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1. Introduction

Acoustic ultrasonic measurements are widespread and commonly use transducers exhibiting
resonant behaviour due to the piezoelectric nature of their active elements, being designed
to give maximum sensitivity in the bandwidth of interest. We present a characterisation of
such transducers that provides both magnitude and phase information describing the way in

which the receiver responds to a surface displacement over its frequency range. Consequently,
these devices work efficiently and linearly over only a very narrow band of their overall
frequency range. In turn, this causes phase and magnitude distortion of linear signals. To
correct for this distortion, we introduce a software technique, which considers only the input
and the final output signals of the whole system which is therefore generally applicable to any
acoustic system. By correcting for the distortion of the magnitude and phase responses, we
have ensured the signal seen at the receiver replicates the desired signal. We demonstrate a
bandwidth extension on the received signal from 60-130 kHz at -6dB to 40-200 kHz at -1dB
in a test system. The linear chirp signal we used to demonstrate this method showed the
received signal to be almost identical to the desired linear chirp. Such system characterisation
will improve ultrasonic techniques when investigating material properties by maximising the
accuracy of magnitude and phase estimations.

Piezoelectric transducers are used both as transmitters and receivers in many ultrasonic
applications, including non-destructive testing, underwater sonar, radar and medical imaging
(Blitz & Simpson, 1996; Urick, 1983; Greenleaf, 2001; Rihaczek, 1969). The transducer outputs
are, however, significantly affected by the coupling between the transducer and the other
components (e.g. the amplifier, and medium in which the energy propagates) (Fano, 1950)
and the bandwidth of the system is also limited by the electro-acoustic performance of the
transducers. A number of hardware techniques have been developed towards achieving a

flat, broadband frequency response, using matching networks (Schmerr, 2006; Youla, 1964).
The load is usually modeled as a resistor and capacitor (Reeder, 1972) or as a simple
four-element circuit (Anderson, 1979). The problem with this approach is that, typically, the
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frequency responses of piezoelectric elements have resonant characteristics, which are difficult
to accurately model using the passive component matching networks normally used. In most
cases, improved results can be obtained if the network suggested by one of the techniques
listed in (Schmerr, 2006; Youla, 1964; Reeder, 1972; Anderson, 1979) is used as a starting point
for the hardware optimization approach, which in turn accounts for frequency dependent
radiation in the equivalent circuits of the matching networks.

Recently, Doust (Doust, 2001) and Dix (Dou, 2000) introduced a hardware technique, in
which they demonstrate improved overall phase linearity, efficiency and amplitude response
of transfer functions, in an electro-acoustic system. Doust and Dix (Doust, 2001) sought
to improve the accuracy of wave shape measurements and transducer response through
compensating their system, comprising amplifiers, filters, and analog-to-digital converters.
This was achieved by adding electronic circuits between the amplifier and transducer, and
removing phase and amplitude distortion over a frequency spectrum, through a technique
they refer to as equalisation. Distortion of the output signal in ultrasonic systems may
be caused by many factors within any of the elements of the whole system, not only the
transducer elements alone. Often the physical value (e.g. pressure) and the distorted
waveform resulting from the conversion processes are repetitive with respect to time, for
example current waveforms in alternating current power systems. At any frequency, the

transducer, amplifier, filter, or A/D converter can distort the signals introducing errors in the
amplitude, phase or both, which can in turn introduce distortion in reconstructed waveforms.
The hardware equalisation of Doust (Dou, 2000) achieves this by taking into account all the
subsystems and equalising each subsystem in turn.

This hardware method requires a knowledge of the transfer functions of all the components
in the system, which maybe difficult to determine (e.g. transfer function of the medium). On
the other hand, the software approach, described below, achieves the same but in a single
operation, without knowledge of the transfer functions. Consequently, it has the potential to
compensate amplitude and phase distortions in whole systems. In essence, we consider the
overall system as a ’black-box’ and attempt to correct the output by compensating the input
on the basis of the system phase and magnitude frequency-responses.

2. Methods

This chapter describes a software method and associated procedures for characterising a
system in terms of its magnitude and phase response with respect to frequency; this is then
applied experimentally to improve the effective bandwidth of the whole system. The need
for transducer characterisation is highlighted through the realisation that the performance
of a system may not be known and that assumptions are often made regarding the signal
being injected into the medium. Our strategy is to ensure signals with precisely known
amplitude and phase are used as inputs to subsequent signal processing methods. Tone burst
signals, used for the sensor characterisation, were produced using a piezoelectric transducer
driven by an Agilent 33120A function generator. To demonstrate this methodology as a
means of improving bandwidth, a series of measurements were performed using ultrasound
transducers developed by Alba Ultrasound Ltd. These underwater transducers were designed
to have a wide bandwidth with a centre frequency between 100-130 kHz, operating effectively
as both transmitters and receivers of ultrasound with 92 mm size diameter and a beam angle
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of 10◦ on the primary lobe. The transmitter was driven directly with a 10 V peak-to-peak,
10-cycle tone burst made over a range of frequencies from 40 to 200 kHz sampled at
10MHz and the receiver was connected directly to the oscilloscope. A total of 10000 points
were recorded for each waveform at each measurement frequency. A transmitter-receiver
separation of approximately 0.5 m was selected as shown in figure 1. We decided to take
2500 samples for each tone-burst to ensure 4 kHz resolution. With this window length and
frequency resolution, two sets of 41 signals each starting at 40 kHz, and rising in steps of 4
kHz, to 200 kHz were generated. Using frequencies at this step interval enables the frequency

Fig. 1. Schematic diagram of experimental setup.

to be determined exactly on a DFT frequency bin and hence, give an accurate measure and
minimise spectrum leakage of the response at that frequency. Furthermore, the length of

signals chosen was short enough to avoid interference from multi-path reflections from tank
walls. Both sine and cosine signals were generated at each of the corresponding frequencies.
These were designated r0.txt and i0.txt for the real (cosine) and imaginary (sine) signals for the
first frequency set0, for example. The sets were sequentially numbered from 0 to 40. Examples
of the received signals obtained at 48 kHz and the 120 kHz are shown in figure 2a and 2b,
respectively. In order to provide a more accurate estimation of the spectrum, we excluded
samples affected by the "switch on" and "switch off" of the transducer (see figure 2), taking
700 samples either side of the centre of this 2500 samples long received ’tone-burst’ signal for
our analyses. This provides 1400 samples about the centre of the ’tone burst’ time window
avoiding the effects of ringing and reflections. Consequently, we designed two sets of 41 test
signals (0...40) each, real and imaginary, in steps of 4 kHz starting at 40 kHz and ending at
200 kHz. Each test signal was transmitted as a continuous sine and cosine wave ’tone-burst’
having a 250µs duration. The discrete Fourier Transform (DFT) of the centre portion (1400
samples) of each received signal was performed.

3. Transducer characterisation and bandwidth enhancement

Having obtained this set of 41 values (via DFT of the sine and cosine sets) over the frequency
range, we calculated the response (41 frequency bins) of the system in terms of magnitude

and phase with respect to the frequency, as shown in figures 3a and 3b, respectively. We can
see in figure 3a, there is a 35 dB variation in magnitude about the centre frequency of 100
kHz. Similarly, the phase in figure 3b is changing rapidly in the centre band of frequencies.
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(a) Received signals in the lower transducer sensitivity
(48 kHz).
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(b) Received signals in the higher transducer sensitivity
(120 kHz).

Fig. 2. Examples of received signals.

Using the magnitude and phase responses, described above, the signals were compensated
in the time domain in a way similar to inverse filtering, as described below. As a check,
the received signals were then used to obtain new sets of magnitude and phase responses as
shown in figures 4a and 4b, respectively. Variations in the magnitude and phase responses

can be seen to be drastically reduced, following our compensation based on characterising the
whole system, magnitude and phase variations being reduced from 35 to 0.6 dB and from 90
to 6 degrees, respectively, resulting in an improvement in the effective bandwidth from 60-130
kHz at -6 dB to 40-200 kHz at -1 dB.

4. Linear chirp compensation

To test the compensated system performance, a linear chirp signal was used. As the

characterisation used 41 discrete points in the frequency band, it was necessary to interpolate
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(a) Plot of the 41 magnitude responses related to the 41
transmitted frequencies (35dB variation).
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(b) Plot of the 41 phase responses related to the 41
transmitted frequencies (90 degree variation).

Fig. 3. Magnitude and phase responses.

the magnitude and phase responses between these discrete points at all the desired
frequencies; we used the Matlab ’interp1’ function with ’cubic’ interpolation. For the purposes
of the calibration, 2500 points were used to generate the chirp signal at a sampling frequency
of 10 MHz (as described above). The 41 points of the magnitude and phase responses were
interpolated to 2500 values as follows:

newA = interp1(t, Trans f erHR(2, :)′, newt,
′ cubic′). (1)

where newA is the amplitude at the required new points, newt is the time of each of the 2500
new samples points, t is the time at the original 41 points and TransferHR(2,:) contains the
original ’41 value’ magnitude response. A similar calculation was performed for phase using

newP = interp1(t, Trans f erHR(3, :)′, newt,
′ cubic′). (2)
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(a) Plot of the 41 magnitude responses related to
the compensated transmitted 41 frequencies (0.6 dB
variation).
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(b) Plot of the 41 phase responses related to the
compensated transmitted 41 frequencies (6 degrees
variation).

Fig. 4. Magnitude and phase responses after compensation.

where newP was an array of 2500 phase values, and TransferHR(3,:) contains the original
’41values’ phase response. Consequently, the compensation for both magnitude and phase
was achieved in a single operation in which, the amplitude of the signal will be multiplied
by the factor "max(newA)/newA" and the phase by "−newP". To validate the method, we
selected a broadband chirp signal having a frequency range comparable to the transducer
response. A Gaussian window was applied to the transmitted signal to minimise the
unwanted ’turn on’, ’turn off’ signals, seen originally in figure 2. These signals are shown
in figures 5a and 5b after applying a digital low pass Butterworth filter (0-400 kHz) to
eliminate undesirable high frequencies. Our results show a significant difference in the signal
excitation (figure 5b) to the one transmitted before (figure 5a). The signal in figure 5b was
compensated in relation to the magnitude and phase response ’transferHR’ developed as a
result of the software characterisation. Figure 6a shows the signal received when the original

Gaussian chirp (figure 5a) is transmitted. When the compensated signal was applied to
the transmitter (figure 5b), a Gaussian chirp signal was received (figure 6b) similar to the
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(a) Original
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(b) Compensated

Fig. 5. Transmitted gaussian chirps signals [40-200 kHz].

original ’Gaussian’ chirp (figure 5a). Thus, the compensation technique can be seen to be
effective. An amplitude comparison was undertaken using the envelope of the signals. The
envelopes were determined by transforming a time signal into an analytic signal using the
Hilbert transform and determining the absolute value of the analytic signal. In figure 7a,
the solid curve represents the Hilbert Transform (HT) of the original transmitted signal and
the dashed curve represents the HT of the corresponding received signal. Figure 7b shows the
HT of the transmitted original signal (solid curve) and the HT of the signal received, following
compensated transmission (dashed curve), showing the signals to be almost identical.

5. Results and discussion

In this chapter, we demonstrate a novel software method to improve whole ultrasonic
transmitting-receiving systems. Distorting the input signal, on the basis of characterising the
magnitude and phase response of the whole system, enabled us to acquire desired signals at
the output with little distortion, using piezoelectric transducers in a broadband transmitting
and receiving system. Using a linear chirp as a test signal, we validated our method over a
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(a) Original
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(b) Compensated

Fig. 6. Received gaussian chirps signals [40-200 kHz].

range of frequencies. The results showed close resemblance between the desired and received
signals. Our characterisation approach has enabled the effective bandwidth of the system,
as a whole, to be significantly improved from 60-130 kHz at -6dB to 40-200 kHz at -1dB.
Additionally, such system characterisation is necessary when using ultrasonic techniques
to investigate material properties; it is necessary to control signal properties, otherwise the
signals will not be sensitive enough to the analysis necessary to identify changes in material
properties in terms of changes in their magnitude and phase, for example. Such signals
are intended for use in experiments leading to techniques for improved imaging, physical
properties characterisation of materials and investigation of material heterogeneity.

The presented technique characterises the effect of the transmission and reception process of
acoustic transducers. This enables further measurements to be corrected to remove the effects
of the transducers and improve analysis of the wave propagation characteristics.
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(a) The Hilbert Transforms of the original transmitted
signal (solid curve) and original received signal (dashed
curve).
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(b) The Hilbert Tranform of the original transmitted
signal (solid curve) and the signal received following
compensated transmission (dashed curve).

Fig. 7. Compensating the transmitted signal results in the receive signal being almost
identical to that originally transmitted (i.e. the desired signal).

83Bandwidth Enhancement: Correcting Magnitude 
and Phase Distortion in Wideband PiezoelectricTransducer Systems

www.intechopen.com



10 Will-be-set-by-IN-TECH

6. Acknowledgments

This work was undertaken in the Ultrasound Research Laboratory of the British Geological

Survey as part of the Biologically Inspired Acoustic Systems (BIAS) project that is funded
by the RCUK via the Basic Technology Programme grant reference number EP/C523776/1.
The BIAS project involves collaboration between the British Geological Survey, Leicester
University, Fortkey Ltd., Southampton University, Leeds University, Edinburgh University
and Strathclyde University.

The work of David Robertson and Victor Murray of Alba Ultrasound Ltd. in the design of the
wideband piezo-composite transducers is gratefully acknowledged.

7. References

Blitz, J. & Simpson, G. (1996). Ultrasonic methods of non-destructive testing, Chapman and

Hall, (Ed.), New York.
Urick, R. J.(1983). Principles of Underwater Sound, McGraw-Hill, (Ed.), New York.
Rihaczek, A. W.(1969). Principles of high resolution radar, McGraw-Hill, (Ed.), New York.
Greenleaf, J. F (2001). Acoustical medical imaging instrumentation, In: Encyclopedia of

Acoustics, Crocker, M. J., (Ed.), volume 4, John Wiley and Sons, New York.
Fano, R. M. (1950). Theoretical Limitations of The Broadband Matching of Arbitrary

Impedances. Franklin Institute, Vol. 244, page numbers (57-83).
Schmerr, L.W.; Lopez-Sanchez, A & Huang, R.(2006) Complete Ultrasonic transducer

characterization and use for models and measurements. Utrasonics, Vol. 44, page
numbers (753-757).

Youla, D.C. (1964) A new theory of broadband matching. IEEE Trans. Cir. Theory, Vol. 11, page
numbers (30).

Reeder, T.M. Schreve, W.R & Adams, P.L. (1972)A New Broadband Coupling Network for
Interdigital Surface wave Transducers. IEEE Trans. Sonics and Ultrasonics, Vol. 19,
page numbers (466-469).

Anderson, J. & Wilkins, L.(1979) The design of optimum Lumped Broadband Equalizers for

ultrasonics Transducers. J. Acous. Soc, Vol. 66, page numbers (629).
Doust, P.E. & Dix, J.F.(2001)The impact of improved transducer matching and equalisation

techniques on the accuracy and validity of underwater acoustic measurements. In:
Acoustical Oceanography, Proceeding of Institute of acoustics, Editor: T.G Leighton,
G.J Heald, H. Griffiths and G. Griffiths, volume 23 Part2, pages 100-109.

Doust, P.E. (2000) Equalising Transfer Functions for Linear Electro-Acoustic Systems UK Patent
Application, number 0010820.9.

Rihaczek, A. W.(1969). Principles of high resolution radar, McGraw-Hill, (Ed.), New York,
pages (15-20).

84 Advances in Piezoelectric Transducers

www.intechopen.com



Advances in Piezoelectric Transducers

Edited by Dr. Farzad Ebrahimi

ISBN 978-953-307-931-8

Hard cover, 128 pages

Publisher InTech

Published online 25, November, 2011

Published in print edition November, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The piezoelectric transducer converts electric signals into mechanical vibrations or vice versa by utilizing the

morphological change of a crystal which occurs on voltage application, or conversely by monitoring the voltage

generated by a pressure applied on a crystal. This book reports on the state of the art research and

development findings on this very broad matter through original and innovative research studies exhibiting

various investigation directions. The present book is a result of contributions of experts from international

scientific community working in different aspects of piezoelectric transducers. The text is addressed not only to

researchers, but also to professional engineers, students and other experts in a variety of disciplines, both

academic and industrial seeking to gain a better understanding of what has been done in the field recently,

and what kind of open problems are in this area.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Said Assous, John Rees, Mike Lovell, Laurie Linnett and David Gunn (2011). Bandwidth Enhancement:

Correcting Magnitude and Phase Distortion in Wideband Piezoelectric Transducer Systems, Advances in

Piezoelectric Transducers, Dr. Farzad Ebrahimi (Ed.), ISBN: 978-953-307-931-8, InTech, Available from:

http://www.intechopen.com/books/advances-in-piezoelectric-transducers/bandwidth-enhancement-correcting-

magnitude-and-phase-distortion-in-wideband-piezoelectric-transducer



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


