification of 

prostate needle biopsies using multispectral imagery. To achieve this, a set of features was 

computed over a wide range of visible wavelength and the results have indicated a 

significant increase in the classification accuracy with Round Robin technique with high 

TPR. A key characteristic of the proposed Round Robin approach is that different features 

are used for each binary classifier from multispectral images, thus producing an overall 

increase in the classification accuracy. In contrast, in a multiclass problem, the classifier tries 

to find only those features that distinguish all classes at once. RR SFS/1NN has also 

demonstrated the effectiveness of some texture and structural features to make difference 

between different classes which can be helpful for the pathologist. Finally, the algorithm is 

generic and can be used for different datasets from other pattern recognition areas. 
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