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1. Introduction

A common feature of high-dimensional data such as genetic microarrays is that the data
dimension is extremely high, however the sample size is relatively small. This type of data
is called the high-dimension, low-sample-size (HDLSS) data. Such HDLSS data present with
substantial challenges to reconsider existing methods in the multivariate statistical analysis.
Unfortunately, it has been known that most conventional methods break down in HDLSS
situations and alternative methods are often highly sensitive to the curse of dimensionality.
In this chapter, we present modern statistical methodologies that are very effective to draw
statistical inference from HDLSS data. We focus on a series of effective HDLSS methodologies
developed by Aoshima and Yata (2011) and Yata and Aoshima (2009, 2010a,b, 2011a,b). We
demonstrate how those methodologies perform well and bring a new insight into researches
on prostate cancer.
In Section 2, we first consider Principal Component Analysis (PCA) for microarray data to

visualize a data structure having tens of thousands of dimension by projecting on a few
dimensional PC space. We note that classical PCA cannot sufficiently visualize a latent
structure of microarray data because of the curse of dimensionality. We overcome the
difficulty with the help of the cross-data-matrix (CDM) methodology that was developed by Yata
and Aoshima (2010a,b).
Next, in Section 3, we consider an effective clustering for microarray data. We apply the CDM
methodology to estimating the principal component (PC) scores. We show that a clustering
method given by using a CDM-based first PC score effectively classifies individuals into two
groups. We demonstrate accurate clustering by using prostate cancer data given by Singh et
al. (2002).
Further, in Section 4, we consider an effective classification for microarray data. We pay special
attention to the quadratic-type classification methodology developed by Aoshima and Yata
(2011). We give a sample size determination for the classification so that the misclassification
rates are controlled by a prespecified upper bound. We examine how the classification
methodology performs well by using some microarray data sets.
Finally, in Section 5, we consider a variable selection procedure to select a set of significant

variables from microarray data. In most gene expression studies, it is important to select
relevant genes for classification so that researchers can identify the smallest possible set
of genes that can still achieve good predictive performance. We implement the two-stage
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2 Will-be-set-by-IN-TECH

variable selection procedure, developed by Aoshima and Yata (2011), that provides screening
of variables in the first stage. We select a significant set of associated variables from among a
set of candidate variables in the second stage. We show that the selection procedure assures
a high accuracy by eliminating redundant variables. We identify predictive genes to classify
patients according to disease outcomes on prostate cancer.

2. PCA for high-dimension, low-sample-size data

Suppose we have a p × n data matrix X = [x1, ..., xn] with p > n, where xk = (x1k, ..., xpk)
T ,

k = 1, ..., n, are independent and identically distributed as a p-dimensional distribution having
mean µ and positive-definite covariance matrix Σ. The eigen-decomposition of Σ is given by
Σ = HΛH

T, where Λ is a diagonal matrix of eigenvalues λ1 ≥ · · · ≥ λp(> 0) and H =

[h1, ..., hp] is a matrix of corresponding eigenvectors. Then, Z = Λ
−1/2

H
T(X −[µ, ..., µ]) is

considered as a p × n sphered data matrix from a distribution with zero mean and the identity
covariance matrix. Here, we write Z = [z1, ..., zp]T and zj = (zj1, ..., zjn)

T, j = 1, ..., p. We
assume that the fourth moments of each variable in Z are uniformly bounded and ||zj|| �= 0 for
j = 1, ..., p, where || · || denotes the Euclidean norm. We note that the multivariate distribution
assumed here does not have to be a normal distribution, Np(µ, Σ), and the random variables
in Z do not have to be regulated by a ρ-mixing condition. We consider a general setting as
follows:

λj = aj p
αj (j = 1, ..., m) and λj = cj (j = m + 1, ..., p). (1)

Here, aj(> 0), cj(> 0) and αj(α1 ≥ · · · ≥ αm > 0) are unknown constants preserving the
ordering that λ1 ≥ · · · ≥ λp, and m is an unknown positive integer. The model (1) is an
extension of a multi-component model or spiked covariance model given by Johnstone and
Lu (2009). This is a quite general model for high-dimensional data. For example, a mixture
model given by (6) in Section 3 is one of the examples that have the model (1) as in (7). One
would also find the model (1) in a highly-correlated, high-dimensional data analysis such as
graphical models, high dimensional regression models, and so on.
Let Xo = X − [x, ..., x], where x = ∑

n
i=1 xi/n. The sample covariance matrix is given by

S = (n − 1)−1XoX
T
o and its dual matrix is defined by SD = (n − 1)−1X

T
o Xo. Note that SD

and S share non-zero eigenvalues. Let λ̂1 ≥ · · · ≥ λ̂n−1(≥ 0) be the eigenvalues of SD . Let us
write the eigen-decomposition of SD by SD = ∑

n−1
j=1 λ̂jûjû

T
j , where ûj’s are the corresponding

eigenvectors of λ̂j such that ||ûj|| = 1 and ûT
i ûj = 0 (i �= j).

2.1 Naive PCA in HDLSS situations

Yata and Aoshima (2009) gave sufficient conditions to claim the consistency property for the
sample eigenvalues: For j = 1, ..., m, it holds that

λ̂j

λj

p→ 1 (2)

under the conditions:

(YA-i) p → ∞ and n → ∞ for j such that αj > 1;

(YA-ii) p → ∞ and p2−2αj /n → 0 for j such that αj ∈ (0, 1].

14 Prostate Cancer – From Bench to Bedside
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Effective Methodologies for Statistical Inference on Microarray Studies 3

Here,
p→ denotes the convergence in probability. If zjk, j = 1, ..., p (k = 1, ..., n) are

independent, the above conditions are improved by the necessary and sufficient conditions
as follows:

(YA-i’) p → ∞ and n → ∞ for j such that αj > 1;

(YA-ii’) p → ∞ and p1−αj /n → 0 for j such that αj ∈ (0, 1].

For the details including the limiting distribution of λ̂j, see Yata and Aoshima (2009). If the

population distribution is Np(µ, Σ), one may consider that zjk, j = 1, ..., p (k = 1, ..., n) are
independent. When αj > 1, the sample size n is free from p in (YA-i) or (YA-i’). However,
when αj ∈ (0, 1], one would find difficulty in naive PCA in view of (YA-ii) or (YA-ii’) in HDLSS

data situations. Let us see a simple case that p = 10000, λ1 = p1/2 and λ2 = · · · = λp = 1.

Then, we observe from (YA-ii) that it should be n >> p2−2α1 = p = 10000. It is somewhat
inconvenient for the experimenter to handle PCA in HDLSS data situations.

2.2 Beyond naive PCA

Yata and Aoshima (2010a,b) created an effective methodology called the cross-data-matrix
(CDM) methodology to handle HDLSS data situations: Let n(1) = [n/2] + 1 and n(2) = n − n(1),
where [x] denotes the largest integer less than x. Suppose that we have a p × n data matrix,

X = [x1, ..., xn] = [x11, ..., x1n(1)
, x21, ..., x2n(2)

]. (3)

We define p × n(i) data matrices, X1 and X2, by X i = [xi1, ..., xin(i)
], i = 1, 2. Note that X1

and X2 are independent. Let Xoi = X i − [xi, ..., xi], i = 1, 2, where xi = ∑
n(i)

j=1 xij/n(i). We

define a cross data matrix by SD(1) = ((n(1) − 1)(n(2) − 1))−1/2X
T
o1Xo2 or SD(2) = ((n(1) −

1)(n(2) − 1))−1/2X
T
o2Xo1 (= S

T
D(1)). Note that rank(SD(1)) ≤ n(2) − 1. When we consider

the singular value decomposition of SD(1), it follows that SD(1) = ∑
n(2)−1

j=1 λ̃jũj(1)ũ
T
j(2)

, where

λ̃1 ≥ · · · ≥ λ̃n(2)−1(≥ 0) denote singular values of SD(1), and ũj(1) (or ũj(2)) denotes a unit

left- (or right-) singular vector corresponding to λ̃j (j = 1, ..., n(2) − 1).

[Cross-data-matrix (CDM) methodology]

(Step 1) Define a cross data matrix by SD(1) = ((n(1) − 1)(n(2) − 1))−1/2X
T
o1Xo2.

(Step 2) Calculate the singular values, λ̃j’s, of SD(1) for the estimation of λj’s.

Note that SD(1)S
T
D(1) = ∑

n(2)−1

j=1 λ̃2
j ũj(1)ũ

T
j(1)

. Thus one can calculate the singular values, λ̃j’s,

by the positive square-root of the eigenvalues of SD(1)S
T
D(1). The CDM methodology assures

the following properties. For the details, see Yata and Aoshima (2010a,b).

Theorem 2.1. For j = 1, ..., m, it holds that

λ̃j

λj

p→ 1 (4)

under the conditions:

(i) p → ∞ and n → ∞ for j such that αj > 1/2;

15Effective Methodologies for Statistical Inference on Microarray Studies
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4 Will-be-set-by-IN-TECH

(ii) p → ∞ and p2−2αj /n → 0 for j such that αj ∈ (0, 1/2].

Corollary 2.1. Assume further in Theorem 2.1 that zjk, j = 1, ..., p (k = 1, ..., n) are independent.
Then, for j = 1, ..., m, we have (4) under the conditions:

(i) p → ∞ and n → ∞ for j such that αj > 1/2;

(ii) p → ∞ and there exists a positive constant ε j satisfying p1−2αj /n < p−ε j for j such that
αj ∈ (0, 1/2].

Theorem 2.2. Let Var(z2
jk) = Mj (< ∞) for j = 1, ..., m (k = 1, ..., n). Assume that λj (j ≤ m) has

multiplicity one. Then, under the conditions (i)-(ii) in Theorem 2.1, it holds for j = 1, ..., m, that

√
n

Mj

(
λ̃j

λj
− 1

)
⇒ N(0, 1), (5)

where “⇒" denotes the convergence in distribution and N(0, 1) denotes a random variable distributed

as the standard normal distribution.

Corollary 2.2. Assume further in Theorem 2.2 that zjk, j = 1, ..., p (k = 1, ..., n) are independent.

Then, for j = 1, ..., m, we have (5) under the conditions:

(i) p → ∞ and n → ∞ for j such that αj > 1/2;

(ii) p → ∞ and p2−4αj /n → 0 for j such that αj ∈ (0, 1/2].

Remark 2.1. When the population distribution is Np(µ, Σ), one has that Mj = 2 for j = 1, ..., p.

Remark 2.2. The condition (ii) given by Theorem 2.1 (or Theorem 2.2) is a sufficient condition
for the case of αj ∈ (0, 1/2]. If more information is available about the population distribution,
the condition (ii) can be relaxed to give consistency under a broader set of (p, n). For example,

when the population distribution is Np(µ, Σ), the asymptotic properties are claimed under a
broader set of (p, n) given by (ii) of Corollary 2.1 (or Corollary 2.2).

Remark 2.3. In view of Theorem 2.1 compared to (2), the CDM methodology successfully
relaxes the condition for the case that αj > 1/2. The conditions given by Theorem 2.1 are not
continuous in αj at αj = 1/2. On the other hand, the conditions given by Corollaries 2.1 and
2.2 are continuous in αj.
When we apply the CDM methodology, we simply divided X into x1, ..., xn(1)

and xn(1)+1, ..., xn

in (3). In general, there exist nCn(1)
ways to divide X into X1 and X2. The CDM methodology

can be generalized as follows:

[Generalized cross-data-matrix (GCDM) methodology]

(Step 1) Set iteration number T. Set t = 1.

(Step 2) Randomly split x1, ..., xn into X1 = [x1(1), ..., x1(n(1))
] and X2 = [x2(1), ..., x2(n(2))

].

(Step 3) Define a cross data matrix by SD(1)t = ((n(1) − 1)(n(2) − 1))−1/2X
T
o1Xo2, where

Xoi = X i − [xi, ..., xi], i = 1, 2, and xi = ∑
n(i)

j=1 xi(j)/n(i).

(Step 4) Calculate the singular values, λ̃1t ≥ · · · ≥ λ̃n(2)−1 t(≥ 0), of SD(1)t.

(Step 5) If t < T, put t = t + 1 and go to Step 2; otherwise go to Step 6.

(Step 6) Estimate λj by λ̃j(T) = ∑
T
t=1 λ̃jt/T for each j.

16 Prostate Cancer – From Bench to Bedside
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Effective Methodologies for Statistical Inference on Microarray Studies 5

Fig. 1. The behaviors of A: λ̂j/λj and B: λ̃j/λj for the first eigenvalue (upper panel) and
second eigenvalue (lower panel) when the samples, of size n = 20(20)120, were taken from
Np(0, Σ) with p = 1600.

2.3 Performances

We observed that naive PCA requires the sample size n depending on p for αi ∈ (1/2, 1] in (2).
On the other hand, the CDM methodology allows the experimenter to choose n free from p for
the case that αi > 1/2 as in Theorem 2.1 or Corollary 2.1. The CDM methodology might make
it possible to give feasible estimation of eigenvalues for HDLSS data with extremely small n
compared to p.
We first considered a normal distribution case. Independent pseudorandom normal
observations were generated from Np(0, Σ) with p = 1600. We considered λ1 = p2/3, λ2 =

p1/3 and λ3 = · · · = λp = 1 in (1). We used the sample of size n = 20(20)120 to define
the data matrix X : p × n for the calculation of SD in naive PCA, whereas we divided
the sample into X1 : p × n(1) and X2 : p × n(2) for the calculation of SD(1) in the CDM
methodology. The findings were obtained by averaging the outcomes from 1000 (= R, say)
replications. Under a fixed scenario, suppose that the r-th replication ends with estimates of

λj, λ̂jr and λ̃jr (r = 1, ..., R), given by naive PCA and the CDM methodology. Let us simply

write λ̂j = R−1
∑

R
r=1 λ̂jr and λ̃j = R−1

∑
R
r=1 λ̃jr. We considered two quantities, A: λ̂j/λj

and B: λ̃j/λj. Figure 1 shows the behaviors of both A and B for the first two eigenvalues.
By observing the behavior of A, naive PCA seems not to give a feasible estimation within

17Effective Methodologies for Statistical Inference on Microarray Studies
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Fig. 2. The behaviors of A: λ̂j/λj and B: λ̃j/λj for the first eigenvalue (upper panel) and
second eigenvalue (lower panel) when the samples, of size n = 60, were taken from
tp(0, Σ, ν) with ν = 15 and p = 400(400)2000.

the range of n. The sample size n was not large enough to use the eigenvalues of SD for
such a high-dimensional space. On the other hand, in view of the behavior of B, the CDM
methodology gave a reasonable estimation surprisingly well for such HDLSS data sets. The
CDM methodology seems to perform excellently as expected theoretically.
Next, we considered a non-normal distribution case. Independent pseudorandom
observations were generated from a p-variate t-distribution, tp(0, Σ, ν), with mean zero,

covariance matrix Σ and degree of freedom ν = 15. We considered the case that λ1 = p2/3,
λ2 = p1/3 and λ3 = · · · = λp = 1 in (1) as before. We fixed the sample size as n = 60. We
set the dimension as p = 400(400)2000. Similarly to Figure 1, the findings were obtained
by averaging the outcomes from 1000 replications. Figure 2 shows the behaviors of two
quantities, A: λ̂j/λj and B: λ̃j/λj, for the first two eigenvalues. Again, the CDM methodology
seems to perform excellently as expected theoretically. One can observe the consistency of
λ̃j for all p = 400(400)2000. We conducted simulation studies for other settings as well
and verified the superiority of the CDM methodology to naive PCA in various HDLSS data

situations.

18 Prostate Cancer – From Bench to Bedside
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3. Clustering for high-dimension, low-sample-size data

Suppose we have a mixture model to classify a data set into two groups. We assume that the
observation is sampled with mixing proportions wj’s from two populations, Π1 and Π2, and
the label of the population is missing. We consider a mixture model whose p.d.f. (or p.f.) is
given by

f (x) = w1π1(x; µ1, Σ1) + w2π2(x; µ2, Σ2), (6)

where wj’s are positive constants such that w1 + w2 = 1 and πi(x; µi, Σi)’s are p-dimensional
p.d.f. (or p.f.) of Πi having mean vector µi and covariance matrix Σi. Let µ and Σ be the mean
vector and the covariance matrix of the mixture model. Then, we have that µ = w1µ1 + w2µ2
and Σ = w1w2(µ1 − µ2)(µ1 − µ2)

T + w1Σ1 + w2Σ2. We suppose that xk, k = 1, ..., n, are
independently taken from (6) and define a p × n data matrix X = [x1, ..., xn]. Let ∆ = ||µ1 −
µ2||2. Let λ11 and λ21 be the largest eigenvalues of Σ1 and Σ2. We assume that ∆ = cpβ, where
c and β are positive constants. We assume that λ11/∆ → 0 and λ21/∆ → 0 as p → ∞. Then,
as for the largest eigenvalue, λ1, of Σ and the corresponding eigenvector, h1, we have that

λ1

ω1ω2∆
→ 1 and Angle(h1, (µ1 − µ2)/∆1/2) → 0. (7)

We note from (7) that the mixture model given by (6) holds the model (1) about Σ. Let s1k

denote the first principal component (PC) score of xk (k = 1, ..., n). Then, from Yata and
Aoshima (2010b), it holds as p → ∞ that

s1k√
λ1

p→
{√

w2/w1 when xk ∈ Π1,

−√
w1/w2 when xk ∈ Π2.

Thus one would be able to classify the data set {x1, ..., xn} into two groups if s1k is effectively
estimated in HDLSS data situations. In this section hereafter, we borrow symbols from Section

2.

3.1 Effective estimation for PC scores

In general, the j-th PC score of xk is given by h
T
j (xk − µ) = zjk

√
λj (= sjk, say). Yata and

Aoshima (2009) considered a sample eigenvector by ĥj = ((n − 1)λ̂j)
−1/2Xoûj and an naive

estimator of the j-th PC score of xk by ĥ
T
j (xk − x) = ûjk

√
(n − 1)λ̂j (= ŝjk, say), where û

T
j =

(ûj1, ..., ûjn). Note that ĥj can be calculated by using a unit-norm eigenvector, ûj, of SD whose
size is much smaller than S especially for a HDLSS data matrix. Now, we apply the CDM
methodology to the PC score in order to improve the naive estimator. Recall that ũj(1) (or

ũj(2)) is a unit left- (or right-) singular vector corresponding to the singular value λ̃j (j =

1, ..., n(2) − 1) of SD(1) = ((n(1) − 1)(n(2) − 1))−1/2
X

T
o1Xo2.

[CDM methodology for PC scores]

(Step 1) Calculate the singular vectors ũj(i)’s, i = 1, 2, of SD(1).

19Effective Methodologies for Statistical Inference on Microarray Studies
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8 Will-be-set-by-IN-TECH

(Step 2) Adjust the sign of ũj(2) by ũj(2) = Sign(ũT
j(1)X

T
o1Xo2ũj(2))ũj(2). After the

modification, let ũT
j(i) = (ũj1(i), ..., ũjn(i)(i)), i = 1, 2.

(Step 3) Calculate s̃jk(i) = ũjk(i)

√
(n(i) − 1)λ̃j, k = 1, ..., n(i); i = 1, 2. Estimate the j-th PC

score of xk by s̃jk = s̃jk(1), k = 1, ..., n(1) and s̃jk+n(1)
= s̃jk(2), k = 1, ..., n(2).

One can calculate the singular vector ũj(i)’s by the eigenvectors of SD(i)S
T
D(i). Let MSE(s̃j)

= n−1 ∑
n
k=1(s̃jk − sjk)

2 denote the sample mean-square error of the j-th PC score. Note
that Var(sjk) = λj. Then, Yata and Aoshima (2010b) gave the following properties on the
CDM-based PC scores.

Theorem 3.1. Assume that λj (j ≤ m) has multiplicity one. Then, it holds that

MSE(s̃j)

λj

p→ 0 (8)

under the conditions (i)-(ii) in Theorem 2.1. If zjk, j = 1, ..., p (k = 1, ..., n) are independent, we have
(8) under the conditions (i)-(ii) in Corollary 2.1.

Theorem 3.2. Assume that λj (j ≤ m) has multiplicity one. Then, for any k (= 1, ..., n), it holds
that

λ−1/2
j s̃jk

p→ zjk (9)

under the conditions (i)-(ii) of Theorem 2.1. If zjk, j = 1, ..., p (k = 1, ..., n) are independent, we have
(9) under the conditions (i)-(ii) of Corollary 2.2.

The CDM-based PC score can be generalized as follows:

[GCDM methodology for PC scores]

(Step 1) Set iteration number T. Set t = 1.

(Step 2) Randomly split x1, ..., xn into X1 = [x1(1), ..., x1(n(1))
] and X2 = [x2(1), ..., x2(n(2))

].

(Step 3) Define a cross data matrix by SD(1)t = ((n(1) − 1)(n(2) − 1))−1/2X
T
o1Xo2, where

Xoi = X i − [xi, ..., xi], i = 1, 2, and xi = ∑
n(i)

j=1 xi(j)/n(i). Calculate the singular values,

λ̃1t ≥ · · · ≥ λ̃n(2)−1 t(≥ 0), and the corresponding singular vectors, ũj(i)t’s, i = 1, 2, of
SD(1)t. If t = 1, go to Step 5; otherwise go to Step 4.

(Step 4) Adjust the sign of ũj(1)t by ũj(1)t = Sign(ũT
j(1)t

ũj(1)1)ũj(1)t.

(Step 5) Adjust the sign of ũj(2)t by ũj(2)t = Sign(ũT
j(1)t

X
T
o1Xo2ũj(2)t)ũj(2)t. After the

modification, let ũT
j(i)t

= (ũj(1i)t, ..., ũj(n(i)i)t), i = 1, 2.

(Step 6) Calculate s̃j(ki)t = ũj(ki)t

√
(n(i) − 1)λ̃jt , k = 1, ..., n(i); i = 1, 2, and adjust the

subscript k of s̃j(ki)t as s̃jkt corresponding to xk.

(Step 7) If t < T, put t = t + 1 and go to Step 2; otherwise go to Step 8.

(Step 8) Estimate the j-th PC score of xk by s̃jk(T) = ∑
T
t=1 s̃jkt/T for each j and k.

20 Prostate Cancer – From Bench to Bedside
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Fig. 3. Scatterplots of PC scores by PC1 and PC2 (upper panel) or PC1 and PC3 (lower panel)
by using the GCDM methodology. There are 9 samples from Normal Prostate (blue point)
and 9 samples from Prostate Tumors (red point).

3.2 Demonstration

We analyzed gene expression data about prostate cancer given by Singh et al. (2002). Refer
to Pochet et al. (2004) for details of the data set. The data set consisted of 12600 (= p) genes
and 34 microarrays in which there were 9 samples from Normal Prostate and 25 samples
from Prostate Tumors. As for Prostate Tumors, we chose the first 9 samples and set 18 (= n)
microarrays in which there were 9 samples from Normal Prostate and 9 samples from Prostate
Tumors. We assumed the mixture model given by (6) for the data set. We defined the data
matrix by X : 12600 × 18. We set (n(1), n(2)) = (9, 9) and T = 1000. We focused on the
first three PC scores. We randomly divided X into X1 : 12600 × 9 and X2 : 12600 × 9, and
calculated s̃jkt, k = 1, ..., 18, for j = 1, 2, 3. According to the GCDM methodology, we repeated
this operation T = 1000 times and obtained s̃jk(T), k = 1, ..., 18; j = 1, 2, 3, as an estimate of the

j-th PC score of xk. We also obtained (λ̃1(T), λ̃2(T), λ̃3(T)) = (2.77 × 108, 1.62 × 108, 6.34× 107).
Figure 3 gives the scatterplots of the first three PC scores on the (PC1, PC2) plane or the (PC1,

PC3) plane. As observed in Figure 3, Normal Prostate (blue point) and Prostate Tumors (red
point) seem to be separated clearly. It is obvious especially for the first PC score (PC1) line.
All the first PC scores of the samples from Normal Prostate are negative, whereas those from
Prostate Tumors are positive. This observation is theoretically supported by the arguments in
Section 3.1.

21Effective Methodologies for Statistical Inference on Microarray Studies
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4. Classification for high-dimension, low-sample-size data

Suppose we have independent and p-dimensional populations, Πi, i = 1, 2, having unknown
mean vector µi = (µi1, ..., µip)

T and unknown positive-definite covariance matrix Σi for each
i. We do not assume that Σ1 = Σ2. The eigen-decomposition of Σi (i = 1, 2) is given
by Σi = H iΛi H

T
i , where Λi is a diagonal matrix of eigenvalues λi1 ≥ · · · ≥ λip > 0

and H i = [hi1, ..., hip] is an orthogonal matrix of corresponding eigenvectors. Having
recorded i.i.d. samples, xi1, ..., xini

, from each Πi, we have a p × ni (p > ni) data matrix
X i = [xi1, ..., xini

], where xij = (xi1j, ..., xipj)
T, j = 1, ..., ni. We assume ni ≥ 4, i = 1, 2.

Then, Zi = Λ
−1/2
i H

T
i (X i − [µi, ..., µi]) is considered as a p × ni sphered data matrix from

a distribution with zero mean and the identity covariance matrix. Here, we write Zi =
[zi1, ..., zini

] and zij = (zi1j, ..., zipj)
T, j = 1, ..., ni. Note that E(z2

ijl) = 1 and E(zijlzij′ l) = 0

for i = 1, 2; j( �= j′) = 1, ..., p; l = 1, ..., ni. We assume that λip > 0 (i = 1, 2) as p → ∞ and the
fourth moments of each variable in Zi are uniformly bounded. In this section, we assume the
following assumption for Πi’s:

(A-i) zijl , j = 1, ..., p, are independent for i = 1, 2.

One of the population distributions satisfying (A-i) is Np(µi, Σi). We also assume the
following condition for Σi’s as necessary:

(A-ii)
tr(Σt

i)

p
< ∞ (t = 1, 2) and

tr(Σ4
i )

p2
→ 0 as p → ∞ for i = 1, 2.

Remark 4.1. If all λij’s are bounded, (A-ii) trivially holds. For a spiked model such as λij =
aij p

αij (j = 1, ..., mi) and λij = cij (j = mi + 1, ..., p) with positive constants aij’s, cij’s and αij’s,
(A-ii) holds under the condition that αij < 1/2, j = 1, ..., mi(< ∞); i = 1, 2. As an interesting

example, (A-ii) holds for Σi′ = ci′ (ρ
|i−j|qi′

i′ ), i′ = 1, 2, where ci′ ’s, qi′ ’s and ρi′ ’s(< 1) are positive

constants.

4.1 Discriminant rule for HDLSS data

Let x0 be an observation vector on an individual belonging to Π1 or to Π2. Having recorded
xi1, ..., xini

from each Πi, we estimate µi and Σi by xini
= ∑

ni

j=1 xij/ni and Sini
= ∑

ni

j=1(xij −
xini

)(xij − xini
)T/(ni − 1). Aoshima and Yata (2011) considered a discriminant rule that

classifies x0 into Π1 if

p||x0 − x1n1
||2

tr(S1n1
)

− p||x0 − x2n2
||2

tr(S2n2
)

− p log

{
tr(S2n2

)

tr(S1n1
)

}
− p

n1
+

p

n2
+ γ < 0 (10)

and into Π2 otherwise. Here, −p/n1 + p/n2 is a bias-correction and γ is a tuning parameter.
We denote the error rate of misclassifying an individual from Π1 (into Π2) or from Π2 (into
Π1) by e(2|1) or e(1|2). Let ∆ = ||µ1 − µ2||2 and ∆

Σi
= (tr(Σ1)− tr(Σ2))

2/tr(Σi), i = 1, 2. Let
us write that ∆i = ∆ + ∆

Σi
/2, i = 1, 2, and ∆⋆ = min

i=1,2
∆i. Aoshima and Yata (2011) gave the

following property.
Theorem 4.1. Assume (A-i)-(A-ii). Under the condition that max

i=1,2
{tr(Σ2

i )}/(∆2
⋆

min
i=1,2

{ni}) → 0 as

p → ∞, for the discriminant rule given by (10) with γ = 0, it holds as p → ∞ that

e(2|1) → 0 and e(1|2) → 0. (11)
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Remark 4.2. Assume (A-i)-(A-ii). Let us consider a case that tr(Σ1)/tr(Σ2) �= 1 as p →
∞. Then, it follows that mini=1,2 ∆Σi

/p > 0 as p → ∞. Since it holds maxi=1,2{tr(Σ2
i )}

/(∆2
⋆

mini=1,2{ni}) → 0 as p → ∞, we can claim (11) in the case.
Remark 4.3. Let ni(1) = [ni/2] + 1 and ni(2) = ni − ni(1) for each Πi (i = 1, 2). We omit
the subscript i for a while. For each Π, split x1, ..., xn into X1 = [x11, ..., x1n(1)

] and X2 =

[x21, ..., x2n(2)
]. Let Xo1 = X1 − [x1, ..., x1] and Xo2 = X2 − [x2, ..., x2], where x1 = ∑

n(1)

j=1 x1j/n(1)

and x2 = ∑
n(2)

j=1 x2j/n(2). Define Sn(1) = (n(1) − 1)−1Xo1X
T
o1 and Sn(2) = (n(2) − 1)−1Xo2X

T
o2.

Note that tr(Sn(1)Sn(2)) =tr(SD(1)S
T
D(1)) = ∑

n(2)−1

j=1 λ̃2
j . Then, we have that E(tr(Sn(1)Sn(2))) =

tr(Σ2). As for tr(Σ2
i ), Yata (2010) considered an unbiased estimator, tr(Sini(1)Sini(2)), as an

application of the CDM methodology given by Yata and Aoshima (2010a,b).
Remark 4.4. We note that ∆⋆ is estimated by

||x1n1
− x2n2

||2 −
2

∑
i=1

tr(Sini
)/ni +

|tr(S1n1
)− tr(S2n2

)|2
2 maxi=1,2 tr(Sini

)
(= ∆̂⋆, say).

We analyzed gene expression data given by Armstrong et al. (2001) in which data set
consisted of 12582 (= p) genes. We had two populations about leukemia subtypes, i.e., Π1:

acute lymphoblastic leukemia (ALL, 24 samples) and Π2: acute myeloid leukemia (AML, 28
samples). We set n1 = n2 = 10. Then, we constructed the discriminant rule given by (10) with
γ = 0. From Remarks 4.3 and 4.4, we calculated maxi=1,2{tr(Sini(1)Sini(2))} = 3.16 × 1019 and

∆̂⋆ = 2.67 × 1010, so that maxi=1,2{tr(Sini(1)Sini(2))}/(∆̂2
⋆

mini=1,2{ni}) = 0.0044. Thus, one

may conclude that maxi=1,2{tr(Σ2
i )}/(∆2

⋆
mini=1,2{ni}) must be sufficiently small. Hence,

from Theorem 4.1, the discriminant rule given by (10) with γ = 0 was expected to hold
(11). In Table 1, we investigated the performance of the discriminant rule by using test data
sets consisting of 24 − n1 = 14 remaining samples from Π1 and 28 − n2 = 18 remaining
samples from Π2. We observed that the discriminant rule showed e(1|2) = 0 and e(2|1) = 0
successfully as expected by theory.

(10) with γ = 0

1-e(2|1) 14/14 (=1.0)

1-e(1|2) 18/18 (=1.0)

Table 1. The correct discrimination rates for test data sets consisting of 14 samples from Π1

and 18 samples from Π2.

4.2 Sample size determination for classification

One would be interested in designing the discriminant rule given by (10) so as to hold both
e(2|1) ≤ α and e(1|2) ≤ β when ∆⋆ ≥ ∆L, where α, β ∈ (0, 1/2) and ∆L (> 0) are prespecified
constants. We assume ∆L = o(p1/2). Aoshima and Yata (2011) showed the following property.

Theorem 4.2. Assume that tr(Σ1)/tr(Σ2) → 1 as p → ∞. Let

ω(x0) =
p||x0 − x1n1

||2
tr(S1n1

)
− p||x0 − x2n2

||2
tr(S2n2

)
− p log

{
tr(S2n2

)

tr(S1n1
)

}
− p

n1
+

p

n2
.
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Then, under the regularity conditions, it holds as p → ∞ and n1, n2 → ∞ that

ω(x0) + ∆2(tr(Σ2)/p)−1

2
√
(tr(Σ1)/p)−2tr(Σ2

1)/n1 + (tr(Σ2)/p)−2tr(Σ1Σ2)/n2

⇒ N(0, 1) when x0 ∈ Π1;

ω(x0)− ∆1(tr(Σ1)/p)−1

2
√
(tr(Σ2)/p)−2tr(Σ2

2)/n2 + (tr(Σ1)/p)−2tr(Σ1Σ2)/n1

⇒ N(0, 1) when x0 ∈ Π2.

Let σ = max{tr(Σ2
1)

1/2, tr(Σ2
2)

1/2}. We find the sample size for each Πi (i = 1, 2) as

ni ≥
(zα + zβ)

2σ

∆2
L

tr(Σ2
i )

1/4
2

∑
j=1

tr(Σ2
j )

1/4 (= Ci, say), (12)

where zα is the upper α point of N(0, 1). Note that Ci = O(p/∆2
L) for i = 1, 2, under (A-ii).

Thus under ∆L → ∞ as p → ∞, it holds that Ci/p → 0 as p → ∞ . Then, Aoshima and Yata
(2011) gave the following theorem.

Theorem 4.3. Assume (A-i)-(A-ii). Let γ = (tr(S1n1
+ S2n2

)/(2p))−1∆L(zβ − zα)/(zα + zβ) in
(10). Then, under the regularity conditions, for the discriminant rule given by (10) with (12), it holds
as p → ∞ that

lim sup e(2|1) ≤ α and lim sup e(1|2) ≤ β

when ∆⋆ ≥ ∆L.

Remark 4.5. One can design ∆L by using the two sample test given by Aoshima and Yata
(2011). Under the regularity conditions, it holds that

||x1n1
− x2n2

||2 − ∑
2
i=1 tr(Sini

)/ni − ∆√
V̂ar(||x1n1

− x2n2
||2)

⇒ N(0, 1)

as p → ∞ and ni → ∞, i = 1, 2, where

V̂ar(||x1n1
− x2n2

||2) = 2
tr(S1n1(1)S1n1(2))

n1(n1 − 1)
+ 2

tr(S2n2(1)S2n2(2))

n2(n2 − 1)
+ 4

tr(S1n1
S2n2

)

n1n2
.

Note that E(||x1n1
− x2n2

||2 − ∑
2
i=1 tr(Sini

)/ni) = ∆. Thus it follows that

P

⎛
⎝ ||x1n1

− x2n2
||2 − ∑

2
i=1 tr(Sini

)/ni√
V̂ar(||x1n1

− x2n2
||2)

− zα′ ≤ ∆√
V̂ar(||x1n1

− x2n2
||2)

⎞
⎠ → 1 − α′

with α′ ∈ (0, 1/2). From the fact that ∆⋆ ≥ ∆, we design a lower bound of ∆⋆ by

∆L = ||x1n1
− x2n2

||2 −
2

∑
i=1

tr(Sini
)/ni − zα′

√
V̂ar(||x1n1

− x2n2
||2)

for sufficiently small α′.
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Since Σi’s are unknown, it is necessary to estimate Ci’s in (12) with some pilot samples. We
proceed the following two steps:

[Two-stage procedure for classification]

(Step 1) Choose a pilot sample size, m(≥ 4), such as m/Ci ∈ (0, 1), i = 1, 2, as p → ∞.
Take pilot samples of size m from each Πi and define X i = [xi1, ..., xim], i = 1, 2. Let
m(1) = [m/2] + 1 and m(2) = m − m(1). For each Πi, divide X i into X i = [X i1, X i2] with
X i1 : p × m(1) and X i2 : p × m(2), and calculate

Sim(1) =
(X i1 − [xim(1)

, ..., xim(1)
])(X i1 − [xim(1)

, ..., xim(1)
])T

m(1) − 1

and (13)

Sim(2) =
(X i2 − [xim(2)

, ..., xim(2)
])(X i2 − [xim(2)

, ..., xim(2)
])T

m(2) − 1
,

where xim(1)
= ∑

m(1)

j=1 xij/m(1) and xim(2)
= ∑

m
j=m(1)+1 xij/m(2). Define the total sample size

for each Πi by

Ni = max
{

m,
[ (zα + zβ)

2σ̂

∆2
L

tr(Sim(1)Sim(2))
1/4

2

∑
j=1

tr(Sjm(1)Sjm(2))
1/4

]
+ 1

}
, (14)

where σ̂ = max{tr(S1m(1)S1m(2))
1/2, tr(S2m(1)S2m(2))

1/2}.

(Step 2) Take additional samples xij, j = m + 1, ..., Ni, of size Ni − m from each Πi. By

combining the initial samples and the additional samples, calculate xiNi
= ∑

Ni

j=1 xij/Ni

and SiNi
= ∑

Ni

j=1(xij − xiNi
)(xij − xiNi

)T/(Ni − 1), i = 1, 2. Then, we classify x0 into Π1 if

p||x0 − x1N1
||2

tr(S1N1
)

− p||x0 − x2N2
||2

tr(S2N2
)

− p log

{
tr(S2N2

)

tr(S1N1
)

}
− p

N1
+

p

N2
+ γ̂ < 0 (15)

and into Π2 otherwise, where γ̂ = (tr(S1N1
+ S2N2

)/(2p))−1∆L(zβ − zα)/(zα + zβ).

Aoshima and Yata (2011) gave the following theorem.
Theorem 4.4. Assume (A-i)-(A-ii). Then, under the regularity conditions, for the discriminant rule
given by (15) with (14), it holds as p → ∞ that

lim sup e(2|1) ≤ α and lim sup e(1|2) ≤ β

when ∆⋆ ≥ ∆L.
Remark 4.6. One may take different pilot-sample-sizes, mi(≥ 4), such as mi/Ci ∈ (0, 1) as
p → ∞ for i = 1, 2. Then, the assertion in Theorem 4.4 is still claimed.

Remark 4.7. Assume (A-i)-(A-ii). Then, it holds as p → ∞ that Ni/Ci
p→ 1 for i = 1, 2, which

are in the HDLSS situation in the sense that Ni/p
p→ 0, i = 1, 2, under ∆L → ∞ as p → ∞.
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4.3 Demonstration

We analyzed gene expression data given by Chiaretti et al. (2004) in which data set consisted
of 12625 (= p) genes and 128 samples. Note that the expression measures were obtained by
using the three-step robust multichip average (RMA) preprocessing method. Refer to Pollard
et al. (2005) as well for the details. The data set had two tumor cellular subtypes, Π1: B-cell
(95 samples) and Π2: T-cell (33 samples). We set α = 0.1, β = 0.02 and m = 6. Our goal was to
construct a discriminant rule ensuring that both 1 − e(2|1) ≥ 0.9 and 1 − e(1|2) ≥ 0.98 when
∆⋆ ≥ ∆L, where ∆L is designed later.
First, we took the first 6 samples from each Πi as a pilot sample. According to Remark 4.5,
we calculated ||x1m − x2m||2 − ∑

2
i=1 tr(Sim)/m = 1890 and V̂ar(||x1m − x2m||2) = 87860. By

setting α′ = 0.01 so that zα′ = 2.33, we designed a lower bound of ∆⋆ by

∆L = ||x1m − x2m||2 −
2

∑
i=1

tr(Sim)/m − zα′

√
V̂ar(||x1m − x2m||2) = 1200.

According to (14), the total sample size for each Πi was given by

N1 = max

⎧
⎨
⎩6,

⎡
⎣ (zα + zβ)

2σ̂

∆2
L

tr(S1m(1)S1m(2))
1/4

2

∑
j=1

tr(Sjm(1)Sjm(2))
1/4

⎤
⎦+ 1

⎫
⎬
⎭ = 10,

N2 = max

⎧
⎨
⎩6,

⎡
⎣ (zα + zβ)

2σ̂

∆2
L

tr(S2m(1)S2m(2))
1/4

2

∑
j=1

tr(Sjm(1)Sjm(2))
1/4

⎤
⎦+ 1

⎫
⎬
⎭ = 6.

So, we took the next 4 (= N1 − m) samples from Π1. On the other hand, since N2 = m,
we did not take additional samples from Π2. We had γ̂ = (tr(S1N1

+ S2N2
)/(2p))−1∆L(zβ −

zα)/(zα + zβ) = 58.1. Then, we constructed the discriminant rule given by (15) ensuring that
both 1 − e(2|1) ≥ 0.9 and 1 − e(1|2) ≥ 0.98 when ∆⋆ ≥ 1200.
We compared the constructed discriminant rule with two other discriminant rules, DLDR and
DQDR, that were given by Dudoit et al. (2002) as follows: Diagonal linear discriminant rule
(DLDR) classifies x0 into Π1 if

(x0 − (x1N1
+ x2N2

)/2)T
S
−1
diag(x2N2

− x1N1
) < 0

and into Π2 otherwise, where Sdiag = diag(s1N , ..., spN) having sjN =
2

∑
i=1

Ni

∑
l=1

(xijl−xijNi
)2

/(N1 + N2 − 2) and xijNi
= ∑

Ni

l=1 xijl/Ni. On the other hand, diagonal quadratic discriminant

rule (DQDR) classifies x0 into Π1 if

(x0 − x1N1
)T

S
−1
diag(1)

(x0 − x1N1
)− (x0 − x2N2

)T
S
−1
diag(2)

(x0 − x2N2
)− log

{
det(Sdiag(2))

det(Sdiag(1))

}
< 0

and into Π2 otherwise, where Sdiag(i) = diag(s(i)1Ni
, ..., s(i)pNi

) having s(i)jNi
= ∑

Ni

l=1(xijl

−xijNi
)2 /(Ni − 1). We constructed the three discriminant rules by using the common data

sets of sizes (N1, N2) = (10, 6). In Table 2, we investigated those performances by using the
remaining samples of sizes (95 − N1, 33 − N2) = (85, 27) as test data sets. We observed that
the discriminant rule given by (15) showed an adequate performance.
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(15) DLDR DQDR

1-e(2|1) 75/85 (=0.882) 63/85 (=0.741) 76/85 (=0.894)

1-e(1|2) 27/27 (=1.0) 24/27 (=0.889) 24/27 (=0.889)

Table 2. The correct discrimination rates, by (15), DLDR and DQDR, for test data sets
consisting of 85 samples from Π1 and 27 samples from Π2.

5. Variable selection for high-dimension, low-sample-size data

Suppose we have two independent and p-dimensional populations, Πi, i = 1, 2, having
unknown mean vector µi = (µi1, ..., µip)

T and unknown positive-definite covariance matrix
Σi for each i. We do not assume Σ1 = Σ2. We consider an effective methodology to select a
significant set of associated variables from among high-dimensional data sets. That is, we
consider testing the following hypotheses simultaneously:

H0j : µ1j = µ2j vs. H1j : µ1j �= µ2j for j = 1, ..., p. (16)

Our interest is to select a set of significant variables such that D = {j : µ1j �= µ2j}. Assume
that |D| = S for some S ≥ 1, where |D| denotes the number of elements in set D. A variable
selection procedure D̂ maps the data into subsets of {1, ..., p}. We are interested in designing
D̂ ensuring that both the asymptotic family-wise error rate (FWER) is 0, i.e.,

P(|Dc ∩ D̂| �= 0) → 0, (17)

and the asymptotic average power (AP) is 1, i.e.,

|D ∩ D̂|
S

p→ 1 when min
j∈D

|µ1j − µ2j|2 > δ, (18)

where δ (> 0) is a prespecified constant. When S is bounded (< ∞), one can modify (18) by

P(D ⊆ D̂) → 1 when min
j∈D

|µ1j − µ2j|2 > δ.

We note that the assertion (18) does not consider the case when min
j∈D

|µ1j − µ2j|2 = δ.

5.1 Variable selection procedure for HDLSS data

Let σi = max1≤j≤p σ(i)j (i = 1, 2), where σ(i)j, j = 1, ..., p, are diagonal elements of Σi. We

assume that σ(i)j < ∞ for i = 1, 2; j = 1, ..., p, and Eθ{exp(t|xijl − µij|/σ1/2
(i)j

)} < ∞, i =

1, 2; j = 1, ..., p, for some t > 0. Then, for testing the hypotheses (16), we take samples,
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xi1, ..., xini
, of size

ni ≥
(log p)1+ζ

δ
(19)

from each Πi (i = 1, 2), where ζ ∈ (0, 1] is a chosen constant. Let xil = (xi1l , ..., xipl)
T , l =

1, ..., ni. Calculate Tj(n) = x1jn1
− x2jn2

for j = 1, ..., p, where xijni
= ∑

ni

l=1 xijl/ni for each Πi.
Then, test the hypothesis for j = 1, ..., p, by

rejecting H0j ⇐⇒ |Tj(n)| >
√

δ. (20)

Let D̂ = {j | rejecting H0j}. Then, from Theorem 5.1 given in Aoshima and Yata (2011), we
can claim the following theorem.
Theorem 5.1. The test given by (20) with (19) has as p → ∞ that

P(|Dc ∩ D̂| �= 0) → 1 ;

|D ∩ D̂|
S

p→ 1 when min
j∈D

|µ1j − µ2j|2 > δ. (21)

One would be interested in a two-stage variable selection procedure so as to provide screening
of variables in the first stage. We consider selecting a significant set of associated variables
from among a set of candidate variables in the second stage. Aoshima and Yata (2011)

proposed the following effective methodology:

[Two-stage variable selection procedure]

(Step 1) Choose a pilot sample size m such as m = O(log p) and m → ∞ as p → ∞. Take pilot
samples xil , l = 1, ..., m, of size m from each Πi (i = 1, 2). Calculate Tj(m) = x1jm − x2jm for
j = 1, ..., p, where xijm = ∑

m
l=1 xijl/m for each Πi. Then, provide screening of variables by

D̃ = {j | |Tj(m)| >
√

δ} (22)

for a set of candidate variables. Let S̃ = |D̃|. Define the additional sample size for each Πi

by

N =
[max{(log S̃)1+ξ , (log p)ε}

δ

]
+ 1, (23)

where ξ ∈ (0, 1] and ε ∈ (0, 1] are chosen constants.

(Step 2) Regarding j ∈ D̃, take new samples xijl , l = m + 1, ..., m + N, of size N from each Πi.

Calculate Tj(N) = x1j(N) − x2j(N), where xij(N) = ∑
m+N
l=m+1 xijl/N, j ∈ D̃ for each Πi. Then,

test the hypothesis by

rejecting H0j ⇐⇒ |Tj(N)| >
√

δ (24)

for j ∈ D̃, and define

D̂ = {j ∈ D̃ | rejecting H0j}. (25)

Select the variables regarding D̂.

28 Prostate Cancer – From Bench to Bedside

www.intechopen.com



Effective Methodologies for Statistical Inference on Microarray Studies 17

From Theorem 5.2 in Aoshima and Yata (2011), we can claim the following theorem.
Theorem 5.2. The two-stage variable selection procedure, (22) and (25), given by (24) with (23) has
(21) as p → ∞.

5.2 Demonstration

We analyzed the gene expression data of Prostate Cancer that were given by Singh et al. (2002).
The data took a pre-processing given by Jeffery et al. (2006). The data set consisted of 12600 (=
p) genes and two groups, Π1: Normal Prostate (50 samples) and Π2: Prostate Tumors (52
samples).

5.2.1 Variable selection procedure

We set δ = 1.5. Our goal was to find variables j’s such that |µ1j − µ2j|2 > 1.5. We chose the
pilot sample size for each Πi as m = 18 (= O(log p)). Then, we took the first 18 samples from

each Πi as pilot samples, which are given in Table 3.

Π1: Normal Prostate Π2: Prostate Tumors

j\l 1 · · · 18 1 · · · 18

1 6.776 · · · 7.017 6.888 · · · 6.905
...

...
...

...
...

...
...

...
...

...
12600 3.050 · · · 3.612 3.097 · · · 3.549

Table 3. Pilot samples, xijl (p = 12600, m = 18)

We considered screening variables by D̃ = {j| |x1jm − x2jm|2 > 1.5}. Then, we obtained a set

of candidate variables as D̃ = {192, 198, 200, ..., 12153, 12156, 12432} with S̃ = |D̃| = 160. We
set (ξ, ε) = (1.0, 1.0). According to (23), the additional sample size for each Πi was given by

N =
[max{(log S̃)1+ξ , (log p)ε}

δ

]
+ 1 = 18.

Regarding j ∈ D̃, we took additional samples xijl , l = m + 1, ..., m + N, of size N = 18 from
each Πi, which are given in Table 4.

Π1: Normal Prostate Π2: Prostate Tumors

j\l 19 · · · 36 19 · · · 36

192 9.859 · · · 8.973 9.338 · · · 10.212
198 8.622 · · · 7.077 6.120 · · · 7.724

...
...

...
...

...

12432 9.884 · · · 9.091 8.00 · · · 9.388

Table 4. Additional samples, xijl , j ∈ D̃ (S̃ = 160, N = 18)

We selected significant variables by D̂ = {j ∈ D̃| rejecting H0j} = {j ∈ D̃| |x1j(N)− x2j(N)|2 >

1.5} and finally obtained

D̂ = {556, 7412, 8662, 11552} (26)
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with Ŝ = |D̂| = 4. For j ∈ D̂, we calculated x̄ijm+N = ∑
m+N
l=1 xijl/(m + N) for each Πi and

obtained estimates of µ1j − µ2j for j ∈ D̂ as

{x̄1jm+N − x̄2jm+N | j ∈ D̂} = {−1.511,−1.472,−1.79,−2.148}.

The required sample-size in the two-stage variable selection procedure was m + N = 36 for
each Πi. On the other hand, the required sample-size in the single variable selection procedure
given by (20) with (19) was ni ≥ (log p)1+ζ/δ = 59.43 with ζ = 1.0. The two-stage variable
selection procedure allows the experimenter to reduce the cost of sampling in the second stage.

5.2.2 Classification after variable selection

In Section 4, we considered a two-stage discriminant procedure in HDLSS data situations.
In some cases the experimenter would encounter the situation that the required sample
size, Ni, is much larger than the available sample size if ∆⋆ = ||µ1 − µ2||2 + (tr(Σ1) −
tr(Σ2))

2/ maxi=1,2{2tr(Σi)} is much smaller than tr(Σ2
i )’s. In that case, we recommend that

the experimenter should consider the classification based only on the selected variables. We
selected a set of significant variables by D̂ = {556, 7412, 8662, 11552} that was given in (26).
We set n1 = n2 = m + N = 36, where m and N were given in Section 5.2.1. Let us write the
selected 4-variable data as xil = (xi556l , xi7412l , xi8662l , xi11552l)

T, i = 1, 2, for the l-th sample.
Then, we considered a typical quadratic discriminant rule that classifies x0 into Π1 if

(x0 − x1n1
)T

S
−1
1n1

(x0 − x1n1
)− log

{det(S2n2
)

det(S1n1
)

}
< (x0 − x2n2

)T
S
−1
2n2

(x0 − x2n2
), (27)

and into Π2 otherwise, where x0 is an observation vector with respect to the 4 variables on
an individual belonging to Π1 or to Π2, xini

= ∑
ni

l=1 xil/ni and Sini
= ∑

ni

l=1(xil − xini
)(xil −

xini
)T/(ni − 1), i = 1, 2.

We compared the discriminant rule given by (27) after variable selection with those given
by (10) with γ = 0, DLDR and DQDR. Note that the three competitors were constructed by
using the original (12600-variable) data without variable selection. In Table 5, we investigated
those performances by using test data sets consisting of 50 − n1 = 14 remaining samples
from Π1 and 52 − n2 = 16 remaining samples from Π2. We observed that the discriminant
rule given by (10) with γ = 0 showed a bad performance for x0 classified into Π1:
Normal Prostate. We inspected the condition of Theorem 4.1 for the data sets and found
that maxi=1,2{tr(Sini(1)Sini(2))}/(∆̂2

⋆
mini=1,2{ni}) = 0.15 according to Remark 4.4 so that

maxi=1,2{tr(Σ2
i )}/(∆2

⋆
mini=1,2{ni}) seems not to be sufficiently small. This may be a reason

why Theorem 4.1 is not applicable to the present data sets. On the other hand, we observed
that the discriminant rule given by (27) after variable selection showed a good performance
when compared to the competitors. We recommend that the experimenter should consider

(27) after variable selection (10) with γ = 0 DLDR DQDR

1-e(2|1) 10/14 (=0.714) 4/14 (=0.286) 4/14 (=0.286) 4/14 (=0.286)

1-e(1|2) 15/16 (=0.938) 15/16 (=0.938) 15/16 (=0.938) 15/16 (=0.938)

Table 5. The correct discrimination rates by (27) after variable selection, (10) with γ = 0,
DLDR and DQDR for test data sets consisting of 14 samples from Π1 and 16 samples from
Π2.
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the classification after variable selection if ∆̂⋆ is not large enough to claim the condition of
Theorem 4.1 or to claim the assertion in Theorem 4.4 within the available sample size.
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