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Role of Vitamin D in the Pathogenesis and 
Therapy of Type 1 Diabetes Mellitus 

Agustin Busta, Bianca Alfonso and Leonid Poretsky  
Albert Einstein College of Medicine, Beth Israel  

Medical Center New York 
U.S.A. 

1. Introduction 

This chapter will review the role of vitamin D in the pathogenesis and treatment of type 1 
diabetes mellitus.  
We will discuss the mechanisms through which vitamin D might affect pancreatic function.  
We will summarize the results of in-vitro and animal studies and will conclude with a 
review of the relevant clinical trials. 

2. Definition 

Type 1 diabetes mellitus is an autoimmune disease in which the pancreas is unable to 
respond to secretagogue stimulation with appropriate insulin secretion. Hyperglycemia 
develops when more than 70-90% of the insulin-producing beta cells are destroyed. An 
autoimmune destructive process, which plays a central role in the development of type 1 
diabetes mellitus, is facilitated by the subject’s own genetic susceptibility and by non-genetic 
factors. Non-genetic factors include viral infections, toxic chemicals, and others. Vitamin D 
deficiency is a non-genetic factor that appears to be associated with an increased risk of 
developing type 1 diabetes mellitus.  
Type 1 diabetes mellitus complications are classified into acute and chronic. The acute 

complications include life-threatening conditions like severe hypoglycemia or diabetic 

ketoacidosis (DKA). Chronic diabetic complications can be divided into microvascular 

complications (retinopathy, neuropathy and nephropathy) and macrovascular 

complications (cardiovascular, cerebrovascular and peripheral vascular disease). Severe 

microvascular and macrovascular complications can lead to renal failure (the most common 

cause of hemodialysis in the US), blindness or lower extremity amputations.   
Overall, uncontrolled diabetes mellitus in patients over 50 years of age reduces life 
expectancy in males and females by 7.5 and 8.2 years respectively (Franco et al.,2007). 

3. Epidemiology 

In 2010, about 215,000 people younger than 20 years of age had diabetes (type 1 or type 2) in 
the United States.  A 2011 Centers for Disease Control and Prevention (CDC) report 
estimates that nearly 26 million Americans have diabetes.  Diabetes affects 8.3% of 
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Americans of all ages and 11.3% of adults aged 20 years and older, according to the National 
Diabetes Fact Sheet for 2011. About 27% of those with diabetes (approximately 7 million 
Americans) do not know they have the disease. 1 in every 400 children and adolescents has 
type 1 diabetes.  
Type 1 diabetes mellitus continues to be highly prevalent in many countries, with an overall 

annual increase estimated at 3% (International Diabetes Federation [IDF] 2010). Worldwide, 

it is more common in males than in females, with a ratio of 1.5. 

The 4th edition of the IDF Diabetes Atlas, released in 2009 at the 20th World Diabetes 

Congress, estimated that in 2010, 285 million people would have diabetes (6.4% of world’s 

adult population). The same forum predicts that by 2030, 438 million people will have 

diabetes world-wide.  Type 1 diabetes in children is estimated at 480,000 patients worldwide 

in 2010, and the number of newly diagnosed cases per year is 75,800 (IDF 2010). 

3.1 Natural history 

The natural history of type 1 diabetes is characterized by an autoimmune destruction of the 

beta cells in the islands of Langerhans in the pancreas. The autoimmune process has cellular 

and humoral components, leading to the destruction of the beta cells and a decreased 

insulin secretion. As beta-cell mass declines, insulin secretion decreases until the available 

insulin no longer is adequate to maintain normal blood glucose levels. After 70-90% of the 

beta cells are destroyed, hyperglycemia develops and diabetes may be diagnosed.  

The natural history of type 1 diabetes has 4 stages: genetic susceptibility, autoimmune 

process, pre-diabetes and diabetes. 

The rate of beta cell destruction is variable. In some patients years will go by before the 

onset of diabetes, while other patients may never develop beta cell insufficiency, perhaps 

due to the regaining of tolerance. Most patients with type 1 diabetes mellitus have one or 

more susceptible human leukocyte antigen (HLA) class II, and over 90% have beta cell 

autoantibodies present. The appearance of circulating islet cell autoantibodies is the first 

detectable sign of this immune process. 

4. Pathogenesis of type 1 diabetes mellitus 

4.1 Genetic component 

Genetics has an important role in the etiology of type 1 diabetes. However, extra-genetic 

components influence the penetrance of diabetes susceptibility genes. If  data are obtained at 

a single point in time,  the risk of type 1 diabetes mellitus between monozygotic twins can 

be as low as 30%, but if the monozygotic twins are followed long-term, the cumulative 

incidence of diabetes reaches 65% (Redondo et al., 2008). In the same cohort of monozygotic 

twins, the rate of persistent autoantibody positivity, type 1 diabetes mellitus, or both, 

reached 78% (Redondo et al., 2008).    

To better understand the genetic susceptibility to diabetes, candidate gene studies were 

conducted in order to identify genes that are associated with autoimmune type 1 diabetes. 

Human leukocyte antigen (HLA) associations have been long recognized in many 

autoimmune diseases. In type 1 diabetes mellitus, the HLA on chromosome 6p21 is well 

described and is considered to play an important role in more than 50% of the familial cases in 

Caucasians (Noble et al., 1996). HLA DR4-DQ8 or DR3-DQ2 haplotypes are detected in up to 

90% of patients with type 1 diabetes mellitus (Devendra & Eisenbarth, 2003). The combination 
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of these 2 types, DR4-DQ8/DR3-DQ2, carries the highest risk and type 1 diabetes mellitus 

occurs at a very early age in this population. First-degree relatives of the patients who carry 

the highest risk haplotype combination also have a higher risk of developing diabetes mellitus 

as compared to the relatives of diabetes patients who do not have this haplotype and who 

develop type 1 diabetes mellitus later in life (Gillespie et al., 2002).  

Another HLA haplotype (DR15-DQ6) might have protective properties, and is found in a 
much larger percentage in the general population (20%) as compared to less than 1% in 
patients with type 1 diabetes mellitus (Eisenbarth & Gottlieb, 2004).  
HLA haplotypes appear to have an association with islet autoantibodies.  Glutamic acid 
decarboxylase (GAD) antibodies are more frequent in patients with HLA DR3-DQ2, whereas 
insulin auto-antibodies (IAA) and protein tyrosine phosphatase-like protein antibodies (IA-2 
antibodies) are more frequent in patients with HLA DR4-DQ8. Patients that do not have these 
haplotypes are less likely to develop islet autoantibodies (Achenbach et al., 2005). 
Another key genetic factor is the insulin gene (INS), with different forms of the promoter 
region conferring either protection or increased susceptibility to autoimmune diabetes 
mellitus (Bennett et al., 1995).  The insulin gene contributes 10% to the genetic susceptibility 
in developing autoimmune diabetes (Bell et al., 1984). The risk of developing diabetes 
depends on the expression of the insulin protein in the thymus which can cause a defective 
central tolerance to the insulin molecule. The degree of immune tolerance may be reflected 
by the less common presence of insulin autoantibodies (IAA) in patients or relatives who 
have the protective INS class I/III or III/III genotypes (Vafiadis et al., 1997). 
 

 

Fig. 1. Antigen Presenting Cell.  The activation of the T-cell by various stimuli (antigens), is 
brought by major histocompatibility complex (MHC-HLA II). This figure shows also, 
inhibitors of T-cell activation: cytotoxic T lymphocyte antigen 4 (CTLA-4) and lymphoid 
tyrosine phosphatase (LYP).  
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T cells are recognized to be a major part of the immune process in diabetes mellitus, and 
several genes involved in T cell regulation are associated with type 1 diabetes mellitus. Two 
genes encoding factors that are suppressive to the T cell activation appear to have a close 
association with autoimmune diabetes: lymphoid tyrosine phosphatase locus 
(LYP/PTPN22) (Smyth et al., 2004), and cytotoxic T lymphocyte antigen 4 (CTLA-4) (Ueda 
et al., 2003) (Figure 1), located on chromosome 2q33. 
The CTLA-4, which is a T-Lymphocyte receptor, is expressed after T-cell activation 
(Greenwald et al., 2005). It turns off T-cell responses by inhibiting the production of 
interleukine-2. CTLA-4 polymorphism in humans has been associated with an increased risk 
of autoimmune disease, including type 1 diabetes mellitus (Gough et al., 2005). 
Another gene linked to an increased risk for type 1 diabetes is the gene for the intercellular 
adhesion molecule (ICAM-1) (Nejentsev et al., 2003). A recent genome-wide association 
study described over 40 loci associated with an increased risk for type 1 diabetes (Barrett et 
al., 2009). 

4.2 Autoimmune process 

One of the best animal models for type 1 diabetes mellitus is the nonobese diabetic mouse 

(NOD). NOD mouse develops type 1 diabetes mellitus spontaneously, over the course of a 

few months, allowing the investigators to study this process stage by stage. Many reports 

describe in detail the genetics, the immune process, the influence of the environment and 

most importantly, the potential therapies to prevent, delay or reverse the destructive process 

that leads to type 1 diabetes mellitus in this model. Delovitch and Singh (Delovitch & Singh, 

1997) reviewed the use of NOD mouse in the studies of type 1 diabetes mellitus. In NOD 

mice, the first step is the infiltration of the peri-islet regions of the pancreatic islets by 

dendritic cells (DC) and macrophages, followed by T cells (CD4+ and CD8+). This stage is 

known as peri-insulitis, occurring around 3-4 weeks of age. It is followed by a slower, 

progressive T cell destruction of the beta cells (insulitis), by 4-6 months of age (Delovitch & 

Singh, 1997). Thus, the T cells and the dendritic cells are key players in the immune process 

leading to type 1 diabetes mellitus. 

The dendritic cells (DC) are antigen-presenting cells which originate from the bone marrow. 

They become active once they capture and process the antigens. After infiltrating the 

pancreas and undergoing antigenic maturation, DC secrete IL-12 and present the processed 

antigen (on their surface and in association with the major histocompatibility complex 

[MHC] class II) to other cells of the immune system (i.e. T cells) (see Fig 1). 

T cells are categorized mainly based on their immune actions, achieved via the different 

cytokines they secrete. Cytokines are classified into two types: type 1 cytokines, which 

activate the cellular immunity and suppress the humoral immune response, and type 2 

cytokines, which activate the humoral immunity and inhibit the cellular immune process 

(Rabinovitch, 1998). 

Th1 cells are preferentially formed from their T cell precursors (T helper 0) under the direct 

influence of mature DC and IL-12 (Banchereau & Steinman, 1998). 

T helper 1 cells (Th1) are involved in cell-mediated immune responses (inflammation, 

cytotoxicity, delayed hypersensitivity) and produce type 1 cytokines: tumor necrosis factor  

(TNF), interferon  (IFN), and interleukin 2 (IL-2). T helper 2 cells (Th2) are important in 

humoral immunity (activate B cells and antibody production, down regulating Th 1 cells) 

and secrete type 2 cytokines: interleukins 4, 5, 6, 9 and 10 (Rabinovitch, 1998) (Fig. 2).   
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The Th2 cells are protective for the beta cells. They have an inhibitory effect on the Th1 cells, 

which are destructive to the pancreatic beta cells. In the NOD mouse, it appears that the 

immunologic self-tolerance to pancreatic beta cells is lost. The disruption of the equilibrium 

between Th1 and Th2 cells in the thymus and in the periphery is believed to play a crucial 

role in the pathogenesis of autoimmune diabetes mellitus (Delovitch & Singh, 1997).  Once 

Th1 cells are produced they will secrete interferon  (IFN ) and IL-2, leading to the 

activation of macrophages and cytotoxic T cells, which are destructive to the pancreatic beta 

cells (Adorini, 2001).  The same Th1 cells will stimulate the IgG2a autoantibodies against the 

islet beta cells autoantigens (Delovitch & Singh, 1997). Autoimmune diabetes can be 

transferred from a diabetic NOD mouse to an unaffected mouse via T cells (Bendelac et al., 

1987). NOD mice develop a spontaneous loss of T-cell tolerance to glutamic acid 

decarboxylase antibodies (GAD), leading to autoimmune diabetes (Kaufman et al., 1993). In 

NOD mice, there is an increased resistance to apoptosis in immunocytes (Leijon et al., 1995, 

Penha-Goncalves et al., 1995). 

Immune responses to several beta-cell proteins have been described (auto-antigens). 

Exposure to glutamic acid decarboxylase (GAD65 and GAD67) led to an increased T cell 

proliferation as early as 4 weeks of life in NOD mice, coinciding with the onset of insulitis 

(Tisch 1993). Some of the other beta-cell antigens elicited an increased immune response 

after a few more weeks, but there were other beta-cell antigens that did not trigger an 

immune reaction (for example, amylin) (Tisch 1993).  The same study showed that 

intrathymic injections of GAD65 had a protective effect from autoimmune diabetes in NOD 

mice (delaying the onset of disease and decreasing the frequency) (Tisch etal., 1993) 

GAD65- reactive T cells were proven to have the ability to transfer diabetes to NOD/SCID 

(severe combined immunodeficiency) mice (Zekzer et al., 1998). To further support the 

central role of GAD antigen in autoimmune diabetes, the beta-cell-specific suppression of 

GAD expression in antisense GAD transgenic NOD mice was demonstrated to prevent the 

production of diabetogenic T cells and the onset of diabetes (Yoon et al., 1999)  

In humans, the pancreas becomes infiltrated with mononuclear cells. Autoantibodies to 

insulin (IAA), glutamic acid decarboxylase (GAD) and insulinoma associated-2 antibody 

(IA-2) are demonstrated years before the clinical symptoms of diabetes. (Kulmala et al., 

1998) T cell responses to several islet cells antigens (insulin, GAD, IA-2) have been reported 

in IDDM (MacCuish et al.,  1975). The presence of autoantibodies alone does not explain the 

development of diabetes, since it is recognized now that children born to type 1 diabetic 

mother with high antibody titers transferred through the umbilical cord do not develop 

diabetes more often than expected. An interesting case was published by Martin et al in 

2001, describing a case of type 1 diabetes mellitus occurring in a patient that had a 

hereditary B-cell defect (Martin et al., 2001). 

4.3 Environmental component  

The environment is implicated in the pathogenesis of type 1 diabetes mellitus by many 

studies.  

Environmental factors have an important role in initiating an immune process that 

ultimately leads to pancreatic beta cell destruction and clinically apparent diabetes mellitus. 

Many environmental factors have been proposed, including viruses (rubella, mumps or 

coxsackievirus B4), toxic substances and cytotoxins. Nutritional status and diet have also 
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been implicated as potential players in type 1 diabetes pathogenesis: vitamin D deficiency, 

early protein diet exposure or exposure to cow’s milk in infancy. 

Viruses are among the main culprits studied. Before the eradication of rubella in most 
countries, congenital rubella was strongly associated with the development of type 1 
diabetes mellitus (Menser et al., 1978). A recent meta analysis of observational studies has 
shown an association between type 1 diabetes and enterovirus infection (Yeung 2011).  
While some theories implicate viral infections in the pathogenesis of type 1 diabetes, a 
recent hypothesis argues that a decreased exposure to microbes may contribute to the 
current increase in autoimmune disease. This theory is known as “the hygiene hypothesis” 
(Gale, 2002). 
It is a known fact that the incidence of autoimmune diabetes follows a geographical pattern, 
with many studies reporting an association between type 1 diabetes and vitamin D status.  
A few large ecological studies describe a pattern of geographical variation, with an 
increased incidence of type 1 diabetes in the areas located north of the equator. Furthermore, 
seasons appear to also influence the incidence of type 1 diabetes, with the highest incidence 
during winter and the lowest during summer. The month of birth during springtime is 
associated with a higher risk of type 1 diabetes (Kahn et al., 2009), a finding that could be 
explained by possible low circulating vitamin D levels in both mother and fetus through the 
winter months of the pregnancy. 
In order to develop more information about environmental factors that play a role in the 
pathogenesis of diabetes, an international initiative (the Environmental Determinants of 
Diabetes in the Young) will be following thousands of infants with an increased genetic risk 
from birth until adolescence and will gather data about infectious agents, dietary or other 
environmental factors.   
Typically, the treatment for type 1 diabetes mellitus involves insulin therapy, but in the last 
few years new therapies have been approved as well (for example, Symlin). For newly 
diagnosed patients with autoimmune diabetes, combination therapy has been suggested in 
an attempt to minimize beta cell destruction and prolong pancreatic function. The new 
therapeutic options include: immunotherapy, vaccines, drugs that influence T cell action, 
anti-inflammatory drugs (for example, one time use of anti-IL-1R drug), or long-term 
treatment with B cell components to induce regulatory T cells (oral or nasal insulin, insulin 
peptide therapy, GAD-Alum or the proinsulin DNA vaccines). Glucagon-like peptide 1-
related drugs (GLP-1) could be also considered as a therapeutic option because they 
promote peritubular pancreatic cell growth (Von Herrath, 2010). 

5. Vitamin D 

Although initially described as a “vitamin”, vitamin D is now recognized to be a hormone, 
synthesized in the human body and exerting its action on other organs via a nuclear 
receptor (vitamin D receptor, VDR).  
Even though vitamin D can be obtained from the diet in small quantities, the main source of 
vitamin D is the skin. Under the direct influence of ultra violet B light (UVB light), 7-
dehydrocholesterol (DHC) (provitamin D3) is converted into pre-vitamin D3, which is then 
further converted into cholecalciferol (vitamin D3) via thermal isomerization. Interestingly, 
if pre-vitamin D3 continues to be exposed to UVB, it will be converted into biologically 
inactive metabolites (tachysterol and lumisterol), preventing a potential UVB- induced 
vitamin D intoxication (Holick, 1999) The other source of vitamin D is the diet, which 
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contains cholecalciferol (vitamin D3), originating from animal sources, and ergocalciferol 
(vitamin D2), deriving from plants (Holick, 1999). 
Regardless of their source, once they enter into the circulation, forms of inactive vitamin D3 

or D2 bind to the vitamin D-binding protein (DBP) and are transported to the liver. The 

inactive vitamin D is activated through a 2-step hydroxylation process via two hydroxylases 

that belong to the cytochrome P450- dependent steroid hydroxylases (CYP450). In the liver, 

vitamin D undergoes the first hydroxylation at C-25 via some of the CYP 450 vitamin D 25-

hydroxylases, forming calcidiol (25-hydroxyvitamin D) (Prosser & Jones, 2004).  This is the 

major circulating form of vitamin D. At the level of the proximal renal tubule, 25-OH 

vitamin D is further hydroxylated to calcitriol (1,25 dihydroxyvitamin D, the active form of 

vitamin D) by the 1-hydroxylase (1(OH)ase, CYP27B1)  (Prosser & Jones, 2004). 

Both calcidiol and calcitriol are inactivated via the 25-hydroxyvitamin D3-24-hydroxylase 

(CYP24), forming the inactive metabolite 24,25- dihydroxyvitamin D (Holick, 1999). 

1-hydroxylase has been described in many extrarenal tissues: macrophages, monocytes, 

and placenta, rendering these cells capable of synthesizing 1-,25(OH)2D3from 

25(OH)vitamin D (Weisman et al., 1979, Bhalla et al.,  1983, Stoffels et al., 2007, Adams et al.,  

1983). The activity of 1-hydroxylase in the immune cells is not under the regulation of 

parathyroid hormone and 1-,25(OH)2D3, but rather under immune cytokine regulation. A 

defect in the up-regulation of 1-hydroxylase after immune stimulation is described in NOD 

mouse (Overbergh et al., 2000). Extrarenal distribution of 1-hydroxylase becomes 

important in understanding the extra-skeletal effects of vitamin D. 

VDR is part of the nuclear receptor super family of ligand-activated transcription factors, 

which also includes glucocorticoid, thyroid hormone and estrogen receptors. The gene for 

VDR is located on chromosome 12q12-14, and shows great polymorphism (Haussler et al., 

1998). After 1,25 (OH)2D3 binds to VDR, it induces conformational changes that facilitate 

heterodimerization with the retinoid X receptor and the recruitment of nuclear receptor 

coactivator proteins, which  then act on the chromatin. The specific DNA sequence that is 

ultimately affected by the vitamin D is known as the vitamin D responsive element (VDRE) 

(Carlberg & Polly, 1998). 

The discovery of the vitamin D receptor (VDR) on the immune cells (Strugnell & DeLuca, 

1997), led to the hypothesis that vitamin D could affect the autoimmune processes. 

However, in VDR deficient mice models, there is no increase in autoimmune diseases 

(Mathieu et al., 2001) 

The protective effects of vitamin D in several autoimmune diseases have been described in 

animal models (experimental autoimmune encephalomyelitis (Lemire, 1995), murine models 

of human multiple sclerosis and murine models of rheumatoid arthritis (Cantorna et al., 

1996). In other autoimmune diseases, like psoriasis, vitamin D analogues are the mainstay of 

treatment today. 

The extraskeletal effects of 1-,25(OH)2D3 can usually be observed only at very high 

concentrations (10-10mol/l), higher than physiological levels needed for calcium balance 

(concentrations that could probably be achieved in specific target tissues via the 

macrophages’ 1-hydroxylase) (Mathieu et al., 2005). Thus a risk of hypercalcemia and other 

side effects of 1-25(OH)2D3 could occur if it were used for its anti-autoimmune  properties. 

Numerous vitamin D analogs have been developed to exert extraskeletal effects, with less 

pronounced action on the calcium metabolism. Most of these analogs are used for laboratory 
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research purposes, but some are part of standard treatment for certain autoimmune diseases 

(for example, calcipotriol for psoriasis).  

There are several theories that attempt to explain the link between Vitamin D and 
autoimmune diabetes.  This relationship appears to be complex, with actions at multiples 
levels: genetic, autoimmune and also direct action on the pancreatic beta cells. 

6. Vitamin D and type 1 diabetes 

Animal studies and clinical trials in patients with new onset of type 1 diabetes show that the 
replacement of vitamin D may arrest the deterioration of pancreatic function and improve 
C-peptide levels. 
There is strong epidemiologic data showing that the population in countries with a high 

prevalence of type 1 diabetes mellitus is commonly vitamin D deficient. Vitamin D 

supplementation during pregnancy decreased the risk of the development of type 1 diabetes 

mellitus for offspring (Fronczak et al., 2003). Supplementation of vitamin D at an early age 

also decreases the risk for developing type 1 diabetes (Hypponen et al., 2001)  

The vitamin D receptor (VDR) has been described on almost every tissue in the human 

body, including the cells of the immune system, as discussed earlier.  

The VDR gene is located on chromosome 12, and has a few allelic variants. It has been 

reported that some of these allelic variations of the VDR gene are linked to an increased risk 

of type 1 diabetes mellitus in the German and the Indian Asian population (Pani et al., 2000, 

Chang et al., 2000). On the other hand, the same association was not found in another 

population sample (British, Portuguese and Finnish origin) (Guo et al.,  2006, Lemos, 2008, 

Turpeinen, 2002). 

An interaction between specific VDR polymorphisms and predisposing HLA DRB1 0301 

allele was described in North Indian patients (Israni et al., 2009) and is associated with an 

increased risk of developing type 1 diabetes mellitus.  

As discussed earlier, the last step in the activation of vitamin D is facilitated by the key 

enzyme 1-hydroxylase, encoded by the CYP27B1 gene on the chromosome 12q13.1-q13.3. 

Polymorphism in this gene is described as being associated with an increased risk of type 1 

diabetes mellitus (Lopez et al., 2004, Bailey et al., 2007). The polymorphism in the CYP27B1 

gene could potentially lead to the reduced expression of 1-hydroxylase, less production of 

the active 1,25 (OH) 2 D3, and ultimately, to the increased risk of type 1 diabetes. 

6.1 Vitamin D and type 1 diabetes: The effects on the immune processes 

Vitamin D interacts with most immune cells and affects their cytokine production. Overall, 
vitamin D has a protective effect on the pancreatic beta cells (Figure 2). 

DCs are affected by 1,25 (OH)2D3 in many ways. DCs mature after they engulf the antigen, 

increasing the expression of MHC-II molecules on their surface and secreting IL-12. Studies 

show that vitamin D analogs suppress the expression of MHC-II molecules (Griffin 2000) 

The cytokine secretion by DC is affected as well: the IL-12 is inhibited (D’Ambrosio 1998), 

while IL-10 production is increased (Penna 2000).  Furthermore, DC apoptosis is promoted 

by exposure to vitamin D (Penna  2000). 

If DC are exposed to 1,25 (OH)2 D3, they do not mature at a subsequent exposure to an 

antigen, becoming tolerogenic (Griffin et al., 2001). After being treated with a vitamin D 

analog, the DC do not simply remain immature, but instead are transformed into 
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tolerogenic DC with special endocytic properties (Ferreira et al., 2009). Adorini et al 

published a paper describing how 1,25(OH)2 D3 can change the dendritic cells into a 

tolerogenic phenotype which is thought to induce T regulatory cells and inhibit 

autoimmune diseases, like type 1 diabetes (Adorini, 2003) (Fig 2). 
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Fig. 2. The immunomodulatory effects of 1,25(OH)2D3. At the level of the antigen-

presenting cell (such as dendritic cells; DCs), 1,25(OH)2D3 inhibits the surface expression 
of MHC class II-complexed antigen and of co-stimulatory molecules, in addition to 
production of the cytokine IL-12, thereby indirectly shifting the polarization of T cells from a 

Th1 towards a Th2 phenotype. In addition, 1,25(OH)2D3 has immunomodulatory effects 
directly at the level of the T cell, by inhibiting the production of the Th1 cytokines IL-2 and 

IFN-Ǆ and stimulating the production of Th2 cytokines. Moreover, 1,25(OH)2D3 favors the 
induction of regulatory T cells. Both Th2 and Tregs can inhibit Th1 cells through the 
production of counteracting or inhibitory cytokines. Together, these immunomodulatory 

effects of 1,25(OH)2D3 can lead to the protection of target tissues, such as ǃ cells, in 
autoimmune diseases and transplantation. CD40L, CD40 ligand; Mf, macrophage; Tc, 

cytotoxic T cell; TGF- ǃ, transforming growth factor ǃ; Th1,T helper type 1; TNF-, tumor 

necrosis factor ; Treg, regulatory T cell.  This figure was published in Trends in 
Endocrinology and Metabolism Vol.16 No.6 August 2005. Vitamin D and type 1 diabetes 
mellitus: state of art. Chantal Mathieu and Klaus Badenhoop. Copyright @ Elsevier 2005. 
Used with permission. 

Descriptions of the VDR  on T lymphocytes lead to the subsequent investigation of vitamin 

D actions on these immune cells. Interestingly, 1-hydroxylase is not expressed in the T 

cells, and vitamin D activated in the macrophages acts on the T cells, suggesting an 

autocrine action of 1,25 dihydroxyvitamin D3. 

Rigby and his team proved that cytokine production by T cells is influenced by vitamin D 

analogs: IL-2 and IFN  are inhibited (Rigby et al., 1987), while production of some of the 
type 2 cytokines (IL-4, 5, and 10) is enhanced (Boonstra et al., 2001) 

www.intechopen.com



 
Type 1 Diabetes – Complications, Pathogenesis, and Alternative Treatments 

 

412 

Inhibition of mitogen-stimulated T-cell cultures by vitamin D has been also reported (Rigby 
et al., 1984) 
 On the other hand, suppressor T cells are stimulated by vitamin D, leading to the inhibition 

of T-cell mediated immunity (Mathieu et al., 1994).  

While inhibiting the IL-12 production from the DC, vitamin D is able to shift the 

differentiation of T naïve cells into Th0 cells and further into Th2 cells (IL-12 is an important 

cytokine that preferentially promotes the Th1 cell formation from the Th0 cells) (Willheim et 

al., 1999). 

A recent study reported the direct modulation of CD4+ T cell function by active vitamin D, 

describing the inhibition of IL-17, IL-21, IFN, and the induction of T reg cells expressing 

CTLA-4 and FoxP3. If the T cells are grown in an environment rich in IL-2 and vitamin D, 

they express the highest levels of CTLA-4 and FoxP3, and are able to suppress the 

proliferation of the resting CD4+ T cells (Jeffery et al., 2009). 

VDR is normally expressed on the B cells only upon their activation. Chen reported that 

1,25 (OH)2D3 decreased B cell proliferation and immunoglobulin production and induced 

cell death (Chen et al., 2007). 

Vitamin D inhibits the production of inflammatory interleukins: IL-12, IL-2, interferon , 
tumor necrosis factor (TNF)-ǂ, and TNF-ǃ ,while the production of anti-inflammatory 

cytokines (IL-4, IL-10, TGF-ǃ) is stimulated. This may disrupt the production of Th1 cells, 

which are destructive for the pancreatic beta cells, with a resultant beneficial effect on the 

beta cells (Lemire, 1995, van Etten & Mathieu 2005). 

6.2 Vitamin D and type 1 diabetes: Direct effects on pancreatic cells 

1ǂ,25 (OH)2 D3 appears to have a direct protective effect against pancreatic beta cell 

destruction by reducing the expression of MHC class I molecules (Hahn et al, 1997). In 

addition, vitamin D appears to increase islet cell expression of the A20 protein, which has 

antiapoptotic function (Riachy et al., 2002) (Fig 2). Vitamin D also decreases the expression 

of Fas, which is a transmembrane cell surface receptor mediator, involved in pancreatic beta 

cell apoptosis (Riachy et al., 2006). 

7. Animal studies – vitamin D and type 1 diabetes  

Insulitis can be inhibited by the administration of high doses of vitamin D in NOD mice 

(Mathieu et al., 1992), and 1,25(OH)2D3 can prevent autoimmune diabetes in these animals 

(Mathieu et al., 1994). In both spontaneously developing and cyclophosphamide induced 

models of diabetes mellitus, vitamin D protects against autoimmune diabetes in NOD mice 

through restoration of the deficient suppressor cell function (Mathieu et al., 1995). VDR 

ligands enhance CD4+CD25+ regulatory T cells; these cells may play a role in protecting 

against insulitis in  NOD mice  (Adorini, 2003). 

The loss of balance between the Th1 cells and Th2 cells, with the overproduction of the Th1 

cells, appears to be central in the autoimmune diabetes pathogenesis. In NOD mice, the 

exposure to GAD65 leads to T cell proliferation and antibody production (Kaufman et al., 

1993), at the same time as insulitis develops. 1,25 dihydroxyvitamin D3 administration leads 

to a local immune shift of the balance between the Th1 cells and Th2 cells, favoring the 

increase in IL-4 production and the decrease in the  interferon secretion. 
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Overbergh et al demonstrated that in NOD mice the immune shift between Th1/Th2 cells 
occurs in the periphery and is not limited to the pancreas (Overbergh et al., 2000). 
Furthermore, this change in the immune milieu occurs only in the autoantigen–specific 
immune response (exposure to GAD65, insulin B-chain, heat shock protein 65), and is not 
observed in the immune response associated with other antigens (ovalbumin, tetanus 
toxins, etc).  
The recurrence of autoimmune diabetes mellitus after islet cell transplant was prevented in 
NOD mice by treatment with vitamin D analogs in combination with cyclosporine A 
(Casteels et al., 1998). Further, the administration of a nonhypercalcemic vitamin D analog 
in combination with an immunosuppressant (cyclosporine A) prevented progression to 
overt diabetes mellitus, even after the insulitis developed (Casteels et al., 1998). This effect, 
however, could not be reproduced when the vitamin D analog was administered without 
the addition of cyclosporine.  
The NOD mice have an increased resistance to apoptosis in their immune cells. 1,25-
dihydroxyvitamin D3 restores apoptosis in NOD mice in the thymus, leading to the 
increased destruction of autoimmune effector cells (Casteels et al., 1998). 
In the BB rat, another animal model for autoimmune diabetes mellitus, 1,25-
dihydroxyvitamin D did not lead to any significant difference in the incidence of diabetes 
when given from weaning to 120 days (Mathieu et al., 1997). This finding illustrates the 
issue of potentially different disease mechanisms in various animals and the difficulty of 
applying research findings from one animal model to another, or to humans.  

8. Clinical studies – vitamin D and type 1 diabetes   

The data available from human studies is scant and controversial.  
A few ecological studies support the theory that vitamin D is a major player in the 
autoimmune disease pathogenesis, including type 1 diabetes mellitus.  
A study in Northern Europe described the seasonal pattern of disease onset for autoimmune 
diabetes mellitus (Karvonen et al., 1998). The Diabetes Epidemiology Research International 
Group reported in 1988 an increased incidence of autoimmune diabetes with lower average 
yearly temperatures, which, in turn, was strongly associated with increasing latitude 
distances from the equator. This variation is thought to be due to the decreased exposure of 
the skin to the UV radiation.   
In a very large worldwide study, Mohr et al analyzed the data from the Diabetes Mondial 
Project Group and found that in children younger than 14 years of age,  the incidence rates 
of type 1 diabetes mellitus were significantly increased at higher latitudes and with low 
UVB exposure. Incidence rates of type 1 diabetes mellitus approached zero in the region 
with high UVB irradiance (Mohr et al., 2008).   
Several European studies reported a decreased risk of diabetes in infants supplemented 
with high doses of vitamin D. The EURODIAB substudy 2 study group in seven European 
centers reported that vitamin D supplementation in infancy decreased the risk of 
autoimmune diabetes in a fairly consistent manner  (Dalquist et al., 1999). Hypponen et al 
published the results of a birth-cohort study in northern Finland that included all pregnant 
women who were due to give birth in 1966, and recorded the frequency and the dosing of 
the vitamin D supplementation in the first year of life, as well as the presence of suspected 
rickets. 30 years later, the authors found that there was a lower incidence of diabetes 
mellitus in children who took any dose of vitamin D as compared with children that did not 

www.intechopen.com



 
Type 1 Diabetes – Complications, Pathogenesis, and Alternative Treatments 

 

414 

take any vitamin D supplementation. Even more so, the risk was lower in children that took 
the highest dose (2000 IU daily) as compared to the lower dose of vitamin D. Children with 
suspected rickets had a 3 fold increased risk of developing insulin-dependent diabetes 
mellitus (Hypponen et al., 2001). The risk of developing islet auto-antibodies in the children 
of mothers that took vitamin D during pregnancy was decreased in the Diabetes 
Autoimmunity Study in the Young (DAISY) (Fronczak et al., 2003). It is unclear from these 
studies if the protective effect is due to the supplementation with extra doses of vitamin D 
or prevention of vitamin D deficiency.  
Two new interventional trials have been published in the last 2 years supporting the 

beneficial effect of vitamin D on the development of autoimmune diabetes. 

A pilot study looking at patients with adult-onset latent autoimmune diabetes (LADA) 

demonstrated that supplementation with 1,25 dihydroxyvitamin D3 for 1 year resulted in 

beta cell preservation, as assessed by C-peptide levels (Li et al., 2009).  

Aljabri et al conducted a prospective study in which patients with vitamin D deficiency 

were assigned to receive 4000 IU of vitamin D3 daily and had vitamin D 25 (OH) levels and 

hemoglobin A1c measured at baseline and at 12 weeks. The results revealed that the patients 

who achieved higher circulating levels of vitamin D 25 (OH) had a lower hemoglobin A1c 

(Aljabri et al., 2010).  

Other studies, however, did not find similar results. A study which examined the effects of 

supplementation with cod liver oil during the first year of life, found that the infants who 

were supplemented had a decreased risk of developing childhood-onset type 1 diabetes. 

However, this decreased risk of type 1 diabetes mellitus was not observed in the infants if 

the cod liver oil was supplemented during pregnancy or if the vitamin D preparations were 

supplemented during the first year of the infant’s life. Since cod liver oil has a high content 

of vitamin D along with the long-chain n-3 fatty acids (eicosapentaenoic and 

docosahexaenoic), it is not clear if these effects are due to the high vitamin D content of the 

cod liver oil or due to the fatty acids (Stene et al., 2003). 

Pittoco et al reported the results of an interventional trial in children with newly diagnosed 

type 1 diabetes, in which the patients were administered calcitriol or nicotinamide in order 

to preserve beta-cell function. Even though there was a decrease in the insulin requirements 

at 3 and 6 months in the calcitriol treated group, at the end of the first year there was no 

difference between the C-peptide levels or hemoglobin A1c between the two groups 

(Pitocco et al., 2006).  

Bizzarri et al investigated whether supplementation with calcitriol in recent onset 

autoimmune diabetes has a protective effect on the pancreatic beta cells and found that, at 

the doses used in the study, calcitriol did not confer protection against the autoimmune 

destruction of the beta cells (Bizzarri et al., 2010). In Germany, Walter et al supplemented 

newly diagnosed adult patients with 1,25(OH)2D3 for 18 months. At the end of the study 

there was no difference in the areas under the curve (AUC) for C-peptide, peak C-peptide, 

or fasting C-peptide after a mixed meal tolerance test between the treatment and the placebo 

groups (Walter et al., 2010).  

9. Conclusion  

In conclusion, the data on the role of vitamin D in the pathogenesis of autoimmune diabetes 

mellitus is inconclusive. More studies, particularly, interventional trials, with vitamin D or 
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vitamin D nonhypercalcemic analogs need to be performed before the interaction between 

autoimmunity, diabetes mellitus and vitamin D is completely understood.  
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