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1. Introduction 

Diabetes is a chronic disease caused by the inability to produce enough insulin by the 

pancreatic ǃ cells or inappropriately use insulin by the peripheral tissues, and therefore, 

patients with diabetes are unable to control blood glucose to a normal level. Along with the 

industrialization and economic development, diabetes has gradually become a global health 

challenge as manifested by that it affects 5-10% of the world population (Home, 2003). For 

example, in United States alone, approximately 21 million children and adults (around 7% 

of the total population) have diabetes. Despite the significant advances in the development 

of therapeutic approaches for this devastating disease, the long-term outcome of diabetes, 

however, remains unsatisfied, as many complications could occur during the process of 

diabetes. Transient improper control of blood glucose level will result in the dangerous 

short-term complications such as diabetic ketoacidosis, nonketotic hyperosmolar coma, and 

hypoglycemia., while the life threading condition is the development of various long-term 

complications such as cardiovascular disease, nerve damage, chronic renal failure, retinal 

damage, and poor wound healing (Zhong et al., 2011). Given the fact that the administrated 

exogenous insulin cannot regulate glucose levels as accurately as the endogenous insulin 

released by the functioning pancreatic islets, diabetic patients are highly prone to the 

development of those complications. For example, patients with diabetes are 17 times more 

prone to kidney diseases (World Health Organization (WHO), 1994; Home, 2003), and diabetes 

also has become the most common cause of blindness in developed countries as manifested by 

that nearly half of the diabetic patients developed retinopathy (Amos et al., 1997).  

There are two types of diabetes, type1 and type 2. Type 1 diabetes (T1D), also called Insulin 

Dependent Diabetes Mellitus (IDDM) or juvenile diabetes, which is characterized by the 

selective destruction of the insulin-secreting pancreatic ǃ cells by the autoreactive immune 

cells. Therefore, T1D is characterized by the absolute deficiency of insulin, and patients 

require injection of exogenous insulin for survival, which renders the blood glucose unable 
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to be regulated at a perfect level, leading to the persistent epigenetic changes which 

predispose to the change of gene expression and serve as risk factors for diabetic 

complications (El-Osta et al., 2008). Therefore, diverse complications are easily developed in 

patients with T1D. In contrast, type 2 diabetes is relevant to insulin resistance, usually 

caused by obesity. Insulin secretion in patients with type 2 diabetes could be normal, 

inadequate, or higher, but the peripheral tissues such as liver, muscle, and fat, have a low 

response to insulin.  

It is believed that both genetic and environmental factors are implicated in the susceptibility 

of T1D.  As one of the polygenic diseases, vulnerability to T1D involves more than 20 

genetic intervals, among which loci within the HLA account for the most of genetic 

susceptibility (Bach et al., 2001; Onengut-Gumuscu & Concannon, 2002; Pociot & 

McDermott, 2002). In addition to genetic factors, a variety of environmental factors can 

affect T1D susceptibility. A majority of T1D are believed to be triggered by infections such 

as viral infection. Although less commonly, other environmental factors such as stress and 

certain chemical or drug exposure also appeared to be triggers for T1D. 

Despite of extensive studies, the underlying mechanism of T1D is still not fully elucidated. 

Decades of clinical and experimental studies indicate that adaptive immune responses play 

a central role in the pathogenesis of T1D in both humans and NOD mice (Roep, 2003). As 

the major effector cells for ǃ-cell destruction, T cells and T-cell-mediated adaptive immunity 

are considered to be the major factor for T1D. Autoreactive CD8+ T cells are confirmed to be 

critical for T1D pathogenesis in both patients and experimental animal models (Bottazzo et 

al., 1985; Conrad et al., 1994). Other than CD8+ T cells, self-antigen specific CD4+ T cells can 

also promote the production of autoantibodies against ǃ cells by B lymphocytes. Therefore, 

most T1D related studies have been focused on adaptive immunity, while the role of innate 

immunity is overshadowed. Recently, accumulating evidence indicates that innate 

immunity also plays an essential role in the initiation and progression of T1D. For example, 

in addition to T cells, innate immune cells such as dendritic cells (DCs), macrophages, and 

natural killer (NK) cells are highly enriched in the insulitis lesion during diabetogenic 

process (Pietropaolo et al., 2007; Katz et al., 1995a; Rosmalen et al., 2000). Depletion of DCs 

and macrophages prevents the infiltration of lymphocytes into the pancreatic islets, and 

deletion of macrophages by silica almost completely prevents the development of diabetes 

and insulitis in diabetes-prone NOD mice and BB (BioBreeding) rats (Jun et al., 1999c; Lee et 

al., 1988d; Lee et al., 1988a; Oschilewski et al., 1985a). Furthermore, even temporary deletion 

of DCs and macrophages by clodronate-loaded liposomes for one week can tremendously 

postpone the onset of diabetes (Nikolic et al., 2005). Studies from our and other groups 

further provided strong evidence showing that diverse innate molecules such as high 

mobility group protein B1 (HMGB1) and heat shock proteins (HSPs) or innate receptors 

(e.g., Toll-like receptors and RAGE) are involved in T1D pathogenesis. Therefore, innate 

immunity has a key effect on the etiology of T1D.  

2. Innate immunity and adaptive immunity 

Given the fact that T1D is an autoimmune disorder, it would be logic to first introduce the 

immune system and its relevant defensive mechanisms, the innate and adaptive immune 

response.  The immune system is defined as the collection of organs, tissues, cells, and 

molecules that protects host from various environmental threats such as tumor cells, 
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pathogens, toxins, and other foreign molecules. It includes thymus, spleen, lymph nodes, 

bone marrow, tonsils, and various cells and molecules such as white blood cells, antibodies, 

and cytokines. The immune response is the defensive mechanism of immune system to 

protect body against those invasions, which is built on two separate foundation pillars: the 

innate and adaptive immune response. The adaptive immune response is an antigen-

specific process by which the immune system discriminates non-self antigens. As suggested 

by its name, adaptive immune response is highly adaptable, antigen-specific, but its 

response is relatively slow. It recognizes an unlimited number of antigens by antigen 

receptors or immunoglobulins which went through somatic hypermutation to acquire their 

high diversity. In contrast, the innate immune response is the primary defensive 

mechanism against environmental threats in a non-specific manner, which is evolutionally 

older than its counterpart, the adaptive immune system. The innate immune system can be 

found in all classes of plants and animals and is the dominant immune system in insects, 

plants, fungi, and multicellular organisms. It distinguishes invading molecules from host 

component by recognizing conserved constituents of foreign molecules. The differences and 

similarities between innate and adaptive immune response are described in Table 1.  
 

Properties innate immunity adaptive immunity 

Specificity non-specific antigen specific 

Action time quick 
slow,2-6 days later than innate 
immune response 

Persistence short long 

Memory no yes 

Antigens 
conserved microbe-specific 
molecules, such as LPS, glycans, 
microbial DNA 

divers proteins, peptides, and 
carbohydrates 

Receptors germ-line encoded 
encoded in gene segments, its 
diversity relies on rearrangement 

Table 1. Comparison of innate and adaptive immunity 

The major function for the immune system is to defend against environmental threats and 
protect the body against disease by distinguishing and eliminating foreign or dangerous 
substance including pathogens, tumor cells and even transplanted organs. When 
encountering antigens derived from the host, the immune system in a normal individual is 
able to recognize them as self and decide not to respond. Dysfunction of the immune system 
may cause various immune disorders such as immunodeficiency and autoimmune diseases. 
Immunodeficiency is manifested by unable to respond to foreign or harmful antigens which 
results in both opportunistic and normal infections. In contrast, an autoimmune disease is 
caused by interpreting self-antigens as foreign or harmful antigens. In this case, the immune 
system in the patients cannot tell the difference between body’s own tissue and foreign 
antigens, resulting in an immune response that destroys their own tissues and cells. There 
are over 80 different types of autoimmune disorders including type 1 diabetes, systemic 
lupus erythematosus, multiple sclerosis, Grave’s disease, rheumatoid arthritis and so on. 
Autoimmune responses can be initiated by the following conditions: (1) the release of an 

www.intechopen.com



 
Type 1 Diabetes – Pathogenesis, Genetics and Immunotherapy 

 

140 

antigen that is usually expressed in a specific area and is not exposed to the immune system. 
For example, the fluid in the eyeball contains some antigens that are hidden from the 
immune system. Once the fluid is released into the bloodstream by injury, the immune 
system will recognized them as foreign antigens and react against them; (2) An antigen is 
altered. For example, antigens within the body can be altered by infections, drugs, and 
radiations. The altered antigens are then recognized by the immune system to initiate an 
autoimmune response; (3) Exposure of a foreign antigen with a similar conformation to the 
body’s natural antigen may trigger an autoimmune response against the body’s antigen as 
well as the foreign antigen; (4) Malfunction of the immune cells. For example, cancerous B 
lymphocytes may produce abnormal antibodies that attack body’s own antigens (Breecher & 
Dworken, 1986).  
Since T1D is caused by the autoimmune responses that progressively destroy the insulin 
producing ǃ cells, the role of adaptive immune response has long been proposed in T1D 
pathogenesis. The idea that T1D is an autoimmune disease first came from the observation 
that it usually occurred in association with other classic autoimmune diseases such as 
Grave’s disease, hypothyroidism, Addison’s disease and pernicious anemia (Eisenbarth, 
1984), and histological examination showed a large amount of T cells in the insulitis lesion 
(Gepts, 1965). Further studies confirmed that insulitis happens only in the islets containing ǃ 
cells, indicating that the autoimmune reaction in T1D is driven by ǃ-cell-derived antigens 
(Roep, 2003). Autoreactive T-cell is believed to be the major mediator of ǃ-cell destruction in 
both primary T1D and recurrent ǃ-cell loss after islet transplantation (Pinkse et al., 2005). 
Circulating autoreactive T cells against different ǃ-cell-derived antigens were detected in 
newly-onset diabetic patients (Velthuis et al., 2010), suggesting its role in T1D development. 
Treatment of monoclonal CD3 antibody has been shown to be able to protect T1D patients 
from autoimmune mediated ǃ-cell destruction and preserve insulin production (Herold et 
al., 2002; Herold et al., 2009; Killestein, 2002). In addition, circulating autoantibodies against 
ǃ cells are produced by B lymphocytes, another important component of the adaptive 
immune system, have also been detected in T1D patient. Nevertheless, the production of 
autoantibodies seems to be a consequence of ǃ-cell destruction (Baekkeskov et al., 1982; 
Rodacki et al., 2006). Due to the fact that T-cell is the major effector cell in mediating ǃ-cell 
destruction, adaptive immune response in T1D has been extensively studied and its role in 
T1D pathogenesis has been well established. However, accumulating evidence suggests that 
innate immune response is also essential to the pathogenesis of T1D. 

3. Immune recognition of antigens 

Antigens can come from both environment and body’s own tissues. However, the immune 
system reacts only to foreign or harmful substances under physiologic conditions. This is 
because each individual has its own identification molecules expressed on the surface of all 
cells, and the immune system is able to identify them during the recognition process. Major 
histocompatibility complex (MHC) is the most important identification molecule. MHC 
molecule in humans is also called human leukocyte antigens (HLA), while MHC in mice is 
termed histocompatibility-2 (H-2) (Kumanovics et al., 2003). In an effort to be identified in a 
large population, almost every individual has a unique set of MHC molecules different from 
others. Therefore, MHC molecules have an extremely large population diversity (Borghans 
et al., 2004). The diversity of MHC molecules comes from: (1) the polygenic of MHC locus; 
(2) the high polymorphic MHC locus, each MHC locus has many, even hundreds of 
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different alleles; (3) the co-dominantly expression of MHC. Thus, the combination of MHC 
molecules in each individual is almost unique. After positive and negative selection, T cells 
are tolerant to cells with self MHC molecules and potent to attack cells possessing different 
MHC molecules (such as foreign cells and mutated cells). 
 

 

Fig. 1. Molecular Structure of MHC Class I: MHC class I protein is composed of two chains: 
ǂ chain and ǃ2 microglobulin. The ǂ chain consists of a transmembrane region and three 
extracellular domains: ǂ1, ǂ2, and ǂ3. MHC class I molecule is expressed on the membrane 
of all nucleated cells.  

MHC regions are divided into three classes: class I, class II, and class III (Newton et al., 

2004). MHC class I encodes heterodimeric peptide-binding proteins (the classical MHC class 

I molecules) and antigen-processing molecules (the non-classical MHC class I molecules). 

MHC class I protein has an immunoglobulin-like structure containing an ǂ chain and a ǃ2 

microglobulin. The ǂ chain consists of a transmembrane region and three extracellular 

domains (ǂ1, ǂ2, and ǂ3) (Figure 1). MHC class I molecule is expressed in all nucleated cells. 

It presents cytosolic peptide (including self peptides and viral peptides synthesized by own 

cells) that is anchored to a cleft formed by ǂ1 and ǂ2 to TCR on CD8+ cytotoxic T cells. 

MHC class II is responsible for encoding peptide-binding proteins (the classical MHC class 

II molecules) as well as molecules modulating antigen loading (the non-classical MHC class 

II molecules). The MHC class II molecule also has an immunoglobulin-like structure and 

consists of two chains, one ǂ chain and one ǃ chain (Figure 2). Each chain contains a 

transmembrane region and two extracellular domains (ǂ1 and ǂ2 in ǂ chain, ǃ1 and ǃ2 in ǃ 

 

 

Fig. 2. Molecular Structure of MHC Class II: MHC class II molecule has an 
immunoglobulin-like structure. It consists of one ǂ chain and one ǃ chain. Each chain 
contains a transmembrane region and two extracellular domains (ǂ1 and ǂ2 in ǂ chain, ǃ1 
and ǃ2 in ǃ chain). MHC class II protein is expressed on the membrane of APCs and is 
responsible for presenting extracellular antigens. 
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chain). The MHC class II protein is expressed on the membrane of antigen presenting cells 

(APCs). It loads processed extracellular peptide (e.g., peptides originating from microbes 

ingested in vesicles) on a cleft formed by ǂ1 and ǃ1 domain, and presents it to TCR on CD4+ 

helper T cells. MHC class III is responsible for encoding several secreted proteins such as 

complement components (C2, C4, and B factor), cytokines (TNFǂ, LTA, and LTB), and heat 

shock proteins. The function of MHC class III is different from class I and II, but MHC class 

III is located between them, so they are usually described together. In humans, the most 

intensely studied MHC class I genes are HLA-A, HLA-B, and HLA-C, while the most 

studied MHC class II genes are HLA-DP, HLA-DQ, and HLA-DR (Kindt et al., 2006). 

The recognition of adaptive immune system is based on the interaction of T cell receptor 

(TCR) and peptide-MHC (p-MHC) complex (Figure 3). TCR on T-cell membrane can only 

detect antigens presented on the surface of MHC molecules. The property of this recognition 

is called MHC restriction. TCR recognizes the residues on the peptide and residues from 

 

 

Fig. 3. Recognition of p-MHC by TCR: T cell cannot detect an antigen by itself. It can only 
recognize antigens presented by MHC on APC. APC uptakes foreign antigens and digests 
them into small peptides which are loaded onto the cleft of MHC molecules and then 
presented to TCR. Once they bind to p-MHC, TCR signal is transduced into T-cell via 
intracellular domain of associated CD3. T-cell is then activated and reacts to the invaders 
with corresponding antigen to clear them. 
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MHC molecules at the same time. TCR itself, however, lacks intracellular domain to 
transduce signal into T cells. On T-cell membrane, TCR forms a TCR/CD3 complex together 
with CD3. When binding to p-MHC, TCR signal is transduced into T cells via the 
intracellular domain of CD3 (Kuhns et al., 2006). 
TCR consists of two chains, the ǂ and ǃ chain. Each chain is composed of two regions, the 
N-terminal variable (V) region and the C-terminal constant (C) region (Kuhns et al., 2006; 
Deng & Mariuzza, 2007). TCR is encoded by several segments, V, D, J, and C. The C region 
is encoded by C segment, while the V region is determined by V, D, and J segment. The V, 
D, and J segment have numerous copies. Despite of sharing the same genome, different T-
cell clones have different TCR. The diversity of TCR originated from V region especially the 
complementary-determining regions (CDRs). Each TCR chain has three CDRs (CDR1, 
CDR2, and CDR3). CDR1 and CDR2 are encoded by V segment of the TCR gene, while 
CDR3 is generated from the V(D)J recombination (Vǂ and Jǂ segment recombination for ǂ 
chain; and Vǃ, D, and Jǃ segment recombination for ǃ chain) (Deng & Mariuzza, 2007; cha-
Orbea et al., 1989). The diversity of TCR is believed to be generated by the following 
mechanisms: (1) the combination of ǂ chain and ǃ chain (each chain has two copies 
originated from father and mother, respectively); (2) V(D)J recombination (each TCR chain 
contains multiple gene segments, V, D, J segments, which need to be re-arranged by somatic 
gene re-arrangement during the development); (3) junctional diversity (additional bases will 
be inserted between segments during the V(D)J recombination, which results in the 
additional diversity of complementary-determining regions).  
Normally, T cells do not provoke an immune response against self antigens, because 
autoreactive T cells are removed during the development of lymphocytes in the thymus 
(Deng & Mariuzza, 2007). Developing T cells are subjected to positive selection and negative 
selection in the thymus prior their presence in the periphery. Positive selection occurs in the 
cortex of thymus. The developing T cells that are unable to bind to MHC molecules on the 
thymic epithelial cells undergo programmed cell death (apoptosis), and as a result, only 
those cells with a high affinity to self MHC molecules on the thymic epithelial cells can 
survive. Those survived cells are next subjected to negative selection to get rid of autoreative 
T cells. The medulary thymic epithelial cells and dendritic cells in the thymus display self 
antigens on MHC molecules. T cells with a high affinity to self-peptide-MHC complex, 
which are also called autoreactive T cells, undergo apoptosis and thereby to be removed 
from the T cell repertoire. During this process, T cells develop tolerance to those antigens 
present on the thymic DCs and medulary thymic epithelial cells. The ectopic expression of 
organ-specific antigens such as insulin in those cells is regulated by a transcription factor 
called AIRE (the Autoimmune Regulator) (Kindt et al., 2006). Therefore, loss of AIRE 
function impairs ectopic expression of organ-specific autoantigens such as insulin and 
thereby interferes T-cell negative selection, predisposing to the development of type 1 
diabetes (Anderson et al., 2002; Pugliese, 2005).  
Other than the involvement in T-cell recognition and T-cell negative selection, components 
of the innate immune system are also directly implicated in the recognition of pathogenic 
antigens, which is called pattern recognition. As the first line of host defense, the innate 
immune system is the first component to take an action on invading microbes. Innate 
immune recognition occurs in advance to adaptive immune recognition and determines the 
responsive consequence to the antigens. Host immune system including innate and adaptive 
immune system relies on the innate recognition to make the decision to respond or not to 
respond to a particular antigen. 
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4. Pattern recognition 

Innate immune recognition is also known as pattern recognition. It refers to the detection 
of common molecular structural motifs or pattern unique to microorganisms or other innate 
danger signals by the binding of pattern recognition receptors (PRRs) to their ligands (Zhong 
et al., 2011). Unlike the adaptive immune system which has diverse antigen receptors to 
identify a large number of foreign antigens, the innate immune system recognizes conserved 
microbe-derived molecules using a limited number of germline-encoded receptors – PRRs. 
Due to their limited number, every pattern recognition receptor can identify a large amount 
of pathogen specific molecules which share a certain structural motif. According to the 
originality, the ligands of PRR are divided into 2 classes: pathogen-associated molecular 
patterns (PAMPs) or damage-associated molecular patterns (DAMPs). PAMPs are 
conserved components among microorganisms that can be discriminated from host 
molecules such as flagellin, lipoteichoic acid from Gram positive bacteria, LPS from Gram 
negative bacterial, and peptidoglycan and dsRNA from virus. They are unique to 
microorganisms and important for the survival and/or expansion of microorganisms. 
Following the recognition, an immune reaction against the PAMPs is initiated to eliminate 
the invaded pathogens. DAMPs are small intracellular molecules released by cells during 
injury and served as a danger signal to initiate tissue repair. Using PRRs, the innate immune 
system can sense DAMPs and sequentially initiate noninfectious inflammatory responses. 
DAMPs are usually small molecules belonging to nuclear or cytosolic proteins. For example, 
HMGB1, ATP, HSP, and DNA are examples of DAMPs that can be released into the 
extracellular matrix in the damaged tissues. They are then recognized by PRRs to induce 
noninfectious inflammations to clear cellular debris, limit tissue injury, and promote tissue 
repair.  
In contrast to adaptive immune recognition that is accomplished by the members of a single 
family – the Ig super-family, innate immune recognition is mediated by several protein 
families including C-type lectins, leucine-rich proteins, scavenger receptors, pentraxins, 
lipid transferases, and integrins (Medzhitov & Janeway, Jr., 1997). According to their 
function, localization, ligand specificity, and evolutionary relationships, PRRs can be 
classified into two groups: signaling PRRs and endocytic PRRs. Upon binding to the 
microbial molecules, signaling PRRs transmit a signal into the host innate immune cells and 
induce the synthesis of regulatory molecules that are crucial to initiate inflammatory and 
immune response, such as cytokines and costimulatory molecules. They include membrane-
bound Toll-like receptors (TLRs) and cytoplasmic NOD-like receptors (NLRs). Endocytic 
PRRs are usually expressed on the cell surface of phagocytes and promote the attachment, 
engulfment and destruction of microbes by phagocytes, without inducing intracellular 
signals. They include mannose receptor (MMR), macrophage scavenger receptor (MSR), and 
opsonin receptors. Among those PRRs, TLRs are the best characterized PRRs. They play a 
major role in innate immune recognition and contribute to the initiation of inflammatory 
and immune responses. 
TLRs belong to the evolutionarily conserved type I transmembrane proteins. There are a 

handful of members have been discovered so far, with 10 TLRs in humans (TLR1-10) and 12 

TLRs in mice (TLR1-9, 11-13) (Beutler, 2004). The ligands for TLRs include various 

components of microbes that share the same motif. For example, TLR1/2/6, 4, 5, 9, and 11 

can sense lipoprotein, LPS, flagellin, bacterial CpG DNA, and UPEC protein from bacteria; 

TLR3, 4, 7/8, 9 recognize dsDNA, RSV F protein, ssRNA, and viral CpG DNA from viruses; 
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whereas glycolipids, GIPLs, zymosan, and profilin-like protein derived from protozoa and 

fungi can be identified by TLR2/6 and TLR11 (West et al., 2006). Other than those PAMPs, 

certain DAMPs can also be recognized by TLRs (Johnson et al., 2003; Ohashi et al., 2000). For 

example, intracellular components as HMGB1 and HSP60 that are passively released from 

damaged cells can also bind to TLRs and induce TLR signaling (Ohashi et al., 2000; Erridge, 

2010); oxidized beta2-GPI acts as another endogenous ligand of TLR to induce NF-κB 

activation and DC maturation (Buttari et al., 2005). TLRs consist of three domains: an N-

terminal leucine-rich-repeat (LRR) domain, a single transmembrane domain, and a C-

terminal intracellular TIR (Toll/IL-1 receptor) domain (Zhong et al., 2011; Takeda et al., 

2003). The LRR domain is responsible for ligand binding, whereas the TIR domain is 

responsible for signaling. Upon the binding of PAMPs or DAMPs to LRR domain, TLRs 

initiate a cascade of signaling via TIR domain. By using a point mutation in TIR domain of 

TLR4 (P712H mutation), Poltorak and coworkers confirmed that TIR domain recruits 

downstream effectors and transduces intracellular signal for TLR (Poltorak et al., 1998). 

Binding of TLRs to their ligands induces diverse antimicrobial genes, proinflammatory 

cytokines, and chemokines. TLR signaling also can increase the expression of costimulatory 

molecules and promote antigen-presenting capability for APCs. Thus, innate recognition by 

TLR activates APCs to trigger inflammatory responses and initiates adaptive immune 

responses (Medzhitov & Janeway, Jr., 1997). TLR signaling is mediated via two types of 

pathways, the myeloid differentiation primary-response gene 88 (MyD88)-dependent and -

independent pathway. Almost all TLRs except for TLR3 transmit intracellular signaling via 

MyD88-dependent pathway. Furthermore, MyD88-dependent pathway is the only pathway 

for TLR2, 5, 7/8, 9, and 11 (Zhong et al., 2011). Therefore, ligands for those TLRs such as 

peptidoglycans, flagellin, CpG DNA, ssRNA, and toxoplasma profilin-like protein cannot be 

sensed by MyD88 deficient cells (Takeda et al., 2003; Beutler et al., 2005; Adachi et al., 1998; 

Yarovinsky et al., 2005). Upon activation, MyD88 sequentially recruits IL-1 receptor-

associated kinase-4 (IRAK-4) and IL-1 receptor-associated kinase-1 (IRAK-1) (Lin et al., 

2010). Tumor necrosis factor receptor-associated factor-6 (TRAF-6) is subsequently recruited 

to MyD88/IRAK-4/IRAK-1 and then disassociate from the complex together with IRAK-1. 

TRAF-6 next sequentially activates c-Jun N-terminal kinase (JNK) and inhibitor of κB kinase 

(IKK), which in turn activates activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB) 

to initiate the transcription of diverse pro-inflammatory cytokine and chemokine genes 

(Beutler et al., 2006) (Figure 4). However, MyD88 cannot explain all downstream effect 

initiated by some TLRs as manifested by that TLR3 and TLR4 signaling are not completely 

blocked by the deficiency of MyD88, indicating that there must be MyD88-independent 

pathways for TLR signaling (Covert et al., 2005; Kawai et al., 1999). Studies have now 

indicated that TLR3 and TLR4 can signal through IRF3 and finally activate NF-κB in MyD88 

deficient cells. In MyD88-independent pathway, TLR signal is mediated by TRIF (TIR 

domain-containing adaptor inducing IFN-ǃ) and TRAM (TRIF-related adaptor molecule), 

and finally results in the activation of NF-κB, AP-1, or IRFs (Akira et al., 2001; Hoebe et al., 

2003; Yamamoto et al., 2003a; Yamamoto et al., 2002; Yamamoto et al., 2003b; Fitzgerald et 

al., 2003). Upon activation, NF-κB, AP-1, or IRFs subsequently induces a series of events 

such as promoting proinflammatory cytokine and chemokine production, recruiting 

leucocytes, activating APCs, and initiating an adaptive immune response (Medzhitov, 2001; 

Takeda et al., 2003; Kawai & Akira, 2006; Akira, 2003). 
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Fig. 4. Signal Pathway of TLR: TLRs transduce signal through MyD88-dependent and -
independent pathway. Activation of MyD88 recruits IRAK-4, IRAK-1, and TRAF-6, and then 
sequentially activates JNK, IKK, AP-1, and NF-κB. MyD88-independent pathway is 
mediated by TRIF and TRAM, which finally leads to activation of NF-κB, AP-1, or IRFs. 

NLR is another type of innate receptors. NLR proteins are a group of NOD domain 
containing intracellular receptors which detect the presence of PAMPs or DAMPs in the 
cytosol. NLRs are composed of an N-terminal protein interaction domain, a central 
nucleotide-binding oligomerization domain (NOD) and C-terminal leucine-rich repeat 
(LRR) domain(Chen et al., 2009). The N-terminal domain of the NLRs is critical for 
downstream signaling, and NOD domain mediates self-oligomerization that occurs during 
activation, whereas LRR domain is responsible for detecting PAMPs or DAMPs. Based on 
their N-terminal structure, NLRs are categorized into 5 subfamilies: NLRA which contains 
an acidic transactivation domain; NLRB which is characterized by the presence of a 
baculovirus inhibitor of apoptosis protein repeat (BIR); NLRC which possesses a caspase 
recruitment domain (CARD), NLRP which is manifested by a Pyrin domain; and NLRX 
whose N-terminal domain is unknown (Kawai & Akira, 2009). NLRs are expressed 
in epithelial, mesothelial, and immune cells including both APCs and lymphocytes. NOD1 
and NOD2, members of NLRC, are the two well-characterized NLR proteins. They 
recognize peptidoglycan structure of pathogens. Recognition by NLRs induces self-
oligomerization of NLRs and actiavates NF-κB and MAPK (Park et al., 2007; Hasegawa et 
al., 2008; Hitotsumatsu et al., 2008), which subsequently results in the release of IL-1 
family of cytokines including IL-1ǃ, IL-18, and IL-33 (Meylan et al., 2006; Fritz et al., 2006; 
Ting et al., 2006; Kanneganti et al., 2007; Yu & Finlay, 2008). There is feasible evidence 
supporting that NLRs play a role in the pathogenesis of autoimmune diseases. For 
example, NOD1 genetic variants modulate the host response to environmental bacteria and 
thus are associated with the development of allergic diseases such as asthma (Weidinger et 
al., 2005; Hysi et al., 2005; Eder et al., 2006). In addition, the polymorphisms of NLRs are also 
demonstrated to be associated with Crohn disease (Hugot et al., 2001). However, the role of 
NLRs in T1D pathogenesis is yet to be clarified (Eizirik et al., 2009). 
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In addition to TLRs and NLRs, other well-studied PRRs include Macrophage mannose 
receptor (MMR), macrophage scavenger receptor (MSR), and receptor for advanced 
glycation endproducts (RAGE) (Janeway, Jr. & Medzhitov, 2002; Kumagai et al., 2008; Li et 
al., 1996; Medzhitov & Janeway, Jr., 2000; Medzhitov, 2001; Medzhitov, 2007; Pearson, 1996).  
MMR is an important phagocytic receptor expressed on macrophages (Janeway, Jr. & 
Medzhitov, 2002). It is a member of the C-type lectin family and functions as a PPR to 
mediate phagocytosis of a variety of gram-positive, gram-negative bacteria, and fungal 
pathogens (Fraser et al., 1998). The microbial pathogens are then delivered into lysosomal 
compartment to be destroyed by lysosomal enzymes.  
MSR is a member of scavenger receptor type A family. It also serves as a phagocytic pattern 
recognition receptor on macrophages. Blockade or genetic deletion of MSR on macrophages 
impairs the recognition of apoptotic cells by macrophages (Platt et al., 1996). The ligands for 
MSR include LPS, dsRNA, and liptocheic acid (LTA) (Pearson, 1996). Due to the defective 
LPS scavenging, loss of MSR increases the susceptibility to infection of various pathogens 
including Listeria monocytogenes, herpes simplex virus, and malaria (Thomas et al., 2000; 
Suzuki et al., 1997). 
RAGE belongs to the immunoglobulin super-family. It is a 35kD multiligand 
transmembrane receptor (Neeper et al., 1992; Xie et al., 2008). Its major ligands are advanced 
glycation end products (AGE) and HMGB1. RAGE is composed of five domains: one 
cytosolic domain, one transmembrane domain, one variable domain, and two constant 
domains. The cytosolic domain is responsible for the signal transduction, and the variable 
domain is responsible for the binding of its ligand (Xie et al., 2008). RAGE signal activates 
NF-κB which sequentially induces the transcription of many pro-inflammatory genes. 
RAGE can also enhance the adhesion of leukocyte to endothelial cells and thus promote the 
recruitment of inflammatory cells (Chavakis et al., 2003). 

5. Innate immune cells in the autoimmune response against β cells 

Recent findings suggest that innate immune cells play an essential role in the initiation of ǃ-
cell-specific autoimmune response. Innate immune cells such as DCs, macrophages, and NK 
cells are found in a large number in the autoimmune diabetic pancreas in addition to 
lymphocytes. Furthermore, DCs and macrophages are the major population of infiltrating 
immune cells during the initial phase of autoimmune insulitis (Pietropaolo et al., 2007; 
Rosmalen et al., 2000; Charre et al., 2002; Delovitch & Singh, 1997; Jansen et al., 1994; Katz et 
al., 1995b; Lee et al., 1988c; Voorbij et al., 1989). Their presence at the pancreas precedes the 
infiltration of T and B lymphocytes. In addition to the early stage of autoimmunity, 
accumulation of innate immune cells is also observed during the later ǃ-cell destructive 
insulitis process (Jansen et al., 1994). The density of DCs is much higher in diabetes-prone 
NOD mice immediately after birth than that of control non-diabetic strains. Therefore, the 
entry of macrophages and DCs is considered as the initial sign of autoimmunity in T1D 
pathogenesis (Medzhitov, 2001; Pearson, 1996; Takeda et al., 2003). 
A wave of physiological ǃ-cell death was found in newborns of both mice and humans, 
cumulating at early infancy (Finegood et al., 1995; Trudeau et al., 2000; Kassem et al., 2000). 
This physiological ǃ-cell apoptosis, which is peaking at 14-17 days after birth in NOD mice, 
is proposed to be an initial stimulus for triggering islet-specific autoimmune response 
(Turley et al., 2003). Scavenger cells are believed to be responsible for the clearance of these 
apoptotic ǃ cells. It was found that scavenger cells in the pancreas of NOD mice are 

www.intechopen.com



 
Type 1 Diabetes – Pathogenesis, Genetics and Immunotherapy 

 

148 

abnormally higher than that of control strains and they persist in the NOD pancreas 
(Charre et al., 2002). This accumulation of scavenger cells is believed to be a result from 
the defective clearance of apoptotic ǃ cells (Haskins et al., 2003; Mathis et al., 2001; Akirav 
et al., 2008).  
It is proposed that the defective clearance of apoptotic ǃ cells results in apoptotic ǃ-cell 
accumulation which then leads to the secondary necrosis (Erridge, 2010). During the 
secondary necrosis process, ǃ-cell-derived antigens could be released and then taken up and 
processed by APCs in the islets. After uptake of ǃ-cell-derived antigens, APCs become 
matured and migrate into the immediate draining lymph nodes (pancreatic lymph nodes, 
PLNs). In the PLNs, naive ǃ-cell-reactive T and B lymphocytes are primed and activated by 
APCs carrying the ǃ-cell-derived antigens. Upon activation, T and B cells then migrate into 
the islets to attack the insulin producing ǃ cells (Jansen et al., 1994). Depletion of 
macrophages by liposomal dichloromethylene diphosphonate, a substance known to be 
toxic to macrophages, in NOD mice results in the inability of T cells to differentiate into ǃ-
cell-cytotoxic T cells. During the initiation of ǃ-cell-specific autoimmune response, APCs 
present ǃ-cell-derived antigens to T cells and provide IL-12 to promote Th1 responses. T 
cells in a macrophages-depleted environment differentiate toward Th2 cells rather than Th1 
cells. Of note, substantial administration of IL-12 restores the susceptibility to diabetes in 
macrophages-depleted NOD mice (Jun et al., 1999b). Consistently, many other groups also 
confirmed that depletion of macrophages dramatically prevents diabetes and insulitis in CY 
(cyclophosphamide)-treated NOD mice or BB rats (Lee et al., 1988e; Lee et al., 1988b; 
Oschilewski et al., 1985b).  
In addition to activating lymphocytes, macrophages are also directly implicated in the final 
stage of autoimmune-mediated ǃ-cell destruction. Adoptive transfer of monocyte-depleted 
diabetogenic T cells failed to induce diabetes. Moreover, activated macrophages can directly 
kill ǃ cells in vitro (Calderon et al., 2006; Jun et al., 1999a). By using a transgenic model, 
Martin et al. provided direct evidence suggesting that macrophages are able to directly 
destroy ǃ cells without T and B lymphocytes (Martin et al., 2008). Chemokines are a group 
of proteins produced in response to cell/tissue damage or inflammatory stimuli to attract 
immune cells. They are subdivided into 4 subgroups: C, CC, CXC, and CX3C family. 
Transgenic expression of CCL2 (also known as MCP-1), a chemokine belongs to the CC 
family, under the control of insulin promoter recruits circulating monocytes into the 
pancreas. When the RIP-CCL2 transgene was bred into the Rag-1-/- mice in which they are 
deficient for mature T and B lymphocytes, these mice developed insulitis and diabetes 
spontaneously, and showed a similar time course with immunocomponent RIP-CCL2 
transgenic Rag-1-/+ mice (Martin et al., 2008). This work demonstrates that macrophages are 
able to directly destroy ǃ cells and play a more important role than what we thought. In 
addition, pro-inflammatory cytokines (e.g., IL-1ǃ, TNFǂ, IL-6, and IL-12), as well as nitrogen 
and oxygen free radicals can be secreted into the pancreatic islets by activated APCs to 
directly destroy ǃ cells (Beyan et al., 2003). Pro-inflammatory cytokines including TNFǂ and 
IL-1ǃ produced by APCs and IFNǄ produced by T cells can induce ǃ cells to produce 
oxygen free radicals, nitric oxide, and peroxynitrite, which are highly cytotoxic to ǃ cells 
themselves (Rabinovitch & Suarez-Pinzon, 1998). IL-12 secreted by macrophages in the 
pancreas is critical for T cells to differentiate into ǃ-cell-cytotoxic T cells. Thus, macrophages 
can also promote T1D development by secreting IL-12 to enhance the differentiation of ǃ-
cell-targeting cytotoxic T cells. Deletion of macrophages decreases Th1 and Tc1 responses 
and thus prevents diabetes in NOD mice. In line with this observation, T cells can regain ǃ-
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cell-cytotoxic potential with the return of macrophages or macrophage-derived IL-12 (Lee et 
al., 1988e; Jun et al., 1999b). Free radicals released by immune cells or ǃ cells (induced by 
pro-inflammatory cytokines) can cause lipid peroxidation of membranes, DNA 
fragmentation, protein cross-linking, and thus, directly destroy ǃ cells (Gewirtz, 1999; Dean 
et al., 1986).  
NK cells are another type of innate immune cells presence in the lesion of insulitis. In a 
virus-induced diabetes model, Foldstrom and coworkers found that NK cells are critical for 
virus-induced autoimmune destruction of ǃ cells (Flodstrom et al., 2002). Coxsackievirus B4 
(CVB4) infection can induce autoimmune diabetes on SOSC-1-transgenic NOD mice. 
Depletion of NK cells can prevent ǃ-cell loss on CVB4-infected SOSC-1-transgenic NOD 
mice and thereby blocks the development of diabetes (Flodstrom et al., 2002). Due to the 
ability to directly kill target cells and interact with APCs and T cells, the potential 
involvement of NK cells in T1D has been suggested in early 1980s. Splenic NK cells were 
shown to be able to destroy islet cells in both diabetes-prone BB rats and NOD mice 
(Flodstrom et al., 2002; MacKay et al., 1986; Koevary, 1988; Nakamura et al., 1990). Deletion 
of NK cells prevent T1D development in mice induced with virus, streptozotocin and 
cyclophosphamide (Flodstrom et al., 2002; Maruyama et al., 1991a; Maruyama et al., 1991b). 
Nevertheless, the role of NK cells in T1D seems only to modulate the intensity or 
aggressiveness of autoimmune destruction, as NK deletion failed to prevent spontaneous 
T1D in NOD mice or BB rats (Edouard et al., 1993; Ellerman et al., 1993; Sobel et al., 1995). 

6. Innate molecules in the recognition of β-cell antigen 

Given the involvement of innate immunity in T1D pathogenesis, innate recognition by 
PRRs, the first event of innate immune response, is suggested to be involved in triggering 
autoimmune reaction against ǃ cells. In patients with T1D, TLR-2 and TLR-4 and their 
downstream molecules including MyD88, TRIF, and NFκB in monocytes are significantly 
upregulated, demonstrating that TLRs and their downstream signaling contribute to the 
development of T1D (Devaraj et al., 2008). 
As mentioned earlier, there is a wave of physiological ǃ-cell death after birth. Defective 
clearance of apoptotic ǃ cells during ǃ mass turnover has been suggested to be associated 
with the initiation of autoimmune response. The accumulated apoptotic ǃ cells due to 
defective clearance undergo a secondary necrosis, which results in the passive release of 
innate inflammatory molecules to trigger an autoimmune response (Erridge, 2010). On the 
other hand, auto-antigens can be released from those necrotic ǃ cells and then uptaken by 
APCs resided in the pancreas. It is believed that PRR signaling can promote uptake of auto-
antigens by APCs (West et al., 2006; Doyle et al., 2004; Blander & Medzhitov, 2004). In 
support of this notion, stimulation of TLRs enhances antigen processing by up-regulating 
scavenger receptors via MyD88-dependent pathway. Doyle et al. found that TLR signaling 
can increase both the percentage of macrophage uptake of microbes and the number of 
microbes uptaken by each macrophage (Doyle et al., 2004). In addition, actin cytoskeleton 
mobilization, which can facilitate antigen processing and presentation by DCs, is also 
enhanced by TLR signaling (West et al., 2006). 
Danger signals sensed by PRRs determine the consequence of antigens after its endocytosis 
(Matzinger, 2002; van & Geijtenbeek, 2006). Danger signals include exogenous signal (such 
as pathogens and toxins) and endogenous signal (such as mammalian DNA, RNA, HSPs, 
HMGB1, and interferons). A recent report demonstrated that APCs discriminate self and 
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pathogenic antigens with the help of TLRs (Blander & Medzhitov, 2004). Blander and 
coworkers described that TLR signaling activated by bacteria regulates antigen 
internalization and phagosome maturation, and thus, promotes phagocytosis. Phagocytosis 
of bacteria but not apoptotic cells by macrophages was impaired in TLR2-/- and TLR4-/- or 
MyD88-/- mice (Blander & Medzhitov, 2004). Phagocytosis of bacterial induces DC 
maturation, whereas phagocytosis of apoptotic cells cannot. However, uptake of apoptotic 
cells along with LPS treatment can induce DC maturation, indicating that TLR signaling 
determines the fate of auto-antigen. Antigens derived from apoptotic cells cannot be 
efficiently presented by MHC class II. Nevertheless, co-administration with TLR ligand 
enhances antigen presentation and promotes antigen-specific CD4+ T cell response (West et 
al., 2006). Therefore, TLRs can sense danger signal and control the discrimination of self and 
non-self antigens. Normally, self antigens are excluded from antigen presentation due to the 
lack of TLR signaling. However, self antigens and TLR signals can co-exist under certain 
pathological circumstances. For example, defective clearance of apoptotic ǃ cells, which is 
observed in diabetes-prone individuals, results in the release of both self antigen and 
endogenous danger signaling molecules (such as HMGB1, HSPs, and nucleic acids), while 
PRRs can bind to both exogenous and endogenous molecules (Matzinger, 2002). For 
example, TLR2 is the receptor for endogenous molecules HSP60 and HMGB1, as well as 
exogenous molecules of bacterial lipoproteins, Similarly, TLR4 is a receptor for HSP70, 
HMGB1, and LPS. Therefore, those endogenous danger signaling molecules (also called 
alarmins) released from necrotic ǃ cells function as DAMPs to signal TLRs. With the 
presence of those TLR signals and auto-antigens, the tolerance to self antigens is broken 
down and an autoimmune response against ǃ cells is then initiated. TLR2 has been 
suggested to be an important sensor for apoptotic or secondary necrotic ǃ cells (Kim et al., 
2007). Apoptotic ǃ cells undergoing secondary necrosis can provoke a ǃ-cell-specific 
autoimmune response in a TLR2-dependent manner. Therefore, autoimmune diabetes is 
significantly suppressed in TLR2-/- mice but not in TLR4-/- mice (Kim et al., 2007). 
Engagement of TLR3 by poly I:C is also reported to be able to accelerate diabetes in a dose-
dependent manner (Sobel et al., 1992; Ewel et al., 1992). 
As a multifactoral autoimmune disease, T1D is affected by both genetic and environmental 

factors. Viral infection, as an environmental perturbant, is believed to be the most common 

trigger for T1D development (Akerblom et al., 2002). TLRs have been shown to be 

implicated in the process of virus-induced diabetes. Kilham rat virus (KRV) can induce 

autoimmune diabetes on BioBreeding diabetes-resistant (BBDR) rats (Nair et al., 2008). KRV 

infection has been shown to be able to induce the production of pro-inflammatory cytokines 

such as IL-6 and IL-12 in BBDR rats, which can be abolished by TLR9 antagonists (Zipris et 

al., 2007). TLR9 blockade on KRV-infected BBDR rats decreased diabetes incidence (Zipris et 

al., 2007). Furthermore, engagement of TLR3, 4, 6, 7, and 8 was also found to significantly 

increase the incidence of KRV-induced diabetes on BBDR rats (Zipris et al., 2005). A 

lymphochoriomeningitis virus (LCMV)-induced diabetes model with RIP-GP transgenic 

mice was employed to dissect the role of virus infection in triggering diabetes (Ohashi et al., 

1991). The islet cells of RIP-GP mice express LCMV-GP protein under the control of RIP 

promoter. Unlike LCMV, viral peptide failed to induce diabetes in RIP-GP mice (Lang et al., 

2005; Ohashi et al., 1993). However, co-administration of TLR3 and 7 ligands with a viral 

peptide successfully induces diabetes in RIP-GP mice (Lang et al., 2005), indicating that TLR 

signals play a critical role in virus-induced autoimmune diabetes. 
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HMGB1, an evolutionarily conserved nuclear protein, has recently been found to be a 
“danger signal” to alert the immune system of tissue damage. It can be passively released 
from damaged cells during various pathogenic processes. For example, HMGB1 released 
from damaged cells during liver ischemia-reperfusion plays a critical role in mediating 
hepatic injury ((Tsung et al., 2005). In line with this result, we demonstrated that HMGB1 
can be passively released during cardiac cold ischemic injury as well as in graft with acute 
rejection (Huang et al., 2007). In a model for syngenic heart transplantation, HMGB1 
increased for a few days after surgery and dropped back to normal level thereafter, while 
HMGB1 steadily increased in allografts after transplantation along with acute allograft 
rejection, suggesting that HMGB1 is implicated in the pathogenesis of allograft rejection. In 
support of this notion, we characterized that allograft infiltrated immune cells actively 
secrete HMGB1. Therefore, administration of recombinant A box, a specific antagonist  for 
the endogenous HMGB1, reduced pro-inflammatory cytokine production and Th1 response, 
and thus, prolonged cardiac allograft survival (Huang et al., 2007). Together, these data 
support a critical role for HMGB1 in mediating allo-immune response. Given the similarity 
between allograft rejection and autoimmune destruction of the pancreatic ǃ cells in type 1 
diabetes, we next proposed that HMGB1 might serve as an innate mediator implicated in ǃ-
cell specific autoimmune response during T1D development. By studies in NOD neonates, 
we demonstrated the accumulation of apoptotic ǃ cells during neonate ǃ mass turnover, 
which is associated with secondary ǃ cell necrosis and passive release of HMGB1 into the 
extracellular milieu in the pancreatic islets (Zhang et al., 2009).  The passively released 
HMGB1 could then serve as an innate alarmin for the initiation of autoimmune response in 
genetic predisposed subjects. To address the role of HMGB1 in T1D progression, we next 
confirmed that HMGB1 can be released from apoptotic ǃ cells and thus served as a danger 
signal to enhance autoimmune response in T1D (Han et al., 2008). In addition to being 
passively released by the damaged ǃ cells, HMGB1 can also be actively secreted by DCs and 
other islet-infiltrating immune cells. Upon LPS or TNFǂ/IFN-Ǆ stimulation, HMGB1 
translocated from the nucleus into the cytosol in DCs and then secreted into the extracellular 
matrix. In consistent with these results, in situ immunostaining confirmed the co-localization 
of HMGB1 and CD11c, a specific surface marker for DCs, in the pancreatic sections 
originated from diabetic NOD mice (Han et al., 2008). Therefore, with the presence of 
extracellular HMGB1, APCs efficiently uptake apoptotic ǃ cells and become matured. Our 
subsequent studies further revealed that extracellular HMGB1 released by damaged cells or 
secreted by activated immune cells is potent in promoting inflammatory response. For 
example, treatment of DCs with HMGB1 significantly increased their pro-inflammatory 
cytokine production and allo-stimulatory capacity along with higher expression of MHC 
class II and costimulatory molecules. More important, this stimulatory effect can be 
abolished by the administration of HMGB1 blockades such as HMGB1 neutralizing 
antibodies. Therefore, treatment of NOD mice with a neutralizing HMGB1 Ab dramatically 
reduced insulitis progression and diabetes onset (Han et al., 2008). Consistent with our 
observations, Dumitriu et al. found that HMGB1 can be released from plasmacytoid DCs 
(pDCs) following TLR9 stimuli. Furthermore, pDCs express RAGE, a receptor for HMGB1. 
Disruption of HMGB1/RAGE signaling suppressed the maturation of pDCs (Dumitriu et 
al., 2005). In addition, HMGB1 was found to promote inflammatory response by enhancing 
DC migration, and as such, blockade of HMGB1 or RAGE, suppressed homing receptor 
expression on monocyte-derived DCs and inhibited their migration which is required for T-
cell priming (Yang et al., 2007; Dumitriu et al., 2007). 
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7. Conclusion 

Innate immune response, as one of the two pillars of the immune system and the mediator 
of adaptive immune response, plays an essential role in the pathogenesis of T1D. Pattern 
recognition receptors expressed on the innate immune cells sense the conserved pathogen 
specific molecules (PAMPs) or alarmins released by host cells (DAMPs) to initiate an 
immune response. In the normal condition, self antigens can be distinguished from foreign 
antigens and do not provoke an immune response. However, under certain circumstances, 
self antigens released from damaged host cells could be processed and presented to 
autoreactive T cells with the presence of PRR signaling. For the case of type 1 diabetes, 
defective clearance of apoptotic ǃ cells during neonate ǃ mass turnover by phagocytes 
results in the accumulation of apoptotic ǃ cells in the pancreas, which then undergo a 
secondary necrosis along with the release of ǃ-cell-derived autoantigens and danger signals 
(e.g., HMGB1, HSPs, and DNA). Danger signals subsequently activate PRRs and promote 
self antigen presentation by APCs. Furthermore, PRR signals also induce maturation and 
migration of APCs, which facilitate both innate and adaptive immune response to mediate 
the destruction of ǃ cells. The effect of current therapeutic approaches for T1D is unsatisfied. 
A variety of severe complications developed in the relatively large proportion of T1D 
patients. Therefore, a clear understanding of the recognition of ǃ-cell antigens and the 
initiation of autoreative immune response against ǃ cells is essential to the development of 
better effective therapeutic approaches for this devastating disorder. 
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