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1. Introduction 

The molecular mechanisms of prostate cancer are still poorly understood, despite the threat 
that prostate cancer poses to the health of men worldwide. As prostate tumors are initially 
dependent on androgens for growth and survival, androgen deprivation therapy is the first-
line treatment for prostate cancer patients. However, a hormonal-refractory (androgen 
independent) state often develops afterwards, and principal treatment options are palliative 
because of the tumor progression, which is characterized by uncontrolled growth and 
metastasis associated with androgen independence. To date, no effective therapy can 
abrogate prostate cancer progression to advanced, invasive forms. Recent evidence suggests 
that acquisition of androgen-independence may be due to upregulation of growth factor 
receptor signaling pathways, principally the epidermal growth factor receptor 
(EGFR)/ErbB/human epidermal receptor (HER) family (Craft et al., 1999), making it an 
attractive target for therapeutic intervention. EGFR/ErbB/HER signaling in cancer has been 
extensively studied for decades, and there have been a number of excellent reviews on the 
roles of ErbB receptors in the initiation and progression of a wide variety of cancers, 
including prostate cancer (Laskin & Sandler, 2004; Ratan et al., 2003; Yarden & Sliwkowski, 
2001). Thus, this review chapter will focus more narrowly on EGFR phosphorylation, 
signaling, and trafficking, and their specific roles in prostate cancer development and 
progression (tumor growth and metastasis) given the growing literature in this area. Better 
understanding of the precise roles of divergent EGFR signaling pathways and their 
phenotypic consequences in prostate cancer (and normal prostate) will enable the 
development of more effective and selective therapies for this urologic disease.  

2. Overview of the EGF/EGFR signaling system 

2.1 The EGFR/ErbB/HER family and ligands 

EGFR/ErbB1/HER1 is the prototype of the EGFR or ErbB family, which also includes other 
three receptor tyrosine kinases, ErbB2/HER2/Neu, ErbB3/HER3, and ErbB4/HER4 (Figure 
1). All four members have in common an extracellular ligand-binding domain, a single 
hydrophobic transmembrane domain, and a cytoplasmic region that contains a highly 
conserved tyrosine kinase domain and C-terminal tail (Wells, 1999). However, ErbB3 lacks 
intrinsic tyrosine kinase activity due to substitutions of critical amino acids within the kinase 
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domain (Guy et al., 1994). The extracellular domains are less conserved among the four, 
suggesting their ligand binding specificity (Yarden, 2001; Yarden & Sliwkowski, 2001).  
 

 

Fig. 1. The four EGFR/ErbB family members and their ligands. TK, tyrosine kinase domain. 
See the text for more details. 

ErbB receptors are activated by a number of ligands that belong to the EGF family of 
peptide growth factors (Citri & Yarden, 2006; Yarden, 2001). The EGF-related growth 
factors are characterized by the presence of an EGF-like domain consisting of three 
disulfide-bonded intramolecular groups conferring binding specificity, and additional 
structural motifs such as immunoglobulin-like domains, heparin-binding sites and 
glycosylation sites. They are produced as transmembrane precursors that are biologically 
active and able to interact with receptors expressed on adjacent cells, and the ectodomains 
are processed by proteolysis, resulting in the shedding of soluble growth factors 
(Massagué & Pandiella, 1993). Based on their affinity for one or more ErbBs, the EGF-
related growth factors are generally classified into three groups (Yarden & Sliwkowski, 
2001) (Figure 1). The first group includes EGF, transforming growth factor-ǂ (TGF-ǂ) and 
amphiregulin (AR), which bind specifically to EGFR. The second group includes 
betacellulin (BTC), heparin-binding EGF (HB-EGF), and epiregulin (EPR), which exhibit 
dual specificity for both EGFR and ErbB4 (Yarden, 2001). The third group includes 
nuregulins (NRG, also called Neu differentiation factors (NDF) or heregulins (HRG)) that 
can be divided into two subgroups based on their binding specificity to both ErbB3 and 
ErbB4 (NRG-1 and NRG-2) or only ErbB4 (NRG-3 and NRG-4) (Harari et al., 1999; Zhang 
et al., 1997). Despite intensive efforts, no direct ligand for ErbB2 has yet been discovered. 
Increasing evidence suggests that ErbB2 primarily functions as a coreceptor for other ErbB 
family members (Graus-Porta et al., 1997; Tzahar et al., 1996).  
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2.2 Major EGF/EGFR signaling pathways 

The repertoire of ErbB ligands and the combinatorial properties of ligand-induced receptor 
dimers give rise to the signaling diversity of the ErbB family. Ligand binding drives receptor 
homo- or hetero-dimerization, leading to activation of the intrinsic tyrosine kinase and 
subsequent auto- or trans-phosphorylation of specific tyrosine residues in the cytoplasmic tail 
(Citri & Yarden, 2006; Olayioye et al., 2000; Yarden & Sliwkowski, 2001), which provide the 
docking sites for proteins containing Src homology 2 (SH2) or phosphotyrosine binding (PTB) 
domains (Shoelson, 1997; Sudol, 1998). These proteins generally include the adaptor proteins 
such as Src homology domain-containing adaptor protein C (Shc), Crk, growth factor receptor-
bound protein 2 (Grb2), Grb7, Grb2-associated binding protein 1 (Gab1),  phospholipase C Ǆ 
(PLCǄ), Cbl, Esp15; the kinases such as Src, Chk and phosphatidylinositol-3-kinase (PI3K; via 
the p85 regulatory subunit); and the protein tyrosine phosphatases such as PTP1B, SHP1 and 
SHP2 (Olayioye et al., 2000; Sebastian et al., 2006), suggesting diversity and complexity of ErbB 
signaling networks. Among them, the signaling elicited by EGF-induced EGFR homodimers is 
perhaps the best studied and has served as the prototype for other cases. 
Adaptor proteins, kinases, and phosphatases recruited by the activated EGFR transmit 
signals from the receptor through different downstream signaling pathways to the nucleus 
to regulate various biological functions such as cell proliferation, differentiation, anti-
apoptosis (survival), adhesion, migration, and angiogenesis (Baselga & Hammond, 2002; 
Laskin & Sandler, 2004; Morandell et al., 2008; Yarden & Sliwkowski, 2001). So far with the 
numbers still growing, over one hundred EGFR interacting proteins have been described in 
the literature, of which many were discovered by proteomics approaches (Morandell et al., 
2008). Approximately twenty phosphotyrosine residues located within the EGFR 
cytoplasmic tail have been identified as specific docking sites for above-mentioned EGFR 
interacting partners to engage various signaling cascades (Figure 2). The major EGF/EGFR 
signaling pathways include Ras/Raf/MAPK kinase (MEK)/extracellular-related kinase 
(ERK) and PI3K/Akt (Hirsch et al., 2003; Singh & Harris, 2005), although other pathways 
such as PLCǄ/protein kinase C (PKC), signal transducer and activator of transcription 
(STAT) (Andl et al., 2004; Kloth et al., 2002), c-Jun terminal kinase (JNK) and p38 MAPKs 
(Johnson et al., 2005), and Ca2+-calmodulin-dependent protein kinase (CaMK) (Sengupta et 
al., 2009) have been reported. It is also known that upon EGF binding, EGFR undergoes a 
process of internalization, ubiquitination (via Cbl), destruction (namely EGFR endocytosis 
and trafficking), resulting in temporary EGFR downregulation (Citri & Yarden, 2006; 
Sebastian et al., 2006; Wiley, 2003). This will be discussed in Section 3. 

2.3 EGFR signaling in prostate cancer development 

Both clinical and experimental data have established the importance of ErbBs, especially EGFR 
and ErbB2, in carcinogenesis and progression of various types of solid tumors including 
prostate cancer (Harari, 2004; Laskin & Sandler, 2004; Sebastian et al., 2006; Yarden & 
Sliwkowski, 2001). Increased expression and signaling of EGFR and/or ErbB2 are associated 
with a more aggressive clinical behavior of tumors, and correlate with a poor prognosis (Alroy 
& Yarden, 1997; Hatake et al., 2007; Lichtner, 2003; Nicholson et al., 2001). There are estimated 
40-80% of prostate tumors with expressed EGFR (Kim et al., 1999; Sebastian et al., 2006). 
Studies mainly from breast cancer, lung cancer, and glioma have suggested many potential 
mechanisms related to aberrant EGFR signaling (quantitatively and/or qualitatively). These 
include elevated expression of ligands and/or receptors, enhanced autocrine signaling loop, 
constitutive activation of EGFR mutants, impaired endocytosis and trafficking of the ligand-
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receptor complex, hetero-dimerization with other ErbBs (Ciardiello & Tortora, 2003; Grandal & 
Madshus, 2008; Huang et al., 2009; Olayioye et al., 2000; Roepstorff et al., 2008; Sebastian et al., 
2006; Sharma et al., 2007), as well as crosstalk with other receptor signaling systems such as 
type 1 insulin-like growth factor receptor (IGF-1R), G-protein-coupled receptors (GPCRs), and 
cytokine receptors (Adams et al., 2004; Gee et al., 2005; Prenzel et al., 2000). 
 

 

Fig. 2. EGF/EGFR-mediated signaling pathways and cellular effects. Major tyrosine 
phosphorylation sites in the EGFR cytoplasmic tail, possible adaptors and signaling 
proteins, and signaling cascades are indicated. See the text for more details. 

Progression from normal prostate epithelium to an androgen-responsive tumor, and finally 

to hormone-refractory carcinoma is a multistep process, usually accompanied by the 
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upregulation of growth factor receptors and/or their ligands, and downregulation of tumor 

suppressor gene products (Djakiew, 2000; Ware, 1999). EGFR ligands, such as EGF, HB-EGF, 

and TGF-ǂ, are expressed in the prostate and prostatic carcinomas (Elson et al., 1984; 

Freeman et al., 1998). In particular, the expression of TGF-ǂ (signaling merely through 

EGFR) has been found to be greater in some higher grade and metastatic prostate cancers 

than in primary low grade tumors (Scher et al., 1995). It is now more widely believed that 

EGF is the predominant EGFR ligand in early, localized prostate cancer, and that TGF-ǂ 

becomes more abundant than EGF at advanced, metastatic stages (Liu et al., 1993; Scher et 

al., 1995; Seth et al., 1999). This is the so-called EGFR ligand switch (DeHaan et al., 2009). 

Overexpression of EGFR and/or ErbB2 would have been expected in prostate carcinomas, 

as seen in breast cancer (Hatake et al., 2007; Lichtner, 2003; Nicholson et al., 2001). However, 

current data regarding ErbB receptor overexpression in prostate cancer appear to conflict 

with each other, possibly due to technical reasons and lack of standardized measurement 

and evaluation methods (Marks et al., 2008; Neto et al., 2010; Salomon et al., 1995; Schlomm 

et al., 2007; Sherwood & Lee, 1995). Nevertheless, several lines of evidence strongly support 

the important role of EGFR signaling in prostate cancer development. For example, 

autocrine activation of EGFR signaling by EGF and TGF-ǂ most likely drives the 

autonomous growth of human prostate cancer (Hofer et al., 1991; Scher et al., 1995). 

Expression of mutant EGFRs also contributes to prostate carcinogenesis and malignant 

progression (Cai et al., 2008; Douglas et al., 2006; He & Young, 2009; Olapade-Olaopa et al., 

2000). Taken together, studies over the years have suggested that both EGFR and ErbB2 

signaling play important roles in prostate cancer development and, more specifically, in the 

progression from an androgen-dependent to a hormone-refractory state. 

3. EGF/EGFR endocytosis and trafficking 

As just described, aberrant EGFR signaling is frequently associated with carcinogenesis and 

cancer progression. This can be the result of several unbalanced mechanisms controlling the 

quantitative and qualitative output of EGFR, such as elevated expression of receptors and 

ligands, activating receptor mutations, and impaired endocytic receptor downregulation. 

Proper endocytic uptake and endosomal sorting of signaling receptors have been considered 

as a crucial step for precisely controlling cellular processes such as growth, differentiation, 

and survival. Our current understanding of ligand-induced receptor endocytic 

downregulation is largely from the knowledge of EGFR trafficking routes following EGF 

binding, which has historically been and remains to be the most popular experimental 

system for studies in this field. In contrast, very little is known about endocytosis of ErbB2-4, 

as well as about EGFR endocytosis following binding of ligands other than EGF. 

It is generally believed that EGFR is present at the plasma membrane as a monomer prior to 

activation. Ligand (EGF) binding triggers EGFR dimerization and activation of its intrinsic 

kinase, leading to signaling and relocation to invaginating clathrin-coated pits (CCPs) on the 

plasma membrane. The CCPs give rise to clathrin-coated endocytic vesicles. The vesicles are 

then released from the membrane and fuse with early endosomes. Thus, EGFR is delivered to 

this compartment by these sequential processes. From here the receptor is sorted for further 

transport, either back to the cell surface by recycling, or to the multivesicular bodies (MVBs), a 

pathway for eventual delivery of EGFR to late endosomes and lysosomes for degradation, 

which results in temporary EGFR downregulation (Figure 3). Under most physiological 
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conditions, clathrin-dependent pathways are considered to be the main routes of EGFR 

internalization and downregulation. However, clathrin-independent pathways have also been 

reported and suggested as alternative mechanisms for EGFR endocytosis (Orth et al., 2006; 

Sigismund et al., 2005; Yamazaki et al., 2002), which will not be discussed here. 
 

 

Fig. 3. EGFR endocytosis, trafficking, and turnover. EGF engagement results in EGFR 
activation and signaling from the cell surface. Upon EGF binding, EGFRs are internalized 
into clathrin-coated pits (CCP). Activated EGFR recruits the E3 ubiquitin (Ub) ligase Cbl, 
which ubiquitinates EGFR. EGFRs are delivered to early endosomes. From here, the 
receptors are sorted for either recycling back to the plasma membrane or transferring via 
multivesicular bodies (MVB) to late endosomes/lysosomes for degradation. The activated 
EGFR can continuously signal from endosomes or during its postendocytic trafficking. See 
the text for more details. 

3.1 Ubiquitination and internalization of EGFR 

Although the major steps of EGF/EGFR endocytosis and trafficking pathways are well 
established (Grandal & Madshus, 2008; Wiley, 2003), the molecular machinery controlling 
these processes remains poorly understood. It is believed that ubiquitination plays a key 
role in “tagging” or sorting EGFR for endocytosis and degradation (Hicke, 1999). Cbl is a 
ring-finger domain E3 ubiquitin ligase that is mainly responsible for EGFR ubiquitination 
(Levkowitz et al., 1998; Waterman et al., 1999). Upon EGF binding to EGFR, Cbl proteins are 
tyrosine phosphorylated by Src kinases (Feshchenko et al., 1998) and recruited rapidly to the 
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activated EGFR to mediate the receptor ubiquitination (Sebastian et al., 2006). Cbl can bind 
to EGFR either directly at phosphorylated tyrosine residue 1045 (Y1045) or indirectly via 
adaptor protein Grb2, which binds to phosphorylated EGFR at Y1068 and Y1086 (Levkowitz 
et al., 1999; Waterman et al., 2002). However, these two Cbl-EGFR interaction mechanisms 
have different effects on EGFR endocytosis. Direct binding via Y1045 may not be necessary 
for EGFR endocytosis, as the Y1045F mutation of EGFR results in impaired ubiquitination 
but does not affect receptor internalization (Grøvdal et al., 2004; Jiang et al., 2003). In 
contrast, Grb2-mediated binding is essential and sufficient for EGFR internalization. This is 
supported by the fact that Grb2 knockdown inhibits EGFR endocytosis and a chimeric 
protein consisting of the Y1068/Y1086-binding domain of Grb2 fused to Cbl can rescue the 
EGFR internalization in Grb2-depleted cells (Huang & Sorkin, 2005). 
In addition to acting as an E3 ubiquitin ligase, Cbl may have other functions in EGFR 

endocytic signaling. Phosphorylated Cbl can bind to the 85 kDa Cbl interacting protein 

(CIN85) that is constitutively associated with endophilin (Soubeyran et al., 2002), a known 

regulator of clathrin-mediated endocytosis (CME) (Reutens & Begley, 2002). The recruitment 

of CIN85 and endophilin to EGFR by Cbl plays an important role in EGF-induced EGFR 

internalization and downregulation (Soubeyran et al., 2002). Furthermore, Eps15 and epsin, 

the two adaptor proteins with ubiquitin binding capacity and known to localize to CCPs, are 

required for EGFR internalization and possibly form a complex with ubiquitinated EGFR 

(Polo et al., 2002; Roepstorff et al., 2008; Salcini et al., 1999). Interestingly, it has been 

reported that Esp15 localizes at the rim of CCPs (Stang et al., 2004; Tebar et al., 1996), while 

epsin localizes along the entire CCP curvature (Stang et al., 2004). These findings suggest 

that EGFR (ubiquitinated by Cbl) is captured by Eps15 and subsequently handed off to 

epsin deeper in the coated pits, which could be a more efficient way of EGFR progression 

into CCPs (Grandal & Madshus, 2008). 

As shown above, many lines of evidence indicate that functional Cbl is a prerequisite for 

EGFR internalization and that Cbl ubiquitinates EGFR. However, the role of EGFR 

ubiquitination as an internalization signal remains controversial. One study reported that an 

ubiquitination-deficient mutant of EGFR with full kinase activity can still undergo normal 

internalization (Huang et al., 2007). Several studies also showed that siRNA depletion of 

epsin and/or Eps15 did not specifically affect the clathrin-mediated EGFR internalization 

(Chen & Zhuang, 2008; F. Huang et al., 2004; Sigismund et al., 2005; Vanden Broeck & De 

Wolf, 2006). A very recent study has demonstrated that CME of activated EGFR is regulated 

by four mechanisms, which function in a redundant and cooperative fashion (Goh et al., 

2010). All these imply that the EGFR endocytosis is a rather complicated process whose 

molecular mechanisms deserve further investigation.  

3.2 Ubiquitination and endosomal sorting of EGFR 

Upon EGF binding, activated EGFR undergoes CME at a much enhanced rate compared to 
the constitutive (ligand-independent) rate (Wiley, 2003). Immediately after internalization 
by CME, EGFR is delivered to early endosomes for sorting to either recycled back to the 
plasma membrane or transferred via MVBs to late endosomes/lysosomes for degradation 
(Figure 3). If not recycled back to the cell surface (as in the absence of EGF stimulation), 
EGFRs are sorted for lysosomal degradation. The latter is initiated by forming a complex 
with Esp15, signal transduction adaptor molecule (STAM), and hepatocyte growth factor-
regulated tyrosine kinase substrate (Hrs) (Bache et al., 2003). Hrs directs the receptors to 
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tumor susceptibility gene-101 (TSG101). The endosomal sorting complex required for 
transport (ESCRT) complexes (ESCRT-I to III) are sequentially recruited. These processes 
eventually lead to the translocation of EGFRs into the intralumenal vesicles (ILVs) of MVBs 
and MVS fusion with lysosomes for receptor degradation and signal termination (Bache et 
al., 2006; Katzmann et al., 2002; Q. Lu et al., 2003; Williams & Urbé, 2007). 
In contrast to its controversial role in EGFR internalization (see above), it is clear that Cbl-
mediated EGFR ubiquitination plays a pivotal role at the early endosome to the late 
endosome/lysosome sorting step of EGFR downregulation (Duan et al., 2003). EGFR 
mutants with reduced ubiquitination display impaired downregulation or degradation 
(Grøvdal et al., 2004; Huang et al., 2007; F. Huang et al., 2006; Jiang & Sorkin, 2003; 
Levkowitz et al., 1999), and the Y1045F mutant can not translocate to ILVs (Grøvdal et al., 
2004). Thus, it can be concluded from these studies that Cbl-associated ubiquitination is the 
signal for EGFR downregulation. 

3.3 EGFR signaling from the endosome 

EGF binding leads to and accelerates internalization and lysosomal degradation of EGFR. 
The most obvious function of receptor endocytosis is to remove activated EGF/EGFR 
complexes from the cell surface to achieve consumption of ligand and activated receptors 
and to prevent excessive signaling. Thus, the canonical view holds that endocytosis is a 
mechanism to attenuate receptor signaling via receptor downregulation. On the other hand, 
it has been known for many years that activated EGFR following EGF stimulation remains 
at the cell surface only briefly (5-10 min), and the majority of activated receptors are located 
in endosomes for a much longer time (1 h) (Lai et al., 1989; Sebastian et al., 2006; Wiley, 
2003). Accumulating evidence indicates that the activated EGFR can continuously signal 
from endosomes or during its postendocytic trafficking (Baass et al., 1995; Carpenter, 2000; 
Pennock & Wang, 2003; Wang et al., 2002a). 
Studies of EGFR signaling in the context of endocytosis have uncovered that endosome-
associated EGFR is linked to many, if not all, of its downstream signaling cascades, suggesting 
the complex and multifaceted effects of EGFR endocytosis on its signaling. Early work done in 
rat liver parenchyma (in vivo) has demonstrated that, shortly after EGF administration (1 min), 
internalized activated EGFR recruits a protein complex of Shc, Grb2, and the son of sevenless 
(Sos) to endosomes, leading to endosomally localized activation of the Ras/Raf/MEK/ERK 
pathway (Di Guglielmo et al., 1994). In mice, the MEK1 binding partner (MP1), adaptor 
protein p14, and MEK1 form a complex in endosomes. Such endosomal p14-MP1-MEK1 
signaling plays an important role in cell proliferation during tissue homeostasis (Teis et al., 
2006; Teis et al., 2002). Further, appropriate trafficking of activated EGFRs through endosomes 
ensures spatial and temporal fidelity of MAPK signaling (Taub et al., 2007). An elegant work 
in which EGFR is specifically activated when it is endocytosed into endosomes, has 
established that internalized EGFR can exert signals from endosomes to control cell survival 
(Wang et al., 2002a; Wang et al., 2002b), possibly by stimulating the PI3K/Akt pathway 
(Haugh & Meyer, 2002; Sorkin & von Zastrow, 2009). Finally, it has been reported that EGFR 
endocytosis is essential for STAT3 nuclear translocation and STAT3-dependent gene 
regulation, suggesting that endocytosis is the transport machinery for STAT3 translocation 
through the cytoplasm to the nucleus (Bild et al., 2002). Collectively, ligand-activated EGFR 
has been demonstrated to continue to signal along the endocytic pathway, which contributes 
to the spatio-temporal regulation of signaling, i.e. determining the specificity of signals and 
controlling the strength and duration of signaling.  
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4. ERK-dependent EGFR phosphorylation and its impact on EGFR trafficking 

4.1 Ras/Raf/MEK/ERK signaling pathway 

The Ras/Raf/MEK/ERK cascade is one of the major and best studied EGFR downstream 
pathways, which links extracellular signals to the machinery that can regulate diverse and 
fundamentally important cellular processes such as cell proliferation, differentiation, 
migration, apoptosis, angiogenesis, and chromatin remodeling (Dunn et al., 2005; Yoon & 
Seger, 2006). Upon ligand binding, receptor dimerization, and EGFR intrinsic kinase 
activation and auto-phosphorylation, activation of the ERK pathway is triggered by Grb2 
binding directly to EGFR at Y1068 and Y1086 and indirectly through Shc binding at Y1148 
and Y1173 (Batzer et al., 1994; Lowenstein et al., 1992) (Figure 2). Grb2 recruits Sos guanine 
nucleotide exchange factor to the receptor complex and Sos mediates the route of activation 
of Ras proteins (H-Ras, K-Ras, and N-Ras) at the plasma membrane (Downward, 1996; 
Quilliam et al., 1995). Ras activation induces the activation of Raf family kinases including 
A-Raf, B-Raf, and C-Raf (Raf-1) (Marais et al., 1997; Marais & Marshall, 1996). The active Raf 
then activates MEK1 and MEK2 by phosphorylating serines 218 and 222 in the activation 
loop, which further phosphorylate and activate ERK1 and ERK2 (Dhillon et al., 2007; McKay 
& Morrison, 2007). These active ERKs phosphorylate numerous cytoplasmic and nuclear 
targets including kinases, phosphatases, transcription factors, and cytoskeletal proteins 
(Yoon & Seger, 2006). We have recently uncovered ERK activation-dependent 
phosphorylation of EGFR in several cell systems including human prostate cancer cells, 
which can have profound feedback to EGFR signaling and trafficking and EGFR-driven cell 
migration. These previously understudied aspects are further discussed below. 

4.2 ERK activity-dependent phosphorylation of EGFR at threonine-669 

As illustrated in Figure 2, EGF binding to EGFR causes activation of the receptor tyrosine 
kinase and phosphorylation at multiple tyrosine residues in the cytoplasmic tail. Besides the 
tyrosine phosphorylation events, EGFR can be phosphorylated at several serine and 
threonine residues (Bao et al., 2000; Countaway et al., 1990; Theroux et al., 1992a), which 
may influence the EGFR kinase activity (Countaway et al., 1992; Theroux et al., 1992b). We 
have recently uncovered a previously unappreciated type of EGFR phosphorylation 
induced by EGF stimulation in several cell types. By employing a state-specific monoclonal 
antibody (mAb), PTP101, which specifically recognizes phosphorylation of the consensus 
site(s) (serine or threonine residues) in the substrates for proline-directed protein kinases 
such as ERKs (Pearson & Kemp, 1991), we initially observed that upon EGF stimulation, 
both EGFR and ErbB2 undergo PTP101-reactive phosphorylation in addition to tyrosine 
phosphorylation in murine 3T3-F442A preadipocytes (Huang et al., 2003). Such PTP101-
reactive phosphorylation seems to correlate well with EGF-induced ERK activation, as the 
phosphorylation can be specifically inhibited by pretreatment of the cells with two separate 
MEK1 inhibitors, PD98059 and UO126 (Huang et al., 2003). Furthermore, we found that 
peptide hormones, such as growth hormone (GH) and prolactin, can activate ERKs and 
cause PTP101-reactive phosphorylation of both EGFR and ErbB2 in 3T3-F442A (Huang et 
al., 2003) and human T47D breast cancer cells (Y. Huang et al., 2006), respectively. Previous 
studies suggested that serine/threonine phosphorylation of EGFR and ErbB2/Neu induced 
by the phorbol ester (PMA) and platelet-derived growth factor (PDGF) are attributable to 
the activation of PKC (Bao et al., 2000; Davis & Czech, 1985; Davis & Czech, 1987; Epstein et 
al., 1990; Hunter et al., 1984; Lund et al., 1990). Our data showed that neither GH-induced 
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ERK activation nor EGFR and ErbB2 PTP101 reactivity are affected by the PKC inhibitor 
(GF109203X), though the MEK1 inhibitors (PD98059 and UO126) are indeed inhibitory (Huang 
et al., 2003). Similar results have been obtained for prolactin-induced ERK activation and 
PTP101-reactivity of EGFR in T47D cells (Y. Huang et al., 2006). Collectively, our data suggests 
that the mAb PTP101 detects ERK-dependent, rather than PKC-dependent, serine/threonine 
phosphorylation of EGFR and ErbB2, and that EGF/GH/prolactin-induced and PMA-induced 
phosphorylation may have distinct mechanisms (Huang et al., 2003; Y. Huang et al., 2006). 
Interestingly, we have recently demonstrated that such an EGF-induced serine/threonine 
phosphorylation of EGFR also occurs in human prostate cancer cells, which requires activation 
of ERK pathway but not Akt pathway (Gan et al., 2010) (Figure 4). 
 

 

Fig. 4. EGF-induced PTP101-reactive threonine phosphorylation of EGFR is ERK pathway 
dependent. Serum-starved DU145 cells were pretreated with vehicle control, MEK/ERK 
pathway inhibitors (PD98059 or UO126) or PI3K/Akt pathway inhibitor (LY294002) for 1 h 
prior to stimulation with EGF for 15 min. Protein extracts were either immunoprecipitated 
(IP) with anti-EGFR antibody, followed by immunoblotting (IB) with PTP101 (A) or anti-
EGFR (B), or directly immunoblotted with anti-phospho-ERK (C) or anti-total ERK (D). For 
more details see (Gan et al., 2010). Reprinted with permission from Oncogene. 

Two major threonine phosphorylation sites are known in the EGFR juxtamembrane 
cytoplasmic domain, Thr-654 and Thr-669 (Davis & Czech, 1985; Heisermann & Gill, 1988; 
Hunter et al., 1984; Takishima et al., 1988). PKC may directly mediate Thr-654 
phosphorylation (Davis & Czech, 1985; Hunter et al., 1984), whereas Thr-669 is thought to be 
phosphorylated by ERKs (Northwood et al., 1991; Takishima et al., 1991). The human EGFR 
cytoplasmic tail contains only one ERK consensus phosphorylation site [PX(S/T)P], i.e. 
PL669TP (Li et al., 2008). In reconstituted Chinese hamster ovary (CHO) cells, we showed 
that only wild-type EGFR, but not EGFR mutant (EGFR-T669A in which Thr-669 is mutated 
to alanine), underwent PTP101-reactive phosphorylation upon EGF stimulation, although 
EGF can cause tyrosine phosphorylation of both forms of receptors (Li et al., 2008). In a 
comparison experiment, in distinction to EGFR-T669A, a different EGFR mutant (EGFR-
T654A in which Thr-654 is mutated to alanine) can undergo PTP101-reactive 
phosphorylation after EGF treatment, which was abolished by the MEK/ERK pathway 
inhibitor PD98059 (Li et al., 2008). These findings indicate that Thr-669, but not Thr-654, is 
required for EGF-induced, ERK activity-dependent PTP101-reactive (threonine) 
phosphorylation of EGFR. 
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4.3 Impact of Thr-669 phosphorylation on EGFR tyrosine phosphorylation (activation) 
and trafficking 
EGF binding triggers EGFR kinase activation and phosphorylation, and also initiates the 
process of EGFR endocytosis and degradation, leading to temporary downregulation of 
EGFR (Wiley, 2003; Wiley et al., 2003). Previous views held that signaling emanated only 
from activated cell-surface EGFRs and that internalization terminated signaling (Wells et al., 
1990). However, it is now more widely believed that signaling can also emanate from the 
EGFR in the process of postendocytic trafficking and thus, altered postendocytic trafficking of 
the activated EGFR may quantitatively and/or qualitatively influence its net signaling (Burke et 
al., 2001; Ceresa & Schmid, 2000; Di Fiore & De Camilli, 2001; Sebastian et al., 2006; Wiley, 2003).  
We previously reported that GH pretreatment lessens EGF-induced EGFR downregulation in 
murine 3T3-F442A preadipocytes (Huang et al., 2003). Further, GH-mediated attenuation of 
EGF-induced EGFR downregulation is ERK pathway-dependent, correlating with GH-
induced threonine phosphorylation of EGFR and signaling synergy of GH and EGF (Y. Huang 
et al., 2004; Huang et al., 2003). Similarly, in human T47D breast carcinoma cells, prolactin-
induced, ERK activation-dependent, PTP101-reactive phosphorylation of EGFR retards 
subsequent EGF-induced receptor downregulation and potentiates acute EGF/EGFR signaling 
(Y. Huang et al., 2006). Furthermore, in T47D cells, EGF itself causes PTP101-reactive threonine 
phosphorylation of EGFR, and inhibition of the MEK/ERK pathway enhances EGF-induced 
EGFR downregulation (Y. Huang et al., 2006). Similar results were obtained in a human 
fibrosarcoma cell line that harbors an activating Ras mutation and subsequent basal activation 
of ERK and ERK-dependent PTP101-reactive EGFR phosphorylation (Li et al., 2008). Recently, 
we have demonstrated that in two human prostate cancer cell lines, DU145 and PC-3, 
pharmacological blockade of MEK/ERK pathway, but not PI3K/Akt pathway, results in 
accelerated EGF-induced EGFR downregulation (Figure 5), which negatively correlates with 
ligand-induced ERK-dependent threonine phosphorylation of EGFR (Figure 4) (Gan et al., 
2010). Taken together, these results strongly suggest that ERK-mediated threonine 
phosphorylation of EGFR, whether accomplished by GH or prolactin (via crosstalk), or as a 
result of EGF-induced ERK activation, may serve as a “brake” on ligand-induced EGFR 
downregulation. Indeed, elimination of EGFR phosphorylation at threonine-669 by a point 
mutation (threonine to alanine) resulted in accelerated EGF-induced EGFR loss in CHO 
reconstitution cell system (Li et al., 2008).  
 

 

Fig. 5. Inhibition of ERK pathway but not Akt pathway accelerates EGF-induced EGFR 
downregulation. (A) Serum-starved DU145 cells were pretreated with vehicle (DMSO), 
PD98059 or LY294002 for 1 h prior to stimulation with EGF for 0-30 min. Protein extracts 
were subjected to immunoblotting (IB) with anti-EGFR or anti-ǃ-actin. (B) Statistical analysis 
of pooled data from five independent experiments indicated that PD98059 significantly 
enhances EGF-induced EGFR downregulation at 15 and 30 min (**, P < 0.01). For more 
details see (Gan et al., 2010). Reprinted with permission from Oncogene. 
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Early studies of EGFR phosphorylation at serine and threonine sites, including serine-1046, 
serine 1047, and threonine-654, revealed that mutations at these sites can modulate EGFR 
signaling and downregulation (Bao et al., 2000; Countaway et al., 1990; Countaway et al., 1992; 
Theroux et al., 1992a). When examining the impact of ERK-mediated EGFR phosphorylation at 
threonine-669 on EGFR signaling, we found that in the CHO cell reconstitution system, the 
mutant EGFR-T669A exhibits enhanced tyrosine phosphorylation (reflecting EGFR kinase 
activation) compared to wild-type EGFR upon EGF stimulation (Li et al., 2008). Interestingly, 
coexpression of wild-type EGFR and EGFR-T669A, presumably resulting in a hybridimer of 
wild-type and mutant EGFR, does not dampen the propensity of EGFR-T669A to enhance EGF 
sensitivity (reflected in enhanced EGFR kinase activation) (Li et al., 2008). This led us to 
conclude that, in the hybridimer, the mutant EGFR-T669A exerts dominance regarding the 
EGF-induced EGFR activation (Li et al., 2008). More recently, in human prostate cancer cells 
(DU145 and PC-3) where the endogenous EGFR level is high, we have shown that 
pharmacological inhibition of the MEK/ERK pathway, but not the PI3K/Akt pathway, 
significantly augments the EGF-induced EGFR phosphorylation at multiple tyrosine residues 
including Y845, Y1045, and Y1068 (Gan et al., 2010). 
The EGF-induced downregulation of EGFR is a complex, tightly regulated process, and 
impaired endocytic downregulation is often associated with malignancy (Grandal & Madshus, 
2008; Polo et al., 2004; Roepstorff et al., 2008). The molecular machinery controlling ligand-
induced EGFR endocytic trafficking remains poorly understood. It is believed that 
ubiquitination plays a key role in “tagging” EGFR for endocytosis. Subsequent to EGF binding 
to EGFR, the activated receptor is rapidly ubiquitinated by Cbl, an ubiquitin ligase that binds 
to phosphorylated EGFR, promoting post-internalization EGFR sorting to lysosomes for 
degradation (see Sections 3.1 and 3.2 for details). In human prostate cancer cells, we uncovered 
that blockade of the MEK/ERK pathway, but not the PI3K/Akt pathway, significantly 
enhanced EGF-induced ubiquitination of EGFR, correlating with increased Cbl tyrosine 
phosphorylation level and degree of physical association between tyrosine phosphorylated 
Cbl and activated EGFR (Gan et al., 2010). This phenomenon in prostate cancer cells resembles 
the effects of mutant EGFR-T669A in the CHO reconstitution system, in which EGFR-T669A 
underwent more robust ubiquitination than wild-type EGFR did upon EGF stimulation, due 
to the loss of phosphorylation at Thr-669 in EGFR-T669A cells (Li et al., 2008).  
Emerging evidence suggests that Cbl can bind to EGFR directly at phosphorylated Y1045 or 
indirectly through Grb2, which binds to phosphorylated Y1068 and Y1086 in the EGFR 
cytoplasmic tail (Levkowitz et al., 1999; Waterman et al., 2002). As described above, our data in 
prostate cancer cells indicated that inhibition of ERK activity enhances the EGF-induced 
tyrosine phosphorylation of EGFR at multiple sites, at least including Y1045 and Y1068 (Gan et 
al., 2010). This raises several interesting questions, such as through which site(s) or tyrosine 
residue(s) within the EGFR cytoplasmic domain is the effect of the ERK activation-dependent 
Thr-669 phosphorylation exerted; whether Cbl is the sole factor in EGFR ubiquitination or are 
there any other contributors, such as CIN85, Grb2, Eps15, epsin, Hrs, and ESCRT complexes 
(see Sections 3.1 and 3.2 for details); and finally whether two completely different types of 
EGFR phosphorylation (tyrosine versus threonine phosphorylation) exist and how they are 
balanced under physiological and pathological conditions. More detailed studies are required 
to decipher these mechanisms. Taken together, our recent experimental data from multiple cell 
systems strongly support the notion that ERK-mediated Thr-669 phosphorylation of EGFR 
may serve as a “brake” on EGF-induced EGFR activation, signaling, and trafficking 
(ubiquitination and downregulation) (Figure 6). 
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Fig. 6. Schematic model of how ERK activity-dependent threonine phosphorylation of EGFR 
modulates EGF-induced EGFR ubiquitination and downregulation. Based on our published 
data (Gan et al., 2010; Huang et al., 2003; Y. Huang et al., 2006; Li et al., 2008), ERK activation 
results in PTP101-reactive phosphorylation of EGFR at Thr-669. Such threonine 
phosphorylation serves as a “brake” on EGF-induced EGFR tyrosine phosphorylation 
(kinase activation), ubiquitination, and downregulation (A). Mutation of Thr-669 to alanine 
(B), or blockade of the ERK pathway by PD98059 (C) abolishes the threonine 
phosphorylation of EGFR, which releases the “brake”, resulting in enhanced EGF-induced 
EGFR tyrosine phosphorylation/activation, ubiquitination, and downregulation. 

5. Akt signaling, EGF/EGFR-driven epithelial-mesenchymal transition (EMT) 
and tumor metastasis 

5.1 PI3K/Akt signaling pathway 

The PI3K/Akt pathway plays an important role in human cancers including prostate 
carcinoma (Chin & Toker, 2009; de Souza et al., 2009; Morgan et al., 2009; Qiao et al., 2008). 
Akt was initially identified as an oncogene within the murine leukemia virus AKT8 (Staal, 
1987; Staal & Hartley, 1998). It is a serine/threonine kinase and also called protein kinase B 
(PKB) because its catalytic domain is related to PKA and PKC family members (Jones et al., 
1991). In humans, there are three highly homologous isoforms of Akt (Akt1, Akt2, and Akt3) 
(Nicholson & Anderson, 2002). However, it remains controversial whether all three are 
equally important in human malignancies (Chin & Toker, 2009; Le Page et al., 2006; 
Maroulakou et al., 2008). PI3K and the tumor suppressor, phosphatase and tensin homolog 
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deleted on chromosome 10 (PTEN), are two well-known upstream components of Akt. 
Receptor tyrosine kinases such as EGFR and IGF-1R can activate PI3K at the cell membrane, 
initiating the PI3K/Akt signaling cascade. Once activated, PI3K phosphorylates 
phosphatidylinositol-4,5-diphosphate (PIP2), leading to accumulation of phosphati-
dylinositol-3,4,5-triphosphate (PIP3) (Morgan et al., 2009). PIP3 recruits Akt and 
phosphoinositide dependent protein kinase 1 (PDK1) to the cell membrane, where Akt is 
phosphorylated at Thr-308 by PDK1 and at Ser-473 via an unknown mechanism (de Souza et 
al., 2009). Activated Akt translocates to the nucleus, resulting in downstream effects, such as 
cell survival (anti-apoptosis), cell motility, angiogenesis, proliferation, and metabolism 
(Chin & Toker, 2009; de Souza et al., 2009; Morgan et al., 2009). PTEN is the primary 
negative regulator of Akt (Li et al., 1997). Loss of PTEN or PTEN mutation is the most 
common cause of hyperactivation of the PI3K/Akt pathway in many human cancers (Sansal 
& Sellers, 2004). Most recently, we have demonstrated that the Akt pathway plays a central 
role in EGFR-driven prostate cancer cell migration by activating epithelial-mesenchymal 
transition (EMT) (Gan et al., 2010), which is discussed in detail below. 

5.2 EMT and tumor metastasis 

EMT is a pivotal physiological process involved in embryogenesis, wound healing, and 

tissue remodeling (Thiery, 2003), and is regulated by complex signaling networks (Thiery & 

Sleeman, 2006). It is now recognized that EMT may be an important mechanism for 

carcinoma progression given EMT-like phenotypes of epithelial cancers (Klymkowsky & 

Savagner, 2009; Thiery, 2002). Acquisition of migratory properties is a prerequisite for 

cancer progression and for invasive migration of tumor cells into surrounding tissue. Within 

carcinoma (cancer of epithelial origin) cells, acquisition of invasiveness requires a dramatic 

morphological alteration similar to EMT, wherein carcinoma cells lose their epithelial 

characteristics of cell polarity and cell-cell adhesion and switch to a motile mesenchymal 

phenotype (Thiery, 2002; Thiery, 2003; Thiery & Sleeman, 2006). Disruption of cell-cell 

adherens junctions mediated by E-cadherin (one of the epithelial markers) is considered a 

crucial step in EMT and the downregulation of E-cadherin is common in metastatic 

carcinomas (Cavallaro & Christofori, 2004). Reduced E-cadherin expression has been found 

in high-grade prostate cancers and is associated with poor prognosis (Umbas et al., 1994; 

Umbas et al., 1992), reflective of its critical role in tumor progression. It is widely believed 

that downregulation of E-cadherin occurs via transcriptional repression mediated by the 

protein, Snail (Cano et al., 2000; Moreno-Bueno et al., 2008; Peinado et al., 2007). 

Accumulating evidence indicates that the EGFR family and PI3K/Akt signaling pathway 

can regulate Snail expression (Hipp et al., 2009; Lee et al., 2008; Qiao et al., 2008), suggesting 

that inhibition of the EGFR signaling pathways may prevent the loss of E-cadherin function 

and thereby acquisition of invasive motility (metastasis). 

5.3 Role of Akt signaling in EGF/EGFR-driven EMT and prostate cancer cell migration 

To understand which pathway(s) may have significant impact on EGFR-driven migration, 
we have recently probed this issue in human prostate cancer cells. The two cell lines, DU145 
and PC-3, are both androgen insensitive (van Bokhoven et al., 2003), and are excellent 
models for studying EGFR signaling in hormonal-refractory prostate cancer. We showed 
that the two cell lines predominantly expressed EGFR but not ErbB-2 when compared to an 
androgen-responsive prostate cancer cell line, LnCap (van Bokhoven et al., 2003), in which 
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both EGFR and ErbB-2 were expressed (Gan et al., 2010). EGF activated EGFR and its 
downstream ERK and Akt pathways, and markedly promoted cell migration in both DU145 
and PC-3. Using pharmacological inhibitors, LY294002 and PD98059, to specifically block 
PI3K/Akt and MEK/ERK pathways, respectively, we further demonstrated that LY29004, 
but not PD98059, significantly inhibited EGF/EGFR-driven cell motility. In parallel, we 
observed that DU145 cells expressing constitutively activated (myristoylated) Akt (Myr-Akt) 
migrated much faster than control cells (Gan et al., 2010). Taken together, our data suggests 
that Akt activation is critical for EGFR-mediated prostate cancer cell migration. 
As described above, tumors of epithelial origin, as they transform to malignancy, appear to 
exploit the innate plasticity of epithelial cells, with EMT conferring increased invasiveness 
and metastatic potential. Previous studies have implicated the involvement of ErbBs in EMT 
and E-cadherin downregulation in breast, lung, and cervical cancer cells (Lee et al., 2008; Lu 
et al., 2009; Z. Lu et al., 2003). Our recent work has clearly demonstrated that prostate cancer 
cells undergo EMT-like morphological changes after EGF treatment, accompanied by the 
loss of E-cadherin at cell-cell junctions (Gan et al., 2010). Interestingly, these EGF-induced 
phenomena were markedly prevented when the cells were exposed to the PI3K/Akt 
pathway inhibitor LY294002 (Figure 7). Consistent with downregulation of E-cadherin (an 
epithelial marker), we further showed an upregulation of vimentin (a mesenchymal marker) 
induced by EGF treatment. Similarly, LY294002 pretreatment abolished the EGF-induced 
quantitative (mass) changes of both E-cadherin and vimentin (Figure 8) (Gan et al., 2010). 
All these findings suggest that Akt activation is required for EGFR-driven EMT. 
 

 

Fig. 7. Effect of inhibition of Akt pathway on EGF-induced EMT and loss of E-cadherin at 
cell-cell junction. Serum-starved DU145 cells were treated with vehicle (-) or EGF for 24 h in 
the presence or absence of LY294002. Inhibition of the Akt pathway by LY294002 prevents 
EGF-induced EMT (A) and loss of E-cadherin expression at cell-cell adherens junctions (B). 
For details see (Gan et al., 2010). Reprinted with permission from Oncogene. 
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Fig. 8. Akt signaling contributes to EGF-driven EMT through the route of 
EGFR→Akt→GSK3ǃ→Snail→E-cadherin. (A) LY294002 abolishes EGF-induced 
downregulation of E-cadherin and upregulation of vimentin. (B) LY294002 prevents EGF-
induced phosphorylation (inactivation) of GSK3ǃ via Akt inhibition. (C) LY294002 blocks 
EGF-induced upregulation of Snail. *, P < 0.05; **, P < 0.01; NS, not statistically significant. 
For details see (Gan et al., 2010). Reprinted with permission from Oncogene. 

Snail is one of the several transcriptional factors that can suppress E-cadherin gene 

expression (Batlle et al., 2000; Cano et al., 2000) via binding to E-box sequences in the 

proximal E-cadherin promoter (Hemavathy et al., 2000). Snail is regulated by glycogen 

synthase kinase 3ǃ (GSK3ǃ, a downstream effector of Akt) by direct binding and 

phosphorylation, and inhibition of GSK3ǃ results in upregulation of Snail and 

downregulation of E-cadherin (Zhou et al., 2004). This implies that Snail and GSK3ǃ 

together, function as a molecular switch for many signaling pathways leading to EMT, and 

may provide a new connection of Akt to EMT. Along this line, we uncovered that in 

prostate cancer cells, EGF induced robust GSK3ǃ phosphorylation (inactivation) and 

LY294002 markedly inhibited this phosphorylation, which correlated with the Akt activity. 

Consistent with Akt-mediated inactivation of GSK3ǃ, Snail was upregulated upon EGF 

stimulation. Intriguingly, LY294002 pretreatment abolished such an EGF-induced 

upregulation of Snail, presumably by inactivating Akt and restoring GSK3ǃ activity (Figure 

8). As an alternative approach, we also demonstrated that knockdown of endogenous Snail 

in DU145 cells significantly prevented the EGF-induced loss of E-cadherin expression and 

concomitantly suppressed EGF-driven EMT, which correlated with a decrease in EGF-

directed cell migration (Figure 9) (Gan et al., 2010). These results implicate Snail as a central 

effector of EMT and cell motility mediated by EGF/EGFR-activated Akt within prostate 

cancer cells. Collectively, our findings that EGF-mediated Akt signaling affects both 

phenotypic and molecular attributes, typical of EMT, provide new insights into the 

molecular mechanisms of EGFR-driven prostate cancer progression and metastasis. 
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Fig. 9. Knockdown of endogenous Snail prevents EGF-induced E-cadherin loss, EMT, and 
cell migration. (A) Knockdown of Snail in DU145 cells. (B) Knockdown of Snail prevents 
EGF-induced loss of E-cadherin expression. (C) Knockdown of Snail blocks EGF-induced 
EMT process. (D) Knockdown of Snail reduces EGF-driven cell migration measured by 
transwell assay. NS siRNA, nonspecific siRNA (control); **, P < 0.01. For details see (Gan et 
al., 2010). Reprinted with permission from Oncogene. 

6. Negative feedback loop between EGFR-directed ERK and Akt signaling 

As described above, Ras/Raf/MEK/ERK and PI3K/Akt signaling pathways play central roles 
in many aspects related to tumorigenesis and cancer progression. Thus, inhibition of these 
signaling cascades could hold powerful therapeutic potentials. Given that many receptors 
utilize the common downstream pathways such as MEK/ERK and PI3K/Akt, targeting these 
kinases is expected to have greater therapeutic efficacy and broader applicability. For example, 
blockade of signaling through MEK offers the potential advantage of inhibiting both 
proliferation-promoting and anti-apoptotic signals originating from either activated receptors 
or mutation of RAS/Raf in breast cancer (Adeyinka et al., 2002). However, clinical studies of 
MEK inhibitors have only shown limited antitumor effects (Adjei et al., 2008; Rinehart et al., 
2004). The underlying mechanisms remain poorly understood.  
The molecular features of breast cancer cells that determine sensitivity to pharmacological 
inhibition of the Ras/Raf/MEK/ERK signaling pathway have been recently examined. 
Using a large set of human breast cancer cell lines as a model system, it was found that 
activation of PI3K/Akt pathway in response to MEK inhibition through a negative MEK-
EGFR-PI3K feedback loop counteracts the efficacy of MEK inhibition on cell cycle and 
apoptosis induction (Mirzoeva et al., 2009). In concert with this finding, we uncovered that 
in prostate cancer cells, in contrast to inhibition of PI3K/Akt pathway, inhibition of 
MEK/ERK pathway rather enhanced EGF-directed cell motility, accompanied by enhanced 
EGF-induced Akt activation (Figure 10) (Gan et al., 2010). This phenomenon highly supports 
the notion that Akt is the key node in EGFR-mediated migratory pathways (see Section 5.3). 
It also raises a key question as to how ERK inactivation exerts its feedback effect to EGF-
induced Akt activation. Based on our data, we believe that one mechanism could be through 
the feedback of ERK on EGFR phosphorylation (Figure 6). One can envision that inhibition 
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of ERK activity eliminates EGFR threonine-669 phosphorylation, resulting in enhanced 
EGFR tyrosine phosphorylation (kinase activation), and subsequently augmented activation 
of the downstream PI3K/Akt pathway. The discovery of the negative feedback loop of 
MEK/ERK-EGFR-PI3K/Akt on several cellular aspects implies that targeting single 
MEK/ERK pathway in some cancers (e.g., breast and prostate carcinomas) may have 
undesirable outcomes, which deserves further investigation. 

 

 
 

Fig. 10. Effects of ERK and Akt pathways on EGF-driven prostate cancer cell migration. (A) 
Inhibition of the ERK pathway by PD98059 augments EGF-induced Akt activation in both 
DU145 and PC3 cells, revealed by immunoblotting (IB) with anti-phospho-Akt antibody (top 
panel). (B) Transwell assay shows that blockade of the Akt pathway by LY294002 
significantly inhibits EGF-driven cell migration. In contrast, blockade of the ERK pathway 
by PD98059 rather enhances EGF-induced migration. **, P < 0.01. For details see (Gan et al., 
2010). Reprinted with permission from Oncogene. 

7. Concluding remarks 

Recent advances in the ErbB field have broadened our understanding of the important roles 

of EGFR/ErbB signaling in human cancer. However, the complexity of the ErbB signaling 

network, which involves numerous ligands, multiple dimerization partners, and a variety of 

downstream signaling components, makes it a real challenge to establish which pathways 

are activated or critical in the context of tumorigenesis and progression of specific cancer 

types. In this chapter, several aspects of EGFR/ErbB signaling and their potential roles in 

prostate cancer initiation and progression are discussed. In particular, we focus on the 

mechanisms of how Ras/Raf/MEK/ERK and PI3K/Akt pathways impact EGFR 

phosphorylation, trafficking, and cell motility. New insights into prostate cancer biology 

gained from our own work and the studies of other investigators highlight the importance 

of ERK activity-dependent threonine-669 phosphorylation of EGFR and its profound 

feedback on EGFR tyrosine phosphorylation/kinase activation, ubiquitination, and 

trafficking. Recent data from our group demonstrates that the Akt pathway plays a pivotal 

role in EGFR-driven prostate cancer cell migration by activating EMT. In particular, our 

results in prostate cancer (Gan et al., 2010) and data from a recent study in breast cancer 

(Mirzoeva et al., 2009) suggest that therapeutic targeting of ERK signaling may have 

undesirable outcomes. For example, inhibition of the MEK/ERK pathway conversely 
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activates the PI3K/Akt pathway through a negative MEK/ERK-EGFR-PI3K/Akt feedback 

loop. We believe that ERK-mediated threonine-669 phosphorylation is critically involved in 

such a negative feedback and thereby contributes to invasive migration (metastasis). Thus, 

inhibition of the MEK/ERK-EGFR-PI3K/Akt feedback loop is likely to result in therapeutic 

synergism. Future detailed studies along these lines and a deeper understanding of various 

mechanisms of cell signaling from EGFR and other ErbBs will undoubtedly generate new 

avenues for drug and biomarker development to combat cancers including prostate cancer. 
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