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1. Introduction 

Chronic consumption of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) has been 
associated with a reduced incidence of prostate cancer (Nelson & Harris, 2000). Pathologic 
inflammation can induce oxidative stress generating free radicals that can subsequently 
react with infectious agents and surrounding cells during induction of innate immunity. 
Different forms of reactive oxygen species can form DNA adducts by halogenation, nitration 
and oxygenation of bases (Kang & Sowers, 2008). DNA repair of reactive oxygen species 
damaged bases can seal in mutations that may eventually lead to transformation of cells and 
carcinogenesis (Burrows, 2009). NSAIDs inhibit inflammation (Masferrer et al., 1995, 
Tegeder et al., 2001) and therefore may reduce the incidence of carcinogenesis by preventing 
free radical transformation of cells. NSAID inhibition of the cyclo-oxygenases (COXs) 
reduces inflammation, however, the mechanism of action of NSAIDs associated with 
reduced risk of prostate cancer appears independent of COX inhibition (Quann et al., 2007a; 
Quann et al., 2007b). NSAIDs represent a diverse category of pharmacological compounds 
with the common biological activity to reduce inflammation, temperature and pain, but 
with diverse chemical structures that undoubtedly interact with multiple target molecules 
with multiple mechanisms of action. In the prostate, selected aryl propionic acid NSAIDS 
such as ibuprofen and r-flurbiprofen (profens) inhibit epithelial cell growth in a COX 
independent manner (Quann et al., 2007a; Quann et al., 2007b). A mechanism by which 
these profens inhibit prostate growth appears to be via re-induction of the p75 neurotrophin 
receptor (p75NTR) which has been shown to exhibit both tumor suppressor and metastasis 
suppressor activity (Krygier & Djakiew, 2001a; Krygier & Djakiew, 2002). In pathologic 
human prostate cancer tissues, the p75NTR protein exhibits focal loss of expression which is 
further lost with malignant progression of tissues (Perez et al., 1997). Significantly, treatment 
of prostate tumor cells with profen NSAIDs promotes re-expression of the p75NTR protein 
that inhibits growth (Quann et al., 2007a; Quann et al., 2007b) consistent with p75NTR 
dependent tumor and metastasis suppressor activity (Krygier & Djakiew, 2001;2002). The 
COX independent pathway by which profen NSAIDs induce p75NTR re-expression involves 
rapid phosphorylation of p38 MAPK and down stream effectors leading to re-expression of 
p75NTR protein and suppressor activity (Quann et al., 2007b). This review discusses the body 
of evidence for the inhibitory role of the p75NTR in prostate growth; the pathologic loss of 
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p75NTR expression during progression to prostate cancer, and the ability of profen NSAIDs 
to re-induce p75NTR protein expression through the p38 MAPK pathway with concomitant 
tumor and metastasis suppressor activity which provides a basis for NSAID associated 
reduced risk of prostate cancer.  

 

 

Fig. 1. Affinities of the neurotrophin ligands, nerve growth factor (NGF), brain derived 
neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) for the 
family of tropomyosin receptor kinases (Trks) and the p75 neurotrophin receptor (p75NTR). 
Solid arrows show primary affinities, while dotted arrows show secondary affinities. 

2. Expression of neurotrophins and their receptors (p75
NTR

 and Trks) in the 
prostate 

The progression of prostate cancer is accompanied by modifications in the expression of 
growth factors and their receptors (Bostwick et al, 2004). Amongst these are nerve growth 
factor (NGF) and its receptors, p75NTR and the Trk family (Djakiew, 2000). The neurotrophin 
family of ligands (Leibrock et al., 1989, Maisonpierre et al., 1990, Hallbook et al., 1991) 
consisting of  nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), 
neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) which is identical to NT-5,  all of which 
can bind with similar affinity to the p75NTR (Bothwell, 1995) and with differential affinities to 
the Trk family (TrkA, TrkB, TrkC) of high affinity receptors (Figure 1). TrkA preferentially 
binds with NGF, but also binds BDNF. TrkB preferentially binds BDNF (Soppert et al., 
1991), but also binds NT-3 and NT-4 (Berkemeier et al., 1991) and TrkC preferentially binds 
NT-3 (Lamballe et al., 1991), but also binds NT-4 (Figure 1). NGF immunoreactive protein 
has been localized to normal epithelium (MacGrogan, 1992; Paul et., 1992) and the stroma of 
normal, BPH (Djakiew et al., 1991) and cancer tissues of the human prostate (MacGrogan et 

al., 1992; Djakiew, 1991; Graham et al., 1992). Exogenous NGF has been shown to stimulate 
proliferation in vitro (Delsite & Djakiew, 1999; Angelsen et al., 1998; Pflug & Djakiew, 1998), 
and anchorage independent growth of several prostate tumor cell lines (Chung et al., 1992). 
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BDNF also is also expressed by human prostate stromal cells (Dalal & Djakiew, 1997). 
Hence, the two neurotrophins, NGF and BDNF appear to function as paracrine factors for 
prostate epithelial cell growth (Dalal & Djakiew, (1997). 
The p75NTR is expressed by normal human prostate epithelial cells (MacGrogan et al., 1992; 
Graham et al., 1992). Immunoblot (Pflug et al., 1992), immunofluorescence (Graham et al., 
1992), and immunohistochemical (Pflug et al., 1992) studies have shown that p75NTR protein 
expression progressively declines in human prostate cancer (Perez et al., 1997; Pflug et al., 
1995; Djakiew et al., 1996). The p75NTR is expressed in PIN tissue (Perez et al., 1997), and 
shows a gradual decline in the percentage of cells that retain expression with increasing 
Gleason score of pathologic prostate tissues (Perez et al., 1997). Hence, loss of p75NTR 
expression appears to be correlated with cancer grade in organ-confined disease (Perez et 
al., 1997). The p75NTR is also absent in three human cancer cell lines derived from metastases 
(Pflug et al., 1992). Loss of p75NTR expression in prostate cancer may be related to its role in 
the induction of programmed cell death (Pflug & Djakiew, 1998; Djakiew et al., 1996). In this 
context, the p75 neurotrophin receptor (p75NTR) is a 75 kD cell surface receptor glycoprotein 
that shares both structural and sequence homology with the tumor necrosis factor receptor 
super-family of proteins (Chao, 1994; Chapman, 1995). Some of these proteins (e.g. p75NTR, 
p55TNFR, Fas, DRs3-5) have similar sequence motifs of defined elongated structure (Chao, 
1994) designated “death domains” based upon their apoptosis inducing function (Chao, 
1994). Hence, re-expression of p75NTR by stable and transient transfection showed that the 
p75NTR inhibits growth of prostate epithelium in vitro, at least in part, by induction of 
programmed cell death (Pflug & Djakiew, 1998). Hence, loss of p75NTR expression appears to 
eliminate a potential programmed cell death pathway in prostate cancer cells (Figure 2), 
thereby facilitating the growth of these cancer cells during carcinogenesis (Perez et al., 1997; 
Djakiew et al., 1996). 
Since expression of the p75NTR is lost during malignant progression and transformation of 
the prostate (Figure 2), NGF mediated growth of cancer cells has been shown to occur via 
the family of high affinity Trk receptors (Pflug & Djakiew, 1998; Dalal & Djakiew, 1997; 
Pflug et al., 1995). Differential expression of TrkA, TrkB and TrkC occurs in normal, organ 
confined and metastatic prostate cancer tissue (Chapman, 1995) and cell lines (Dalal & 
Djakiew, 1997) suggesting the presence of a neurotophin mediated proliferative stimulus via 
the Trk receptors (Figure 2). Expression of the TrkA receptor has been observed in normal 
prostate epithelial cells, organ confined prostate adenocarcinoma tissues (Djakiew et al., 
1996; Pflug et al., 1995; Djakiew et al., 1996; Dionne et al., 1998), in prostate tumors that have 
metastasized to the bone (Dionne et al., 1998), as well as in several human prostate tumor 
cell lines derived from metastases (Djakiew et al., 1996). Interestingly, although normal 
prostate epithelial cells do the not express either TrkB or TrkC (Dionne et al., 1998), these 
receptors are expressed in metastatic prostate cancer of the bone (Dionne et al., 1998). Hence, 
it appears that normal prostate epithelial cells express TrkA, and that cancer cells continue 
to express TrkA within primary tumors and at metastatic foci, while TrkB and TrkC 
expression is subsequently up-regulated within metastatic prostate tumors (Dionne et al., 
1998). Pharmacological inhibition of the Trk family of receptors has provided a basis for 
their role in mediating a proliferative stimulus is tumor cells. In this context, the 
indolocarbazole kinase inhibitors selectively antagonize Trk receptors at nanomolar 
concentrations (Berg et al., 1992) and inhibit NGF-stimulated Trk phosphorylation in cancer 
cell lines (Delsite & Djakiew, 1996). Concurrently, Trk selective indolocarbazoles inhibit 
growth of cancer cell lines in vitro (Delsite & Djakiew, 1996), and in vivo (Dionne et al., 1998). 
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Interestingly, Trk family mutations within the human prostate have not been identified 
(George et al., 1998). However, the absence of mutations in otherwise genetically unstable 
prostate tumor DNA suggests that intact Trk family signaling pathways may be important 
in prostate cancer development (George et al., 1998) consistent with a role as a proto-
oncogene. 

 

 
 

Fig. 2. Schematic diagram showing expression of NGF and BDNF in prostatic stroma for the 
paracrine regulation of epithelial cell growth. Pre-malignant epithelial cells express both 
TrkA and the p75NTR, whereas metastatic tumor cells have lost  expression of the p75NTR 
and gained expression of both TrkB and TrkC.  

3. Ectopic re-expression of p75
NTR

 induces tumor suppressor, metastasis 
suppressor and differentiation phenotypes in prostate tumor cells 

Whereas the gene encoding p75NTR is intact in prostate cancer cells (Krygier & Djakiew, 
2001b), expression of the p75NTR protein is suppressed (Perez et al., 1997; Pflug et al., 1992; 
Pflug et al., 1995). Moreover, transient transfection of two constructs of p75NTR into prostate 
cell lines that do not express the protein, one construct containing the full 2-kb 3’ 
untranslated region and another that contains just a few hundred bases of the 3’ 
untranslated region, showed that only the truncated construct allowed expression of the 
p75NTR protein (Krygier & Djakiew, 2001b). This lead to the conclusion that elements of the 
3’ untranslated region of p75NTR contribute to mRNA stability and p75NTR protein expression 
(Krygier & Djakiew, 2001b). Utilizing the truncated p75NTR expression vector that allows 
protein expression, a series of stable prostate cell lines were developed that express different 
levels of p75NTR protein (Pflug et al., 1992, Pflug et al., 1995). These cancer cells that 
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ectopically expressed the p75NTR protein exhibited a retardation of cell cycle progression 
characterized by accumulation of cells in G1 phase with a corresponding reduction of cells 
in the S phase of the cell cycle (Krygier & Djakiew, 2001a). In rank order, prostate cancer 
cells that expressed increased levels of p75NTR protein exhibited increased rates of apoptosis 
and reduced rates of proliferation (Krygier & Djakiew, 2001a). When the same series of 
tumor cells were injected into the flanks of SCID mice the growth of prostate tumors was 
suppressed in proportion to increased p75NTR expression levels (Krygier & Djakiew, 2001a) 
thereby functionally demonstrating that the p75NTR exhibits tumor suppressor activity 
(Krygier & Djakiew, 2001a). Further evidence for the tumor suppressor function of p75NTR 
was show utilizing a gene therapy strategy based upon intra-tumoral injection into 
xenografts of PC-3 prostate tumor cells of a lipoplex containing the p75NTR gene. 
Administration of the p75NTR gene into subcutaneous PC-3 xenografts suppressed in a dose-
dependent manner the growth of tumors (Allen et al., 2004). Within the gene therapy treated 
tumors re-expression of the p75NTR gene product was associated with increased apoptosis 
and reduced proliferation of tumor cells (Allen et al., 2004), the net effect of which was to 
reduce overall growth and tumor volume. Utilizing the same prostate tumor cells that 
exhibited a rank order (dose-dependent) increase in p75NTR expression for growth of 
subcutaneous tumors in SCID mice (Krygier & Djakiew, 2001a), treatment of these tumors 
with NGF stimulated both proliferation as indicated by PCNA expression, and apoptosis as 
indicated by TUNEL assay, the net result of which was no change in the overall growth of 
the tumors (Krygier & Djakiew, 2002). However, NGF was found to increase the formation 
of smaller secondary satellite tumors, both contiguous and non-contiguous with respect to 
the primary tumor mass, indicating dose-dependent induction of metastasis (Krygier & 
Djakiew , 2002). Significantly, the formation of satellite tumors was suppressed by the 
expression of p75NTR thus showing that p75NTR is a tumor suppressor of growth and a 
metastasis suppressor of NGF stimulated migration (Djakiew et al, 1993) of human prostate 
tumor cells (Krygier & Djakiew, 2002). To better understand the molecular mechanism of 
p75NTR on tumor and metastasis suppression a cDNA microarray composed of 
approximately 6,000 human cancer-related genes was used to determine the gene expression 
pattern altered by re-introduction of p75NTR into PC-3 prostate tumor cells (Nalbandian et 
al., 2005). Comparison of the transcripts in the neo control and p75NTR-transfected cells 
revealed 52 differentially expressed genes, of which 21 were up-regulated and 31 were 
down-regulated in the presence of p75NTR. The known biological functions of these p75NTR 
regulated genes suggested a role in the regulation of differentiation as well as cell adhesion, 
signal transduction, apoptosis, tumor cell invasion and metastasis (Nalbandian et al., 2005). 
Quantitative real-time polymerase chain reaction and immunoblot analysis confirmed 
increased CRABPI and IGFBP5 protein levels and decreased level of PLAUR protein with 
increasing p75NTR protein expression. Indeed, CRABPI was elevated far more than any other 
genes (Nalbandian et al., 2005). In this context, the retinoids, ATRA and 9-cis RA, that bind 
CRABPI, promoted functional cell differentiation in p75NTR PC-3 cells, but not in neo control 
PC-3 cells. Subsequent examination of the retinoic acid receptors expression levels 
demonstrated an absence of RAR-┚ in the neo control cells and re-expression in the p75NTR 
expressing cells, consistent with previous findings where RAR-┚ is believed to play a critical 
role as a tumor suppressor gene which is lost during de-differentiation of prostate epithelial 
cells. Whereas the RAR-┙ and -┛ protein levels remained unchanged, RXR-┙ and -┚ also 
exhibited increasing protein levels with re-expression of the p75NTR protein (Nalbandian et 
al., 2005). Moreover, the ability of p75NTR siRNA to knockdown levels of RAR-┚, RXR-┙, and 
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RXR-┚ support the specificity of the functional involvement of p75NTR in differentiation. 
Hence, re-expression of the p75NTR appears to partially reverse de-differentiation of prostate 
cancer cells by up-regulating expression of CRABPI for localized sequestration of 
retinoids that are available to newly up-regulated RAR-┚, RXR-┙, and RXR-┚ proteins 
(Nalbandian et al., 2005). Hence, the p75NTR has been shown to exhibit tumor suppressor 
(Krygier & Djakiew, 2001a), metastasis suppressor (Krygier & Djakiew, 2002) and 
differentiation (Nalbandian et al., 2005) functions all of which contribute to an anti-cancer 
phenotype in the prostate. 

4. Effectors of signal transduction, cell cycle and apoptosis following 

constitutive p75
NTR

 expression in the prostate 

Ectopic re-expression of p75NTR down regulates the NFB and JNK pathways leading to 
reduced survival of tumor cells (Allen et al., 2005). As a member of the TNF receptor super-
family the p75NTR has been shown to mediate signal transduction through it’s intracellular 
death domain. Expression of two adaptor proteins, TRAF2 and RIP are down-regulated 
following restoration of p75NTR protein by stable transfection of prostate tumor cells (Allen 
et al., 2005). Significantly, TRAF2 has previously been implicated as an upstream signaling 

molecule of both the NFB and JNK pathways (MacEwan, 2002), both of which function as 
potent effectors of transcription. Similarly, RIP has also been shown to interact with death 

receptors that signal through both the NFB and JNK pathways (Harper et al, 2003). 
Moreover, deletion constructs that lack much of the intracellular death domain were shown 
to rescue p75NTR down-regulation of RIP (Allen et al., 2005). This p75NTR-dependent 
reduction in RIP protein appeared to be a consequence of caspase-8 cleavage of RIP, since a 
caspase-8 inhibitor rescued the p75NTR-dependent reduction in the levels of RIP. This 
observation is consistent with previous reports where caspase-8 cleavage of RIP was shown 

to prevent activation of the NFB pathway (Lin et al., 1999; Martinon et al., 2000) and 
suggests that caspase-8 cleavage of RIP is capable of preventing the previously reported RIP 

activation of the JNK pathway (Kelliher et al., 1998). Hence, both the NFB and JNK 
pathways appear to be regulated by p75NTR expression (Allen et al., 2005). With regard to 

the NFB signaling bifurcation, ectopic re-expression of p75NTR reduces levels of IKKs, with 

consequent reduced phosphorylation levels of IB, stabilized levels of unphosphorylated 

IB, and reduced levels of RelA (Allen et al., 2005). Moreover, the activity of the IKKs is 
regulated through the serine/threonine kinase activity of upstream full length RIP (Hur et 
al., 2003). Hence, the p75NTR-dependent reduction in the levels of RIP, via caspase-8 cleavage 
of RIP, leads to an overall reduction in signal transduction components required for 

activation of NFB (Allen et al., 2005). Several of these p75NTR dependent changes in 
signaling components are rescued with dominant negative death domain deletion 

constructs, thereby further establishing a link between the NFB pathway downstream of 
p75NTR (Allen et al., 2005). With regard to the JNK signaling bifurcation, ectopic restoration 
of p75NTR levels is associated with a reduction in the expression of the MKK4 kinase and a 
reduction in the phosphorylated (active) form of JNK. Since MKK4 phosphorylation of JNK 
has been shown to promote nuclear translocation (Cobb, 1999; Gonzalez et al., 2000) where 
activated JNK may function as an effector of transcription for growth (Gee et al., 2000; Herr 
& Debatin, 2001), p75NTR associated suppression of JNK phosphorylation and suppression of 
translocation is consistent with the suppression of the JNK signaling pathway. Moreover, 
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deletion constructs that lack much of the intracellular death domain were shown to rescue 
p75NTR down-regulation of MKK4 and phosphorylated JNK (Allen et al., 2005) thereby 
further establishing a link between the JNK pathway downstream of p75NTR (Allen et al., 
2005). At the functional level, ectopic re-expression of p75NTR reduces cell survival (Allen et 

al., 2005), and dominant negative antagonism of IKK or MKK4 partially rescues survival 

(Allen et al., 2005). Hence, it appears that both the NFB and JNK pathways promote cell 
survival and that p75NTR down regulation of these pathways inhibits survival in prostate 
cancer cells, thereby providing a signal transduction pathway for the observed suppressor 
activities of the p75NTR protein (Krygier and Djakiew, 2001a; Krygier and Djakiew, 2002). 
The observation that both signaling pathways bifurcate from the p75NTR suggests a 
redundancy whereby robust down regulation of either pathway may function 
independently to promote suppressor activity.  
Ectopic re-expression of p75NTR alters the cell cycle kinetics of prostate tumor cells (Krygier 
& Djakiew, 2001a). Cell cycle initiation and progression is cooperatively regulated by several 
classes of cyclin-dependent kinases (cdks). The expression of cyclin D1-cdk6 (Boonstra, 2003; 
Sherr, & Roberts, 1995) complexed with PCNA has been shown to promote 
hyperphosphorylation of Rb during progression through early to mid-G1 (Satyanarayana & 
Rudolph, 2004). Conversely, p16INK4a binds and induces an allosteric conformational change 
in cdk6 that inhibits the binding of ATP thereby disrupting the formation of the cdk6-cyclin 
D1 complex (Satyanarayana & Rudolph, 2004; Golsteyn, 2005). Prostate cancer cells that 
express rank-order (dose-dependent) increased levels of p75NTR show suppression of cdk6, 
PCNA and hypophosphorylated Rb, and up-regulation of p16INK4a levels indicates that 
p75NTR selectively regulates specific components of the holoenzyme complex (Khwaja et al., 
2006) associated with retarded progression through early to mid-G1 of the cell cycle (Meyer 
et al., 2002). The rescue of cdk6, PCNA and phosphorylated Rb levels, and conversely 
suppression of p16INK4a levels, by both a death domain deleted dominant–negative 
antagonist of p75NTR and by NGF ligand, show a p75NTR-dependent regulation of early to 
mid-G1 in prostate tumor cells (Khwaja, et al., 2006). Beyond mid-G1, near the G1/S 
restriction point, the expression of cyclin E complexed with cdk2 has been shown to 
promote hyper-phosphorylation of Rb (Boonstra, 2003; Shintani et al., 2002). 
A rank-order increase in p75NTR suppression of cyclin E and cdk2 in prostate tumor cells 

(Khwaja et al., 2006) indicate that progression through the G1/S restriction point is regulated 

by p75NTR protein expression. (Figure 3). Since the Rb protein is a major effector of cell 

proliferation through its ability to regulate entry into the S phase (Sellers &  Kaelin, 1996; , 

Huang et al., 2002), and the cyclin E/cdk2 holoenzyme complex hyper-phosphorylates Rb 

during the G1/S transition, the observation that p75NTR expression can stabilize hypo-

phosphorylated Rb and diminish the phosphorylation of Rb is consistent with a mechanism by 

which p75NTR retards progression through the G1/S restriction point of the cell cycle (Khwaja 

et al., 2006). Furthermore, hypophosphorylated Rb has been shown to bind the E2F1 

transcription factor (Harbour & Dean, 2000), so that the Rb/E2F1 complex can no longer 

promote transcription of PCNA preventing progression into the S phase of the cell cycle. 

Hence, the observation that p75NTR associated hypo-phosphorylation of Rb in conjunction with 

suppression of E2F1 and PCNA expression (Westwood et al., 2002) further supports a role of 

p75NTR in G1/S restriction point cytostasis (Khwaja et al., 2006). Beyond the G1/S restriction 

point, expression of the cyclin A/cdk2 holoenzyme complex has been shown to maintain 

hyper-phosphorylation of Rb during the S phase of the cell cycle (Sherr, 1996). Hence, 
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observations that p75NTR-potentiated suppression of cdk2 and cyclin A support a selective 

effect of p75NTR expression on maintaining hypo-phosphorylation of Rb (Khwaja et al., 2006), 

thereby retarding progression through the S phase of the cell cycle (Figure 3). Significantly, the 

rescue of cyclin E, cdk2, PCNA, phosphorylated Rb, E2F1 and PCNA by both a death domain 

deleted dominant–negative antagonist of p75NTR and also by NGF ligand (Khwaja et al., 2006) 

show a p75NTR-dependence of the regulation of progression through both the G1/S restriction 

point and the S phase in prostate tumor cells. Hence, it seems clear that p75NTR expression 

selectively alters specific cell cycle regulatory molecules that retard progression through early 

to mid-G1, the G1/S restriction point and the S phase of the cell cycle (Figure 3). Moreover, in 

the absence of ligand, the ability of p75NTR to retard cell cycle progression is dependent on the 

intracellular death domain, and that addition of NGF ligand attenuates inhibition of cell cycle 

progression at the level of the cyclin/cdk holoenzyme complex and related effects on Rb 

expression and tumor cell proliferation. Hence, p75NTR-dependent regulation of specific cyclin-

dependent kinases and associated cell cycle effectors to retard progression of prostate tumors 

through the G1 phase and entry into S phase of the cell cycle (Figure 3) provides a biochemical 

basis upon which p75NTR inhibits prostate cell proliferation (Khwaja et al., 2006). 

 

 
 

Fig. 3. Effects of p75NTR on regulation of the cell cycle. Re-expression of p75NTR induces 
midG1 suppression of cdk6 and up-regulation of p16Ink4a. During the G1/S transition re-
expression of p75NTR induces suppression of cdk2 and cyclin E. Similarly, during S phase 
re-expression of p75NTR induces suppression of cdk2 and cyclin A. The net effect of these 
changes is to diminish phosphorylation of Rb thereby preventing progression of the cell 
cycle in favor of cessation. 

In addition to cell cycle effects, ectopic re-expression of p75NTR has been shown to modify 
mitochondrial effector proteins that activate the caspase cascade leading to apoptosis 
(Khwaja, et al., 2006). Mitochondrial mediated apoptosis is facilitated by members of the Bcl-
2 homology (Puthalakath & Strasser, 2002) family of proteins (O'Neill et al., 2004) that 
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include both pro- and anti-apoptotic members (Puthalakath & Strasser, 2002). In this 
context, a rank-order increase in p75NTR levels (Khwaja et al., 2006) was associated with a 
decrease in the mitochondrial pro-survival effector, Bcl-xL, and concomitantly, an increase 
in proapoptotic effectors (Smac, Bax, Bak, Bad). In the absence of NGF ligand the ability of a 
death domain deleted dominant–negative antagonist of p75NTR to rescue p75NTR-dependent 
changes in Smac and BH family proteins, and the addition of NGF having a comparable 
effect, suggest a ligand independent p75NTR-potentiated apoptosis in prostate cells that 
occurs via a mitochondrial stress pathway (Khwaja et al., 2006). Release of Smac from the 
intermembranous space of the mitochondria into the cytosol (Shiozaki & Shi, 2004) also 
initiates apoptosis where it competes with caspases for binding to XIAP. Indeed, to protect 
against inadvertent activation of apoptosis, the IAP family of proteins (Shiozaki & Shi, 2004) 
have been shown to bind and prevent activation of caspases. Hence, p75NTR-dependent 
down-regulation of XIAP in prostate cells allows for activation of the caspase cascade. 
Significantly, a rank-order increase in p75NTR levels was shown to activate both caspase-9 
and caspase-7 (Khwaja et al., 2006). In the intrinsic mitochondrial dependent pathway, the 
assembly of the apoptosome requires the recruitment of the initiator caspase-9 (Shiozaki & 
Shi, 2004) which subsequently activates the effector caspase-7. Interestingly, a specific 
peptide inhibitor of procaspase-9 cleavage was shown to prevent cleavage/activation of 
procaspase-7. Since the initiator procaspase-9 is a proximate component of the caspase 
cascade, it is clear that procaspase-7 is downstream from procaspase-9 during mitochondrial 
mediated p75NTR potentiation of apoptosis (Shiozaki & Shi, 2004). Moreover, in p75NTR 
expressing prostate cells the activation of caspase-7 appears to facilitate subsequent cleavage 
of PARP. PARP cleavage has been shown to be a key event in the execution phase of 
apoptosis leading to cellular demise (Lazebnik et al., 1994). Clearly, the ability of a death 
domain deleted dominant–negative antagonist of p75NTR and NGF ligand to rescue p75NTR 
potentiated changes in XIAP, caspase-9, caspase-7, PARP and apoptotic nuclear 
fragmentation show that mitochondrial mediated apoptosis is dependent, in part, on p75NTR 

in the prostate. Moreover, the effect of p75NTR-dependent down regulation of NFB and JNK 
survival pathways, regulation of cell cycle regulatory molecules of the cyclin/cdk 
holoenzyme complex that produce stasis in G1 and/or inhibition of progression to S phase 
of the cell cycle and regulation of mitochondrial effector proteins that activate the caspase 
cascade leading to apoptosis, in combination, all inhibit growth of prostate cells as a 
function of it’s tumor suppressor activity (Krygier & Djakiew, 2001a; Khwaja et al., 2006). 

5. Constitutive p75
NTR

 expression regulates protease activity in the prostate 

Ectopic re-expression of p75NTR down regulates protease activities in prostate cancer cells 
(Nalbandian & Djakiew, 2006). The urokinase plasminogen activator (uPA) and its receptor 
(uPAR) are associated with tumor malignancy through an extracellular cascade of proteolysis 
(Andreasen et al., 2000; Reuning et al., 1998) including activation of the type IV collagen matrix 
metalloproteinases (MMP-2 and MMP-9) during invasion and tumor progression (Mazzier et 
al., 1997). Ectopic re-expression of p75NTR reduces enzymatic protein levels and activity of 
uPA, MMP-2 and MMP-9 in prostate tumor cells (Nalbandian & Djakiew, 2006). Conversely, 
expression of an MMP-9 antagonist, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) 
exhibits an increase in protein levels with an increase in p75NTR levels. Whereas, levels of 
TIMP-2 were not detectable (Nalbandian & Djakiew, 2006) transient transfection with an 
inducible death domain deleted dominant–negative antagonist of p75NTR rescued uPA, MMP-
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2, and MMP-9 protein levels and protease activities, and conversely suppressed TIMP-1 levels 
(Nalbandian & Djakiew, 2006). Since ectopic p75NTR signal transduction has been shown to 

suppress the NFB and JNK pathways (Allen et al., 2005), antagonism of signaling 
intermediaries in these pathways, using dominant negative IKK┚ or dominant negative MKK-
4, respectively, was shown to further decrease expression of uPA, MMP-2, and MMP-9 protein 
and enzymatic activity levels, and conversely up-regulate levels of TIMP-1. Hence, expression 
of uPA, MMP-2, MMP-9, and TIMP-1 are directly regulated by expression of p75NTR and its 
downstream signal transduction cascade. This suggests that the metastasis suppressor activity 
of p75NTR (Krygier & Djakiew, 2002) is mediated, in part, by down-regulation of specific 
proteases (uPA, type IV collagenases) implicated in cell migration and metastasis (Nalbandian 
& Djakiew, 2006).  

6. NSAIDS selectively induce pharmacological re-expression of the p75
NTR  

NSAIDs represent a diverse and often structurally unrelated group of compounds that 

exhibit a range of anti-inflammatory, anti-pyretic and analgesic activities. NSAIDs can be 

classified into three broad categories as carboxylic acids, enolic acids, and COX-2 

inhibitors, or coxibs (Figure 4). The carboxylic acid group is further divided into salicylic 

acids and esters, acetic acids, and propionic acids. The enolic acids are divided into 

pyrazolones and oxicams. Many NSAIDs used to treat inflammation inhibit 

cyclooxygenase (COX) activity. Two well known isoforms of COX exist, COX-1 and COX-

2. COX-1 is considered to be a house keeping gene, and is expressed constitutively and 

ubiquitously at low levels. COX-2 is highly inducible in response to cytokines, hormones, 

and growth factors. The COX enzymes catalyze the conversion of arachidonic acid to 

various prostaglandins, which play a role in biological processes including immune 

response, blood pressure regulation, angiogenesis, ovulation, pain and inflammatory 

responses. Nonselective NSAIDs inhibit both COX-1 and COX-2, and are frequently 

associated with gastrointestinal side effects. Whereas, NSAIDs that selectively inhibit 

COX-2 have significantly decreased gastrointestinal side effects, they often exhibit 

enhanced cardiovascular toxicity (Dubois et al., 2004). Overexpression of COX-2 is 

observed in several cancer types including colon, breast, pancreas, and lung (Sarkar et al., 

2007; Mascaux et al., 2006). Increased COX-2 expression is believed to contribute to 

tumorigenesis through several mechanisms including stimulation of growth, promotion 

of angiogenesis, increased inflammation, increased invasion and migration, immune 

suppression, and inhibition of apoptosis (Liao et al., 2007). Hence, NSAID inhibition of 

COX-2 activity may suppress these mechanisms that contribute to tumorigenesis. 

Consistently, several reports have linked long term NSAID use to decreased cancer risk 

for colon (Thun et al., 1991), bladder (Castelao et al., 2000), and prostate (Nelson & Harris, 

2000) and possibly other organ specific sites. Although it has been the subject of multiple 

reports, there is not a consensus concerning the expression and role of COX-2 in prostate 

cancer. Several studies show that COX-2 is overexpressed, while others found that it is 

low or absent in most prostate cancers (Madaan et al., 2000; Kirschenbaum et al., 2000; 

Yoshimura et al., 2000). In addition, expression of COX-2 is absent in the metastatic 

human prostate cancer cell lines LNCaP, DU145, and PC-3 (Yoshimura et al., 2000). 

Although reports of COX-2 expression in prostate cancer vary, long term NSAID use is 

associated with decreased prostate cancer risk (Nelson & Harris, 2000), and several COX 
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inhibitors consistently induce apoptosis in prostate cancer cells regardless of COX-2 

expression (Zha et al., 2001; Jacobs et al., 2007; Roberts et al., 2002; Hsu et al., 2000; 

Johnson et al., 2001). Indeed, NSAIDS that do not inhibit the cyclo-oxygenases (R-

flurbiprofen) or NSAIDs that inhibit COX null tumor cells demonstrates an alternate COX 

independent mechanism of action for selected NSAID inhibition of some tumor cells. In 

this context, NSAIDs exhibit selective activity to induce p75NTR-dependent cell death 

(Khwaja et al., 2004). The propionic acids, ibuprofen and r-flurbiprofen, as well as the 

indolacetic acid, indomethacin, exhibit greater pharmacological activity to induce p75NTR-

dependent cell death than the salicyclate, aspirin, or acetaminophen (Khwaja et al., 2004). 

Within the aryl propionic acid NSAIDs, r-flurbiprofen exhibits greater activity to induce 

p75NTR in descending rank-order than ibuprofen, oxaprozin, fenoprofen, naproxen and 

least of all ketoprofen (Quann et al., 2007a). Significantly, this activity appears relatively 

selective for induction of p75NTR (Quann et al., 2007a), since r-flurbiprofen and ibuprofen 

do not induce expression of Fas, p55TNFR, DR3, DR4, DR5 or DR6 in prostate cancer cells 

(Quann et al., 2007a). Some other NSAIDs have also been reported to induce expression of 

certain TNF receptor super family members, particularly DR5. 

 
 

 
 

Fig. 4. Classification of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) into three 
categories of carboxylic acids, enolic acids and COX-2 inhibitors. Sub-classifications of 
NSAIDs are further delineated with specific examples. 

For instance, sulindac sulfide induces DR5 associated cell death in prostate cancer cells 

(Huang et al., 2001) and celocoxibs induce DR5 in both prostate and colon cancer cells (He 

et al., 2008). Moreover, aryl propionic acid induction of p75NTR appears somewhat 

selective for urogenital cancer cell lines such as prostate, bladder, kidney, ovary, and 

colon (Khwaja et al., 2004), whereas cell lines derived from the lung, or breast do not 

exhibit induction of the p75NTR protein (Khwaja et al., 2004). Hence, induction of p75NTR 

appears to represent a COX independent mechanism for NSAID associated reduced risk 

of prostate cancer. 
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7. NSAID induced phosphorylation of p38 MAPK is necessary for induction of 
p75

NTR
 expression 

NSAIDs exhibit a range of efficacy to inhibit survival of prostate cancer cells (Andrews et al., 
2002). Induction of p75NTR dependent cell death by selected NSAIDs (R-flurbiprofen, 
ibuprofen) occurs through hyper-phosphorylation of p38 MAPK (Quann et al., 2007b). 
Although p75NTR is transcribed at a high level (Quann et al., 2007b; Krygier & Djakiew, 2001b), 
prostate cancer cells have very little p75NTR mRNA or protein due to increased mRNA 
instability mediated through the 3’UTR (Krygier & Djakiew, 2001b). Since, increased 3’UTR 
length provides increased potential for post-transcriptional regulation through the 3’UTR 
(Mazumder et al., 2003) R-flurbiprofen and ibuprofen appear to modulate mRNA stability as a 
determinant in regulating the expression level of p75NTR protein (Quann et al., 2007b). 
Significantly, activity of the p38 MAPK pathway is an important regulator of mRNA stability 
(Zarubin & Han, 2005; Kennedy et al., 2007; Gaestel, 2006). Pretreatment of prostate cancer 
cells with a p38 MAPK selective pharmacological inhibitor or siRNA knockdown of p38 
MAPK prior to R-flurbiprofen and ibuprofen treatment prevents induction of p75NTR protein. 
In addition, the phytoestrogens biochanin A and to a lesser extent genestein, inhibit ibuprofen 
induced phosphorylation of p38 MAPK which in turn suppresses p75NTR expression and 
increases cell survival (El Touny et al., 2010). R-flurbiprofen and ibuprofen cause increased p38 
MAPK phosphorylation within 5 minutes of treatment (Quann et al., 2007b). Whereas, p38 
MAPK can be phosphorylated by MKK6 and MKK3, R-flurbiprofen and ibuprofen induce 
hyperphosphorylation of only MKK6 but not MKK3 within 30 seconds of treatment (Figure 5) 
indicating that the target molecule of these NSAIDs is immediately proximal to MKK6. 
Significantly, several oxidative stress pathways converge upstream of MKK6, thereby 
providing a basis by which NSAID inhibition of inflammation (Masferrer et al., 1995; Tegeder 
et al., 2001) may regulate p38 MAPK dependent expression of the p75NTR tumor suppressor to 
reduce the incidence of prostate cancer. Downstream of p38 MAPK R-flurbiprofen and 
ibuprofen induced activation of the kinase MK2 (Quann et al., 2007b). MK2 and the closely 
related MK3 are known to be responsible for mediating the mRNA stabilizing effects of the 
p38 MAPK pathway (Ronkina et al., 2007). Moreover, siRNA knockdown of both MK2 and 
MK3 together prevents induction of p75NTR by R-flurbiprofen or ibuprofen to a greater extent 
than knockdown of either MK2 or MK3 separately, indicating that p38 MAPK is able to induce 
p75NTR by acting through both MK2 and MK3 (Quann et al., 2007b).  
 

 

Fig. 5. Western blot showing the time course in seconds (s), minutes (m) and hours (h) of the 
phosphorylation forms of MKK6, but not MKK3, in PC-3 prostate cancer cells treated with r-
flurbiprofen (Flu), or ibuprofen (Ibu). The positive controls for the phosphorylated forms of 
both MKK6 and MKK3 are shown to the right. 
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The mRNA stabilizing effects of the p38 MAPK pathway (Ronkina et al., 2007) also involves 
the RNA binding protein HuR (Tran et al., 2003; Lin et al., 2006; Jin et al., 2007; Song et al., 
2005). Its ability to stabilize target mRNAs is linked to its subcellular localization, and 
activation of p38 MAPK and MK2 have been shown to cause translocation of HuR from the 
nucleus to the cytoplasm, resulting in increased mRNA stability of a number of p38 MAPK 
regulated genes (Tran et al., 2003; Lin et al., 2006; Jin et al., 2007; Song et al., 2005). HuR has 
repeatedly been shown to stabilize transcripts containing the AUUUA sequence (Tran et al., 
2003; Song et al., 2005). The human p75NTR transcript contains AUUUA sites located in the 
3’UTR at positions 2946 and 3124, suggesting they may be involved in regulating p75NTR 
expression. Significantly, treatment with R-flurbiprofen or ibuprofen results in an increase in 
the cytoplasmic level of HuR and binding to the p75NTR transcript (Quann et al., 2007b) 
although this is not the sole mechanism responsible for increased p75NTR expression. Indeed, 
eIF4E is also phosphorylated by kinases downstream of p38 MAPK (Scheper & Proud, 2002). 
eIF4E has also been shown to control the nuclear export as well as translation of a subset of 
transcripts (Culjkovic et al., 2007). eIF4E has been linked to the control of mRNA stability by 
removal of the 5’-cap during mRNA degradation (von der Haar et al., 2004). R-flurbiprofen or 
ibuprofen treatment increases the level of phosphorylated eIF4E (Quann et al., 2007b) involved 
in translation initiation and this appears to occur at least partially through the p38 MAPK 
pathway since the increase in phosphorylation is substantially inhibited in the presence of p38 
MAPK siRNA. Therefore, modulation of eIF4E activity is another mechanism by which the 
p38 MAPK pathway may control post-transcriptional events in response to R-flurbiprofen or 
ibuprofen treatment (Figure 6). R-flurbiprofen or ibuprofen stabilization of the p75NTR 
transcript allows levels of the p75NTR protein to accumulate (Quann et al., 1997a, Quann et al., 
197b) that then exhibit biological activity to inhibit prostate cancer cell survival and induce 
apoptosis (Quann et al., 1997a) consistent with its tumor suppressor activity (Krygier & 
Djakiew, 2001a). Significantly, NSAID induction of p38 MAPK dependent p75NTR expression 
and tumor suppressor activity may represent a new pathway to medicinal drug design. Rather 
that inhibit kinase dependent proliferation pathways, pharmacological induction of the p75NTR 
tumor suppressor, as shown with NSAIDs (Figure 6), may represent an alternate approach to 
the targeting of cancer cell survival pathways. Presumably, target molecules that activate this 
pathway appear to occur immediately proximal to MKK6 and the p38 MAPK (Figure 5). 

8. NSAIDs induce expression of NAG-1 down stream of p75
NTR

 via the p38 
MAPK pathway 

R-flurbiprofen and ibuprofen treatment of prostate cancer cells induces expression of the 
NSAID activated gene-1 (Nag-1) protein, a divergent member of the transforming growth 
factor beta (TGF-┚) family (Wynne & Djakiew, 2010). Moreover, a selective pharmacological 
inhibitor of p38 MAPK and p38 MAPK specific siRNA, both reduce Nag-1 induction 
following NSAID treatment. Hence, NSAID induced Nag-1 expression is regulated by the 
p38 MAPK pathway (Figure 6). Interestingly, p75NTR specific siRNA pretreatment abrogates 
Nag-1 induction by NSAIDs (Wynne & Djakiew, 2010) thereby demonstrating that Nag-1 is 
downstream of p75NTR induction (Figure 6). Functionally, decreased survival of NSAID 
treated cells is rescued by p75NTR specific siRNA (Quann et al., 2007a; Wynne & Djakiew, 
2010) but not by Nag-1 siRNA. Transwell chamber and in vitro wound healing assays 
demonstrate decreased cell migration upon NSAID treatment (Wynne & Djakiew, 2010). 
Pre-treatment of prostate cancer cells with p75NTR and Nag-1 specific siRNA shows that 
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NSAID inhibition of cell migration is mediated by Nag-1 and p75NTR (Wynne & Djakiew, 
2010). Additionally, prostate cancer cells stably expressing Nag-1 exhibit decreased 
migration relative to the parental cell line (Wynne & Djakiew, 2010), thereby independently 
confirming a role for this protein in reduced prostate cancer cell migration. Hence, it 
appears that NSAID induction of Nag-1 functions in the inhibition of cell migration, but not 
survival (Figure 6). Interestingly, NSAIDs have been linked to metastasis suppression in a 
variety of cancers including prostate cancer (Lloyd et al., 2003; Jin et al., 2010; Kamei et al., 
2009). Hence, NSAID induction of Nag-1 via the p38 MAPK pathway may contribute to the 
metastasis suppressor activity of p75NTR (Krygier & Djakiew, 2002). 
 

 

Fig. 6. Schematic diagram showing the biochemical pathway by which profen NSAIDs 
positively stimulate and the phytoestrogen, biochanin A, negatively inhibits 
phosphorylation of the p38 MAPK pathway leading to p75NTR  expression with consequent 
tumor suppressor and metastasis suppressor activity.  

9. Summary and conclusions 

Paracrine regulated growth of the prostate is mediated, in part, by neurotrophin dependent 
interactions with the Trk family of receptors and the p75NTR (Djakiew, 2000). In the normal 
prostate neurotrophins stimulate proliferation via the Trk family of receptors and abrogate 
p75NTR apoptotic activity. However, p75NTR protein expression progressively declines in 
human prostate cancer (Perez et al., 1997; Pflug et al., 1995; Djakiew et al., 1996). Hence, in the 
absence of p75NTR inhibition of growth, prostate tumor cells respond to neurotrophins with a 
stiochiometry that favors Trk family dependent proliferation. Even though the p75NTR protein 
is no longer expressed in many prostate cancer cells the gene has remained intact (Krygier & 
Djakiew, 2001b). Indeed, reduced p75NTR protein in cancer cells occurs via loss of mRNA 
stability (Krygier & Djakiew, 2001b). Ectopic re-expression of p75NTR in cancer cells induces 
tumor suppressor (Krygier & Djakiew, 2001a), metastasis suppressor  (Krygier & Djakiew, 
2002) and differentiation phenotypes (Nalbandian et al., 2005). The tumor suppressor activity 

of p75NTR is manifest as a suppression of the NFB and JNK pathways, modification of cyclin-
dependent holoenzyme complexes resulting in accumulations of cells in G1 and restriction of 
entry into the S1 phase of the cell cycle, and modification of mitochondrial effector proteins 
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that activate the caspase cascade leading to apoptosis. The metastasis suppressor activity of 
p75NTR is manifest as down-regulation of urokinase plasminogen activator and type IV 
collagenases (MMP-2, MMP-9) as well as increased expression of the tissue inhibitor of matrix 
metalloproteinase-1 (Nalbandian & Djakiew, 2006). The differentiation activity of p75NTR is 
manifest as up-regulated expression of CRABPI for localized sequestration of retinoids that are 
available to newly up-regulated RAR-┚, RXR-┙, and RXR-┚ proteins (Nalbandian et al., 2005). 
Moreover, certain aryl propionic acid type NSAIDs (profens) restore p75NTR protein levels that 
inhibit growth via a COX independent mechanism of action. Indeed, these profens induce 
hyperphosphorylation of p38 MAPK that initiates a signal transduction cascade leading to 
mRNA stability of the p75NTR transcript and increased protein levels (Quann et al., 2007a; 
Quann et al., 2007b). Profen NSAIDs also induce Nag-1 expression downstream of p75NTR 
(Wynne & Djakiew, 2010). Functionally, profen dependent induction of p75NTR inhibits growth 
and downstream Nag-1 inhibition of cell migration consistent with the tumor suppressor 
(Krygier & Djakiew, 2001a) and metastasis suppressor (Krygier & Djakiew, 2002) activities of 
p75NTR expression, respectively. Hence, these profen NSAIDs induce multiple activities of the 
p75NTR and downstream Nag-1 consistent with observations that chronic consumption of 
NSAIDs is associated with a reduced incidence of prostate cancer (Nelson & Harris, 2000). 
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