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Czech Republic

1. Introduction

The actual trends in new material development impose the necessity of a thorough knowledge
of the relationships between properties and microstructure. In order to meet the requirements
on the performance of some materials in their applications, that are often very sophisticated,
a very fine tuning of the manufacturing process and its parameters is needed. Therefore, it is
indispensable to be able to distinguish between small differences in microstructures produced
by the different variations of processing parameters. Another important field of material
characterization is the description of microstructure heterogeneities. Such heterogeneities are
often related to risks of premature damage nucleation and preferential defects (void, cracks,
corrosion, etc.) occurrence and propagation.
One of the most important elements of the microstructure of metallic materials is the set
of second phase particles. Particle size and shape distributions and the type of spatial
dispersion (homogeneous, long-range or short range ordered, clustered, etc.) are often the
major attributes of a particular microstructure (Humphreys & Hatherly, 2004; Polmear, 2006).
Thin foils made from aluminium-manganese based alloys, such as AA3003, are the material
most frequently used as fins in automotive heat exchangers (Hirsch, 2006). This application
imposes very strict requirements on properties and related foil microstructures. The
development of an appropriate production technology is contingent on the perfect knowledge
of the impact of processing parameters on microstructure transformation, including the
changes of the set of particles (Hirsch, 2006; Slámová et al., 2006).
In statistical setting, we deal with microstructures containing random objects in a space or
plane, which may be second phase particles, pores, grains and their sections or projections.
The question frequently asked is whether two microstructures come from a material with the
same geometrical characteristics of microstructure. This statement forms a null hypothesis H0

and the aim is to develop a statistical two-sample test of H0 against an alternative hypothesis
that the geometrical characteristics are different. In the literature, parametric models of
microstructures as random sets are mostly used (Derr & Ji, 2000; Ohser & Mücklich, 2000) and
the authors recommend Monte Carlo testing which is based on the possibility of simulating a
random set under the null hypothesis. The evaluation of the test is based on a comparison of
the test statistics (describing some characteristics (Tewari & Gokhale, 2006a;b) of the random
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set) obtained from simulated models with that obtained from the microstructure. In the
present paper, we apply a nonparametric approach. We will consider some geometrical
characteristics, which can be measured by means of image analysis or estimated from the
observation in a window. Thus, we obtain a vector (typically of a large dimension) of data,
which does not form a random sample since the vector components may be stochastically
dependent. For statistical testing, such a dependency is a serious problem. For the data
from a single window, such a problem should be considered (Kupczyk, 2006). Under the
assumption that we can observe the microstructure in a few independent windows, we put
all the data from the individual windows and observations within windows together. This
global information for both sets can be compared using N-distances from probability theory,
see (Klebanov, 2005). The same holds in the functional data approach, where data is first
transformed to a function. When the number of independent windows is large, the test of
H0 can be transformed into a univariate distribution-free two-sample test. For a smaller
number of measurements, the permutation test for H0 based on N-distances can be used.
In the paper, we consider microstructures with dispersed particles. A statistical method
is developed independently of whether we deal with 2D or 3D data. Therefore, in the
application presented from metallography, we will call the feature particles, which in fact
are 2D particle sections. We distinguish two basic sets of particle characteristics, namely the
individual particle geometry and the spatial distribution of particles. Even if these are rather
different descriptive tools, we try to construct the test so that it can be applied to both of them
in an analogous way. We describe a variety of methods in Section 2 including also a functional
data analysis. In the applied part of the paper in Section 3, we present data from thin foils
demonstrating the use of the test for a comparison of metallographic samples of aluminium
alloys, observed by means of optical microscopy. The numerical results are in Section 4.
Finally, in Section 5 we present a general discussion of the methods and interpretations of
results. The theoretical statistical background is given in the Appendix.

2. Methods

Several statistical methods for the testing of differences between microstructures containing
particles are suggested in this Section. In Subsections 2.1 and 2.2 we describe particle systems
by a vector of parameters and the testing is reduced to a test of the null hypothesis that the
vector of these random parameters has the same distribution for two random sets A and
B. In Subsection 2.3 the functional data approach is used, we compare functions which fit
the observed data. Finally in Subsection 2.4 a simulation study concerning the power of the
test based on N-distances is performed in order to see its behavior with respect to different
alternative hypotheses.

2.1 Vector approach – individual particle parameters

Here we describe method (I). Generally the individual particles observed in a window
(metallographic sample) are not independent. We will assume that n windows of the same
size and magnification are observed for two microstructures A and B. Let the windows
be each sufficiently far from the other or taken from independent samples so that we can
assume independence among windows. We measure the same number k of particles from each
window. In our application, the image analyzer scans particles in a window in a meandering
way so that we obtain a representative set of particles by taking the first k particles measured
from each window. Assume that m geometrical parameters are measured for each particle
(corresponding to microstructures A, B). Two independent samples X1, . . . , Xn from A and
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Y1, . . . , Yn from B with matrices of size k × m are thus obtained. Now we transform each
matrix Xi, Yi to a vector x̃, ỹ, respectively, of size km:

x̃ = (x1,1, . . . , xk,1, x1,2, . . . , xk,2, . . . , x1,m, . . . , xk,m), (1)

ỹ = (y1,1, . . . , yk,1, y1,2, . . . , yk,2, . . . , y1,m, . . . , yk,m),

and evaluate an empirical counterpart of the N-distance (11):

N̂ =
1

n

⎡
⎣

n

∑
i=1

n

∑
j=1

(
2L(x̃i, ỹj)−L(x̃i, x̃j)−L(ỹi, ỹj)

)
⎤
⎦

1
2

, (2)

where e.g.
L(s, t) = ‖s − t‖ (3)

is the Euclidean distance between vectors s, t, which is a strongly negative definite kernel,
cf. Appendix.

Fig. 1. Histogram of N-distances from 5000 random permutations (m = 1, k = 500, n = 20).
The value 0.697 corresponds to the non-permuted case and the p-value is the probability
(relative frequency) of N-distance being larger than this value.

We describe the permutation test (Lehmann & Romano, 2005) of the null hypothesis in more
detail, which is used when n is small. Consider K random permutations of 1, . . . , 2n. Apply
each permutation to long vector (x̃1, . . . , x̃n , ỹ1, . . . , ỹn), and then split the permuted set to the
first n and last n vectors and evaluate (2) to obtain K empirical N-distances (K is recommended
to be about 1000). Under the null hypothesis, permutations do not modify the distribution of
the random variable N. From the histogram of these distances including the non-permuted
case, we obtain the p-value for the test, which is the probability (under the validity of the null
hypothesis) that the random N-distance is larger than its measured value. A typical example
of the test is in Fig. 1, here we reject H0 since the p-value is smaller than 0.05. If the p-value
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were greater than 0.05, H0 would not be rejected. This rule we use in all tests throughout the
whole chapter.
We recommend also a simpler test in which the samples are split randomly into three sub
samples x̃, x̃′, x̃′′(ỹ, ỹ′, ỹ′′), respectively, of size n/3 (assuming it is an integer). Then put (12)

Ui = L(x̃i, ỹi)−L(x̃i, x̃
′
i) (4)

Vi = L(ỹ′
i, ỹ

′′
i )−L(x̃′′

i , ỹ
′′
i )

i = 1, . . . , n/3. The null hypothesis is now equivalent to the hypothesis that Ui, Vi come
from the same distribution, which can be tested by an arbitrary univariate two-sample test,
e.g. a Kolmogorov-Smirnov test (using STATS package in R language, (Ihaka & Gentleman,
1996)), whose statistic has the form

max
x

|HU
n (x)− HV

n (x)|,

where HU
n (x) and HV

n (x) are empirical distribution functions of U1, . . . , Un and V1, . . . , Vn

correspondingly.
For small values of n, i.e. n < 120, however, the loss of information when splitting
the files to a size n/3 leads to the situation where the use of the asymptotic statistics for
the Kolmogorov-Smirnov test is not recommended (Buening & Trenkler, 1978, p.135). The
test based on splitting is distribution-free (independent of the underlying distribution of
observations), but it has smaller power than the permutation test, see (Klebanov, 2005).
Namely, based on simulated samples from multivariate normal distributions and location
alternative, it was shown that splitting test has about the same power as permutation test,
but based on three times smaller sample size. For the one-dimensional case and the samples
from normal distribution and location alternatives, the permutation N-test has the power very
closed to optimal t-test. However, for the samples from the mixture of normal distribution
N-test may be more powerful than t-test. In all situations permutation N-test is more powerful
than Kolmogorov-Smirnov test.

2.2 Vector approach – the spatial distribution of particles

Here we do not evaluate the measurement directly but first the measured information is
transformed.
To test the difference in spatial distribution of particles we use m mutual characteristics of
particle centroids, among them:

a) a distribution function of the nearest neighbour distance (G-function) (Tewari & Gokhale,
2006b),

b) a contact distribution function (F-function) (Tewari & Gokhale, 2006a),

c) a pair correlation function (pc f ) (Ohser & Mücklich, 2000).

Concerning the spatial distribution, we distinguish complete independence (CI), attraction
(clustering) and repulsion (regularity). Functions F and G coincide when CI takes place, for
clustered patterns graph G is to the left of F while for regular patterns F is to the left from G.
These are distance characteristics while pc f is a second-order characteristic, being identically
equal to 1 under CI. Peaks of pc f correspond to typical distances between pairs of points.
The edge-corrected estimators of these functions (Kaplan-Meier estimators for F, G, Ripley’s
estimator for pc f , using SPATSTAT package in R language) are obtained. We do the estimation
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in each of n windows for both microstructures A, B. From the estimated curves we construct
vectors Gj = G(j△), Fj = F(j△), pc f j = pc f (j△), j = 1, . . . , k, where △ > 0 is a given
step and k△ the range considered. Choosing m of these three characteristics we construct
2n vectors of size km, cf. (2). If the number of independent windows n is smaller than 120,
we evaluate N in (2). Using K random permutations of these 2n vectors we perform the
permutation test of
H0 : microstructures A, B have the same distribution of characteristics involved,
exactly as in the method (I) above. If n > 120, we evaluate (5) and use the
Kolmogorov-Smirnov test. The tests are not much dependent on △ if it is small. All this
is called method (II).
The characteristics of the spatial distribution are dependent of the intensity λA, λB of particle
centroids of microstructures A, B, respectively. The intensity is the mean number of particle
centroids per unit volume and it is estimated as

λA =
nA

|W| , λB =
nB

|W| ,

where |W| is the size of the window and nA, nB are the corresponding numbers of particle
centroids observed in the window. Clearly, microstructures with different intensities have
different nearest neighbour distances, etc. Consider the problem of an investigation of the
difference between A and B purely in the spatial distribution independently of the different
intensities. For the case nA �= nB, we can scale the image window B by

√
nB/nA. This

transformation leads to the same estimated density of particles of A and transformed B (in
windows of different size). Then we evaluate functions F, G, pc f and continue by testing
based on N-distances as above, this is our method (III).
Consider finally the problem of testing the difference in the density of particles. Here we need
a parametric model and we restrict it to a point process model with no interactions (Poisson
process). Under the assumption that both microstructures can be modeled by a stationary
Poisson process, there is a theoretical test of the hypothesis: H0 : λA = λB. We reject H0 at a
confidence level α, if the statistics:

T =
|nA − nB|√

nA + nB
> u1− α

2
(5)

(see (Ng et al, 2007)), where for 0 < a < 1, ua denotes the a-quantile of the standard Gaussian
distribution.

2.3 Functional data approach

In Subsection 2.2 we dealt in fact with functions (F, G, pc f ) which describe the spatial
distribution of particles. Since in the computer we have always discrete data, i.e. a finite
number of the values of a function, typically at equidistant argument points, we used the
vector analysis for testing the null hypothesis by means of N-distances. However, within this
theory it is also possible to deal with functions, this approach belongs to the field of statistical
analysis of functional data.
In the functional data approach we used the Bernstein polynomials (Korovkin, 2001) as a
suitable approximation for corresponding functions F, G, pc f . Let us remind that the Bernstein
polynomial of the degree n for the function f (x) is defined as

Bn(x; f ) =
n

∑
j=0

f
( j

n

)(n

j

)
xj(1 − x)n−j.
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The test for the null hypothesis is constructed by means of N-distances, with the strongly
negative definite kernel L for two functions f (x) and g(x) defined on an interval [0, a] as

L( f , g) =
(∫ a

0
( f (x)− g(x))2dx

)1/2
.

In this case the empirical analog on N-distance is defined as

N =
( 2

M2

M

∑
i=1

M

∑
j=1

L(FA
i , FB

j )−
1

M2

M

∑
i=1

M

∑
j=1

L(FA
i , FA

j )− 1

M2

M

∑
i=1

M

∑
j=1

L(FB
i , FB

j )
)1/2

. (6)

Here FA
j and FB

j are the Bernstein polynomials for the function F (correspondingly, G or pc f ),

constructed for the jth window of microstructures A and B.
To compare the microstructure A with microstructure B we use permutation test, that is we
combine the functions FA

j and FB
j in one long vector of functions, make a random permutation,

and after that we split the vector into two parts, calculating after that N-distance between
corresponding parts. The described operation has to be repeated many times, which is
possible thanks to fast computers. This ends our method (IV).
Further, using the functional data approach, we suggest a new comparison technique,
qualitatively different from the previous ones. Suppose again we have two microstructures
(A and B), observed in M windows. Denote by nj the number of particles in j-th window from
microstructure A, and by kj the corresponding number from B. Corresponding coordinates of

particle centroids are denoted by (X
(j)
1 , Y

(j)
1 ), . . . , (X

(j)
nj

, Y
(j)
nj

)) for jth window from A, and by

(U
(j)
1 , V

(j)
1 ), . . . , (U

(j)
k j

, V
(j)
k j

)) for jth window from B (j = 1, 2, . . . , M).

Method (V) is based on a smoothing procedure in each window by convolving a discrete
two-dimensional distribution concentrated in particle centroids with two-dimensional
Gaussian distribution with zero mean vector and standard deviations σj(A) = 1/ 4

√
nj and

σj(B) = 1/ 4

√
kj, i.e. we pass to the functions

µj(x, y) =
1

σ2
j (A)

1

nj

nj

∑
s=1

K(
x − X

(j)
s

σj(A)
,

y − Y
(j)
s

σj(A)
) (7)

for A, and

νj(x, y) =
1

σ2
j (B)

1

kj

k j

∑
s=1

K(
x − U

(j)
s

σj(B)
,

y − V
(j)
s

σj(B)
) (8)

for B. Without loss of generality, we may suppose that the window is a unit square:
Q = {(x, y) : 0 < x < 1, 0 < y < 1}. Define strongly negative definite kernel L for
two functions f (x, y) and g(x, y) given on Q as

L( f , g) =
(∫ 1

0

∫ 1

0
( f (x, y)− g(x, y))2dxdy

)1/2
.

In this case the empirical analog on N-distance (6) is used with µi, νj as arguments of L.
To compare the microstructures A and B we use again the permutation test, that is we combine
the functions µj and νj in one long vector, make a random permutation, and after that we split
the vector into two parts, calculating after that N-distance between corresponding parts. The
described operation has to be repeated many times.
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It is possible to study a more general situation. Namely, we need not consider only coordinates
(X, Y) of the particle centroids, but also individual characteristics of the particles. Then, we
will have instead of two-dimensional vector (X, Y) the vectors of higher dimensionality, and
instead of the functions µ and ν depending on two arguments we will have corresponding
functions depending on three or more arguments. Theoretically, it is possible to consider an
arbitrary number of characteristics of the particles, but the calculations for more than three
arguments are very time consuming. Therefore, as the method (VI), we consider the case
of three arguments, and as an example the case of three parameters: two coordinates of the
particle centroid and the area of the particle (section).
Again, we have two microstructures (A and B), observed in M windows. Denote by nj the
number of particles in j-th window from microstructure A, and by k j the corresponding
number from the microstructure B. Corresponding coordinates of particle centroids and their

areas are now denoted by (X
(j)
1 , Y

(j)
1 , Z

(j)
1 ), . . . , (X

(j)
nj

, Y
(j)
nj

, Z
(j)
nj
) for j-th window from A, and

by (U
(j)
1 , V

(j)
1 , W

j
1), . . . , (U

(j)
k j

, V
(j)
k j

, W
(j)
k j

) for j-th window from B (j = 1, 2, . . . , M).

We make a smoothing procedure in each window by convolving a discrete three-dimensional
distribution concentrated in particle centroids and their areas with three-dimensional
Gaussian distribution with zero mean vector and standard deviations σj(A) = 1/ 4

√
nj and

σj(B) = 1/ 4

√
kj, i.e. we pass to the functions

µj(x, y, z) =
1

σ3
j (A)

1

nj

nj

∑
s=1

K
( x − X

(j)
s

σj(A)
,

y − Y
(j)
s

σj(A)
,

z − Z
(j)
s

σj(A)

)

for A, and

νj(x, y, z) =
1

σ3
j (B)

1

kj

k j

∑
s=1

K
( x − U

(j)
s

σj(B)
,

y − V
(j)
s

σj(B)
,

z − W
(j)
s

σj(B)

)

for B.
Without loss of generality, we may suppose that the window is a unit cube:
Q = {(x, y) : 0 < x < 1, 0 < y < 1, 0 < z < 1}.
Define strongly negative definite kernel L for two functions f (x, y, z) and g(x, y, z) given on
Q as

L( f , g) =
(∫ 1

0

∫ 1

0

∫ 1

0
( f (x, y, z)− g(x, y, z))2dxdydz

)1/2
.

Then again the empirical analog on N-distance (6) is used with µi, νj as arguments of L.
Further, we apply the same testing procedure as for two-dimensional case, described above.

2.4 The power of the test

In order to understand and describe the properties of the suggested testing based on
N-distances, it is necessary to study the power of the tests, which quantifies the probability of
a correct rejection of H0. It is possible to do this by means of simulations of special cases. For
the use of Kolmogorov-Smirnov test for comparison of U, V in (12) a study of the power is
presented in (Klebanov, 2005). We present here another study of the power of our test when
using permutation testing in the vector approach.
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Fig. 2. Estimated probability, that the null hypothesis is rejected by the permutation test on
0.05 significance level, given the alternative of location (upper left), scale (upper right),
correlation (lower left and right).

Consider a k−dimensional Gaussian distribution with mean (µ, . . . , µ), and variance matrix
terms Σii = σ2, Σij = ρσ2, i �= j, ρ ∈ [0, 1]. This distribution can be simulated as

Xj = σ
√

ρZ + σ
√

1 − ρYj + µ, j = 1, . . . , k,

where Z, Y1, . . . , Yk are independent identically distributed standard Gaussian
random variables. Two independent random samples of size n, with parameters
(µ1, σ1, ρ1),(µ2, σ2, ρ2), respectively are compared with null hypothesis of equal distributions
and alternatives of
(i) location: µ1 �= µ2. (ii) scale: σ1 �= σ2. (iii) correlation: ρ1 �= ρ2.
Numerical results of the simulation and testing are in Fig. 2, where it is µ1 = 0, µ2 horizontal
axis (upper left); σ1 = 1, σ2 horizontal axis (upper right); ρ1 = 0, ρ2 horizontal axis (lower
left); ρ1 = 0.5, ρ2 horizontal axis (lower right). The number of windows is n =20, k =100
grains, 100 permutations, averaged over 1000 simulations. In the lower right graph the
number of windows is 40. The parameters not involved in the alternative are µ1 = µ2 = 0
in (ii), (iii), σ1 = σ2 = 1 in (i), (iii), ρ1 = ρ2 = 0 in (i), (ii). We can observe that for
the location alternative the power function increases more rapidly than for the scale and
correlation alternatives. For both location and scale alternatives the power function increases
more rapidly than for the correlation alternatives.

3. Materials

Further we present an application of suggested statistical methods. A Czech company AL
INVEST Břidličná, a.s. provided five Al-Mn alloys denoted A, C, L, P, Z, the composition of
which is in Table 1. The alloys with high manganese contents are A, C, L, P, high silicon
contents have A, C and L, they differ in the zinc contents present in C and not present in A, L.
Considering the high solubility of Zn in Al, all Zn is dissolved in aluminium matrix. Therefore,

466 Recent Trends in Processing and Degradation of Aluminium Alloys
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Statistical Tests Based on the Geometry of Second Phase Particles 9

(a) Material A (b) Material C

(c) Material L (d) Material P

(e) Material Z

Fig. 3. A metallographic sample of material (a) A, (b) C, (c) L, (d) P, (e) Z, respectively, a
transverse section of the foil. In (a), (b), (c), (alloys with higher contents of Si) particles
α-Al12(Mn, Fe)3Si prevail. In (d), (e), (alloys with lower contents of Si) particles Al6(Mn, Fe)
prevail.

Zn does not participate in second-phase particles and its presence in alloy C does not affect its
particle volume fraction and size distribution. Alloys P and Z have lower silicon contents, P
has lower copper contents while Z has lower manganese contents. The most important factor
influencing particles volume fraction and size distribution in the set of alloys considered is the
content of silicon. Coarse particles are mostly primary, undissolved particles of α-Al12(Mn,

467Statistical Tests Based on the Geometry of Second Phase Particles
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Fe)3Si and Al6(Mn, Fe). Fine particles, present especially for alloys with a higher content of
Si, are mainly precipitates α-Al12(Mn, Fe)3Si, cf. (Slámová et al., 2006).
All alloys were twin-roll cast in strips of 8.5 mm in thickness. All specimens were
homogenized at high temperature after a 35% reduction in thickness and then cold rolled
to thickness of 0.4 mm. The samples of 0.4 mm thickness were annealed again at 350 ◦C in
order to increase the ductility of the material so as to facilitate the cold rolling up to the final
foil thickness of 0.10 mm.

Alloy Mn Si Fe Cu Zn Mn+Si+Fe (Mn+Si)/Fe Mn/Si

A 1.09 0.54 0.47 0.16 0.004 2.1 3.5 2.02
C 1.02 0.56 0.53 0.15 1.02 2.1 3.1 1.8

L 1.02 0.59 0.48 0.11 0.01 2.1 3.3 1.7

P 1.01 0.20 0.61 0.04 - 1.8 2.0 5.1
Z 0.86 0.10 0.61 0.16 - 1.6 1.6 8.7

Table 1. Composition of experimental materials [wt. %].

Metallographic samples after grinding and polishing were observed by optical microscopy,
see Fig. 3, where the vertical size of the window corresponds to the total thickness of the foil.
Twenty windows along the foil, see Fig. 4, with distance 1 mm between neighbouring ones
were measured by an image analyzer. The number of particles and individual parameters
of each particle were measured in each window and for each material. The individual
parameters are Area, EqDiam (i.e. diameter of the circle with the same area as parameter
Area), Minimal Feret, Maximal Feret (extremes of the breadth, Ohser & Mücklich (2000), of a
particle w.r.t. directions). The Shape Factor can be evaluated as a fraction of Minimal Feret
and Maximal Feret. Parameters Area, EqDiam and Shape Factor were used to the input data
to our test.

Fig. 4. Scheme of sampling windows along the foil of thickness 0.1 mm. The distance
between neighbouring windows is 1 mm.

4. Numerical results

The preliminary analysis concerns the mean size of particle sections and their density, see
Tables 2, 3, apparently A, C, L differ from P and Z, see also Fig.5. For the testing, since the
number of windows n = 20 is small, we use the permutation test described in Section 2. The
results of method (I) are in Table 4. The microstructures do not differ in the shape factor of
particles. Concerning the particles size we observe again two separated groups {A, C, L} and
{P, Z} (according to silicon contents). Between them there is a significant difference, while
within the groups this is not the case. Nevertheless in Table 4 we observe a difference in pairs
A − L, P − Z, while we cannot reject the null hypothesis in pairs A − C, C − L.
For the methods (II)-(IV) of the spatial distribution of particle section centroids first the F, G
and pc f functions were estimated. The estimators of functions F, G and pc f for all windows of
material P are presented in Fig. 6, i.e. in each figure a), b), c) there are 20 graphs. We observe
a small variability of the estimators. Let us note that there is a similarly small variability of
these estimators in all other materials. In Fig. 7 we compare the average estimators (from
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Alloy MeanArea Standard Deviation Density Total number
A 0.696 0.864 0.073 19 773

C 0.683 0.873 0.070 18 834

L 0.689 0.796 0.080 21 611
P 1.080 1.287 0.047 12 605

Z 1.223 1.386 0.041 10 997

Table 2. The mean area of observed particle sections (in [µm2]), their density (in [µm−2]) and
total number for materials A, C, L, P, Z, evaluated from all 20 windows.

Fig. 5. Histograms of areas of particle sections in the first window of each material. In a) we
have A, C, L and in b) there are P and Z.

Alloy Mean Number Standard Deviation

A 988,65 44.76

C 941,7 53.50
L 1080,55 41.36

P 630,25 46.55

Z 549,85 33.47

Table 3. The mean number of observed particle sections and their standard deviation in one
window (evaluated from all 20 windows).

20 windows) of the functions F, G and pc f evaluated for all materials. We obtain the results
that for the material L, A, C these are greatly different from the results for materials P and
Z. The estimators of pc f of materials P and Z are practically the same and the differences of
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All Area Eqdiam ShapeFactor
A-C 0.343 0.369 0.335 0.050

A-L 0.040 0.042 0.035 0.203

A-P < 0.001 < 0.001 < 0.001 0.565
A-Z < 0.001 < 0.001 < 0.001 0.529

C-L 0.302 0.355 0.288 0.046

C-P < 0.001 < 0.001 < 0.001 0.283
C-Z < 0.001 < 0.001 < 0.001 0.322

L-P < 0.001 < 0.001 < 0.001 0.422

L-Z < 0.001 < 0.001 < 0.001 0.488
P-Z 0.015 0.020 0.002 0.639

Table 4. The p-values for two-sample tests of individual particle parameters (method I)
evaluated for all m = 3 parameters together (the column All) and then for single parameters
(m = 1) with n = 20, k = 500 and with the number of permutations equal to 5000.

Fig. 6. Estimators of (a) F-function, (b) G-function and (c) pc f for material P. Graphs
obtained from each of 20 windows are drawn in the same figures in order to observe a small
variability of the estimators among the windows.

estimators of the functions F and G are small, while the corresponding functions of materials
L, A, C are shifted to the left. This is caused mostly by the different particle density
The results for method (II) of the two-sample tests for the spatial distribution in Table 5 lead
to the interpretation that there are significant differences in spatial distribution between any
materials of different groups {A, C, L} and {P, Z}. It is interesting to observe what happens
within the groups. We can see that while distribution functions F, G still yield differences, the
pair correlation function does not reveal any. Only the pair C − A which has the most close
contents of silicon, does not reveal any difference in any characteristics.
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Fig. 7. Graphs of (a) F-function, (b) G-function and (c) pc f for all three materials obtained by
averaging the estimators from 20 windows. We observe that for materials L, A, C they look
differently from P, Z.

All F G pcf
A-C 0.6 0.166 0.034 0.999

A-L 0.004 < 0.001 < 0.001 0.784

A-P,A-Z < 0.001 < 0.001 < 0.001 < 0.001
C-L < 0.001 < 0.001 < 0.001 0.584

C-P,C-Z < 0.001 < 0.001 < 0.001 < 0.001

L-P,L-Z < 0.001 < 0.001 < 0.001 < 0.001
P-Z < 0.001 < 0.001 < 0.001 0.545

Table 5. The p-values for two-sample tests of the spatial distribution (method II) evaluated
for all three parameters together (m = 3, column All) and then for single parameters (m = 1)
with n = 20, k = 11, △ = 1 µm and with the number of permutations equal to 5000.

Let us analyze the number of particles for the microstructures P and Z, we can test the
difference between nP = 13866, nZ = 11945 from all 20 windows, thus in (5) we have
T = 12 > 1.96 and we reject an H0 of equal particle density at the significance level α = 0.05.
Here the Poisson process model assumption is violated, as suggested by the shape of pc f in
Fig. 6 we have a type of a regular model, i.e. mild repulsion since there are nonoverlapping
particles around the centroids. Clearly, if we reject the null hypothesis λP = λZ for the Poisson
process model using (5), we reject it for the regular model too, since it is less dispersed, i.e. the
numbers of particles observed in windows vary more slowly.
Further a finer analysis of the spatial distribution of particles is applied using method (III).
If we eliminate the effect of particle density on the spatial distribution by means of the scale
change as suggested in Section 2, the results change as presented in Table 6. The pure effect
of the spatial distribution of particle centroids is such that there is no significant difference
between materials P − Z, A − C. But this is moreover the case also for individual functions F
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All F G pcf
A-C 0.483 0.132 0.527 0.540

A-L 0.003 0.002 0.509 0.004

A-P 0.019 0.108 0.022 0.028
A-Z 0.013 0.178 0.122 0.009

C-L < 0.001 < 0.001 0.502 < 0.001

C-P 0.001 0.060 0.057 0.001
C-Z 0.005 0.195 0.158 0.003

L-P < 0.001 0.010 0.037 0.001

L-Z < 0.001 0.005 0.256 < 0.001
P-Z 0.628 0.611 0.416 0.479

Table 6. The p-values for two-sample tests of the spatial distribution (with the effect of
particle density eliminated, method III). Evaluation for all three parameters together (first
column) and then for single parameters (m = 1) was obtained with n = 20, k = 11, △ = 1 µm
and with the number of permutations equal to 5000.

(holds for A − P, A − Z, C − Z) and G (A − L, A − Z, C − L, C − Z, L − Z). That means
some differences between two groups are removed.
Finally we present results of two-sample tests when using the functional data approach in
Subsection 2.3. First for the comparison based on functions F, G, pc f we use the versions
with scale change to eliminate the effect of particle density. Similar results as in Table 6 are
expected using this method (IV), see Table 7. Even if individual p−values in both tables differ,
the decisions about H0 are almost completely the same.

F G pcf

A–C 0.59 0.57 0.32
A–L 0.02 0.46 < 0.01

A–P 0.17 0.02 0.02

A–Z 0.42 0.13 < 0.01
C–L < 0.01 0.42 < 0.01

C–P 0.07 0.04 < 0.01

C–Z 0.43 0.14 0.01
L–P 0.02 0.04 < 0.01

L–Z 0.01 0.26 < 0.01
P–Z 0.58 0.44 0.46

Table 7. The p-values for two-sample tests of the spatial distribution (with the effect of
particle density eliminated), using the functional data approach, method (IV). Evaluation
was obtained with the number of permutations equal to 100.

Further the tests based on multidimensional smoothing of particle characteristics are applied,
which are qualitatively different methods. They are not sensitive to the particle density, on the
other hand it may reveal local inhomogeneities and differences. First we give the results of
comparison by method (V), that is corresponding p−values of the test based on N-distances
of functions (7), (8), for different pairs of microstructures in terms of the particle centroid
coordinates only, see Table 8. In many cases, but not in all, the results are similar to those
in Tables 6, 7 (spatial distribution only is investigated in both methods). Different results are
obtained especially for pairs A − C, P − L.
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A-C A-L A-P A-Z C-L C-P C-Z L-P L-Z P-Z
< 0.01 0.0297 < 0.01 0.475 < 0.01 < 0.01 < 0.01 0.257 < 0.01 0.059

< 0.01 0.07 < 0.01 0.19 < 0.01 < 0.01 < 0.01 0.11 0.02 0.04

Table 8. The p-values of N-test for corresponding coordinates comparisons in the functional
data approach, method (V). The top row corresponds to the choice σj(A) = 1/ 4

√
nj and

σj(B) = 1/ 4

√
kj, the bottom row to the choice σj(A) = σj(B) =

1
3 .

A-L A-P P-Z
< 0.01 < 0.01 < 0.01

Table 9. The p-values of N-test for the comparisons based on coordinates and areas of the
particles in the functional data approach, method (VI).

Finally a simultaneous analysis of spatial distribution and an individual particle parameter
(area of the section) was performed using the functional data approach, method (VI). The
results of the comparison are given in Table 9. We do not consider all pairs of microstructures
since for those of different groups (different silicon contents) the particle areas surely cause
the rejection of null-hypothesis. As we can see from Table 9, this is the case also in other pairs.

(a) A–C (b) A–Z

Fig. 8. Average value of the difference µj − νj of functions (7),(8) taken from all 20 windows,
microstructure A–C, A–Z.

5. Concluding remarks

This chapter brings an extension and continuation of research started in (Benes et al.,
2009). New statistical methods are developed for the comparison of microstructural
images of random objects in metallography and other applications. They are based on
an appropriate interaction of approaches from mathematical statistics, image analysis and
stochastic geometry. A proper two-sample test derived from N-distances enables one to
evaluate a large amount of information from a few observed windows. The tests presented
are easy to apply to metallographic images observed by light microscopy and image analysis.
In comparison with the above mentioned paper here we suggest further methods based on
functional data analysis and we analyze a broader set of foils from aluminium-manganese
based alloys.
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The first group of methods based on vectors of characteristics obtained from image analysis
measurements and further transformation of data is well-established and the results easily
understandable. From the practical point-of-view, it should be mentioned that N-distances are
scale dependent, so that when evaluating qualitatively different information simultaneously
(m > 1) one has to choose the scale carefully to be comparable for all parameters. This is
guaranteed in the analysis of spatial distribution since all three functions used fall within
a similar range. In the analysis of particle characteristics the size scale has to be modified
comparably to the range of the shape factor. We conclude that mostly recommended methods
are (I) and (IV) (or (III)).
On the other hand the newly proposed methods (V) and (VI) based on multidimensional
functional data analysis need further investigations to be able to claim their usefulness.
In comparison with method (I) they are able to evaluate different numbers of particles in
windows. Theoretically, they are independent on the dimensionality, and therefore they are of
great potential use in multidimensional statistical analysis. At first sight corresponding tests
seem to be strict and sensitive to both local differences in spatial distribution and in particle
characteristics. One must be very careful when interpreting the results of a functional data
analysis. It should be also added that functional data analysis combined with permutation
testing is more time-consuming (especially in the multivariate case), but feasible when using
fast computers, and, especially, clusters.
Some of results obtained by classical and functional data analysis may seem to be
contradictory, but this is not the case, the reason is that various methods for comparison of
spatial distribution are different in their nature. We may consider pairs of microstructures A-C
and A-Z. The functional data method using functions µ, ν in (7),(8) rejects the null hypothesis
for A-C and does not reject it for A-Z. This conclusion is related to Fig. 8, where we can see
the average values of the difference µj − νj taken from all 20 windows, where the range is two
times smaller for A-Z than for A-C. The same observation holds for individual windows, too.
We investigated also the sensitivity of method (V) with respect to the choice of bandwidth σj.
In the top row of p−values in Table 8 there is the asymptotically optimal bandwidth by theory.
One can observe how the p−value slightly changes with a broader bandwidth in bottom row,
but there is no evidence of a systematic change.
It is possible to study statistical properties of the tests by simulations. Concerning the
resolution of the test, the power of the variants of the test based on N-distances was compared
in (Klebanov, 2005). Besides our study in Subsection 2.4, in paper (Bakshaev, 2008) a
large comparative study of the power of several two-sample tests (Kolmogorov-Smirnov,
Cramer-von Mises, Anderson-Darling, Wilcoxon, Mann-Whitney, N-distances) was made. It
appears that for a multidimensional case the test based on N-distances has the highest power.
The results of the application of the two-sample test in metallography can be transformed
from conclusions about the geometry of the microstructure to conclusions relevant materials
research. Since the production of all three materials was based on the same processing, the
only difference is in the chemical composition of the alloys. Therefore, we can conclude
that a differentiation for high and low silicon contents is apparent, while small differences
in composition within different groups {A, C, L} and {P, Z} do not have a clearly apparent
impact on the microstructure. We can observe that while P and Z have different particle
densities, they do not differ in particle size and shape, nor in the pure spatial distribution
(interactions).
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7. Appendix

Here we give a mathematical background of N-distances and related statistical testing. This
background comes from (Klebanov, 2005). Let {X,A} be a measurable space, L : X2 → IR1 is
a negative definite kernel on X (L(x, x) = 0 and L(x, y) = L(y, x)) if and only if

∫

X

∫

X

L(x, y)h(x)h(y)dQ(x)dQ(y) ≤ 0 (9)

for an arbitrary probability measure Q on {X,A} and a measurable function h on X such that∫
X

h(x)dQ(x) = 0. We say that L is strongly negative definite if the equality in (9) implies
h = 0 almost surely with respect to the measure Q.
Let L be a strongly negative definite kernel on X, BL the set of all probabilities µ on {X,A} for
which there exists the integral

∫
X

∫
X
L(x, y)dµ(x)dµ(y) < ∞. For µ, ν ∈ BL put N (µ, ν) =

= 2
∫

X

∫

X

L(x, y)dµ(x)dν(y)−
∫

X

∫

X

L(x, y)dµ(x)dµ(y)−
∫

X

∫

X

L(x, y)dν(x)dν(y). (10)

Then

N(µ, ν) =
(
N (µ, ν)

)1/2
(11)

is a distance on BL, it is called N-distance. We will use N-distances in the following using
two approaches. First in classical data analysis when X = IRk is the Euclidean space of
k−dimensional vectors. Secondly in functional data analysis where X = L2 is the space of
square integrable functions.
Let L(x, y) be a strongly negative definite kernel on IRk, X, Y are two independent random
vectors in IRk, define one-dimensional independent random variables U, V by

U = L(X, Y)−L(X, X′), V = L(Y′, Y′′)−L(X′′, Y′′). (12)

Here all vectors X, X′, X′′, Y, Y′, Y′′ are mutually independent, equalities of distributions X
d
=

X′ d
= X′′, Y

d
= Y′ d

= Y′′ hold. We have X
d
= Y ⇐⇒ U

d
= V ⇐⇒ N(X, Y) = 0. Consider

testing of the hypothesis H0 : X
d
= Y for multivariate random vectors X, Y. This hypothesis

is equivalent to H′
0 : U

d
= V, where U, V are random variables taking values in IR1. Consider

two independent samples X1, . . . , Xn; Y1, . . . , Yn from general multivariate populations X
and Y, respectively. A one-dimensional test to U and V can proceed in the following ways:
a) split each sample randomly in three equal parts X, X′, X′′, Y, Y′, Y′′ and use (12); this leads
to a loss of information,
b) simulate the samples from X′ and X′′ (as well as from Y′ and Y′′) by independent choices
from observations X1, . . . , Xn (and from Y1, . . . , Yn, correspondingly); thus we do not test the

hypothesis X
d
= Y, but the one of the corresponding empirical distributions,

c) permutation test using Monte Carlo approximation.
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