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1. Introduction 

An uncontrolled increase in intracranial pressure (ICP), often due to cerebral oedema, is the 

most common cause of death in traumatic brain injury (TBI) patients. Different types of 

oedema coexist in TBI patients: vasogenic oedema and cytotoxic oedema. Vasogenic oedema 

occurs with the extravasation of fluid into the extracellular space following blood brain 

barrier (BBB) disruption. Cytotoxic oedema results from a shift of water from the 

extracellular compartment into the intracellular compartment due in part to alterations in 

normal ionic gradients. The description of the localisation, and the knowledge of the 

chronology, the determinants, and the kinetics of the BBB disruption are necessary to adapt 

therapeutic strategy.  

Although nuclear magnetic resonance is not advisable during the acute phase of human 

TBI, especially in unstable TBI patients, this imaging is one of the most accurate for the 

study of brain oedema. Diffusion-weighted imaging provides a useful and non-invasive 

method for visualizing and quantifying diffusion of water in the brain associated with 

oedema. Apparent diffusion coefficients (ADC) can be calculated and used to assess the 

magnitude of water diffusion in tissues. For example, a high ADC value indicates more 

freely diffusible water which is considered as a marker of vasogenic oedema. On the other 

hand, cytotoxic oedema restricts water movement and results in decreased signal 

intensities in the ADC map. In a rat model of diffuse TBI, an early increase in ADC values 

during the first 60 minutes was observed, followed by a decrease in ADC values reaching 

a minimum at one week [1]. This result suggests a biphasic oedema formation following 

diffuse TBI without contusion, with a rapid and short disruption of the BBB during the 

first hour post injury, leading to an early formation of vasogenic edema. Contrary to the 

non-contused areas, there are numerous arguments in favour of a profound and 

prolonged alteration of the BBB in traumatic areas of contusion appearing on CT [2-7]. 

Several methods have been used to study oedema formation and the BBB changes 

following animal and human TBI, however its underlying mechanisms are still not well 

understood. For these reasons, it might be interesting to investigate a new and more 

accessible technique to study the oedema formation at the acute phase of human TBI, 

particularly to compare the non-contused and the contused areas and to follow the BBB 

state in these areas with time.  
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Computed Tomography (CT) scan, the iconographic gold standard to describe acute brain 

lesions, is widespread and accessible. CT scan image acquisitions are prompt and 

reproducible with high quality. With specific software, volume, weight and an estimation  

of specific gravity (eSG) can be quantified from CT DICOM image and can be used to study 

different anatomic areas at different periods after injury. The goal of this review is to 

describe the use of quantitative CT scan results in non-contused and contused areas in TBI 

patients.  

2. Quantitative computed tomography  

Since its development in the 1970’s, CT scan has become the radiological examination of 
choice in the acute assessment of patients with acute brain lesions and especially TBI. CT 
maps the way in which different tissues attenuate or absorb the beam of X-ray. A crucial 
point is that the radiological attenuation is linearly correlated with the physical density in 
the range of human tissue densities [8, 9]. For example, blood clot has relatively little water 
content and absorbs X-rays more than the normal brain. It is displayed as hyperdense area. 
On the other hand, ischemia and liquid collection are displayed in dark areas because there 
is an increase in water content.  
BrainView, a recent software package developed for Windows workstations, provides semi-
automatic tools for brain analysis and quantification from DICOM images obtained from 
cerebral CT scan. For each exam, BrainView inputs series of continuous axial scans of the 
brain. It then automatically excludes extracranial compartments on each section (Figure 1).  
 
 

 

Fig. 1. Brainview software working window. CT DICOM image imports (a, b), automatic 
exclusion of extracranial compartments (c). 

a b c
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Interactive slice-by-slice segmentation allows the user to select different anatomical 
territories indexed throughout the whole sequence. The software is an upgrade of 
Lungview, another software previously developed by the same institution (Institut National 
des Télécommunications) and used for lung and heart weight, volume and density analysis 
by our group [10-12].  For each compartment of a known number of voxels, the volume, 
weight and eSG are computed using the following equations: 
1. Volume of the voxel = surface x section thickness. 
2. Weight of the voxel = (1 + CT / 1000) x Volume of the voxel where CT is the attenuation 

coefficient (expressed in  Hounsfield Unit). 
3. Volume of the compartment = number of voxels x volume of the voxel. 
4. Weight of the compartment = summation of the weight of each individual voxel 

included in the compartment. 
5. Estimated specific gravity (eSG) of the compartment = Weight of the compartment / 

Volume of the compartment. The eSG is expressed as a physical density in g/mL.  
Brainview technology was first validated ex vivo. We measured the specific gravity of 
different solutes by determining the weight of one litter of these solutes (Figure 2). The eSG 
of the same solutes was then computed using BrainView. The two values were linearly 
correlated especially in the range of densities in human brain tissue [13]. Using the 
correlation between the specific density and the radiological attenuation, Brainview allowed  
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Fig. 2. Comparison of the specific gravity (SG) of the different solutes measured by the 
electronic scale method (weight/volume) and the estimated specific gravity (eSG) with 
quantitative CT scan [13].  
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us to assess the weight, volume and eSG of different anatomical parts of the brain (the two 
hemispheres, the cerebellum, the brainstem and the intraventricular and subarachnoid 
cerebrospinal fluid, the white and grey matters, contused and non-contused hemispheric 
areas). The technology also allows the comparison of different populations (TBI patients, 
subarachnoid haemorrhage patients, controls) or the same population at different periods 
(first hours after injury, CT controls at 1 week, before or after a treatment etc.).    
In theory, eSG measurement is a good reflection of the density variations.  When studying 
the consequence of BBB disruption in TBI, a complete disruption of the BBB with leakage of 
water, electrolytes, proteins and cells would increases the brain eSG since the added volume 
(exsudat) has a density greater than the brain. However, a partial disruption of the BBB with 
leakage of water and electrolytes would decrease the density since the added volume 
(transudat) has a density lower than the brain (Figure 3).  

 

 

Fig. 3. Computation of the resulting specific gravity after adding a given volume (x axis) of a 

solute with a density of 1.026 g/mL (square), 1.0335 (round), 1.045 (triangle) and 1.060 

(diamond)  in hemispheres having a volume of 1041 mL, a weight of 1076 g and a SG of 

1.0335 g/mL (mean values of controls). 1.026 g/mL is the density of plasma. 1.060 g/mL is 

the density of blood. 1.045 g/mL is the density of a solute explaining an increase in the 

hemispheric volume of 85 mL combined with a raise in SG from 1.0335 up to 1.0367 g/mL 

(mean value of controls and TBI patients [13]. 

3. Quantative CT study of non-contused hemispheric areas  

Using the methodology of Brainview, weight, volume and eSG of the brain were measured in 
15 TBI patients, 3±2 days after the trauma and in 15 controls. For similar age and overall 
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intracranial volume, TBI patients had an overall brain weight 82g heavier, and hemispheres 
weight 91g heavier, than controls [13]. Volume of intraventricular and subarachnoid CSF was 
reduced in TBI patients. In this first series of measurements in 15 TBI patients, eSG of 
hemispheres, brainstem and cerebellum was significantly higher in TBI patients as compared 
to controls (all P<0.0001). The increase in eSG was statistically similar in these three anatomical 
compartments, and in white and grey matter. Furthermore, there was no correlation between 
the hemispheric eSG and age, natremia at computed tomography time, presence of a traumatic 
subarachnoid hemorrhage, or presence of intraparenchymal blood [13].  
To confirm these results, a second study was performed in a larger cohort of 120 severe TBI 
patients. The measurement of eSG from the initial CT scan performed in the first 5 hours 
after trauma was also increased. eSG increase was present in the overall intracranial content 
and in the non-contused hemispheric areas [14]. The follow up changes in eSG of the overall 
intracranial content showed that it takes more than ten days to return to a normal value of 
eSG (Figure 4). The same cohort was divided into two groups according to the initial eSG of 
the non-contused hemispheric areas.  The normal specific gravity (NSG) group was defined 
as patients having an eSG less than 1.96 SD above controls. In the increased specific gravity 
(ISG) group, patients had an eSG higher than 1.96 SD above controls. Patients in the ISG 
group had a lower Glasgow coma scale (GCS) and more often had a mydriasis at the scene 
of the accident, more frequently received osmotherapy in the initial phase, more frequently 
had an extra-ventricular drainage implanted for ICP monitoring and CSF drainage, more 
frequently received barbiturates as a second line therapy and more frequently had a CT 
classified in the third category of the Marshall score. In this cohort, the initial GCS, the 
velocity, the occurrence of mydriasis at the scene and the use of osmotherapy were 
 

 

Fig. 4. Follow-up changes in estimated specific gravity (eSG) of the overall intracranial 
content (n=15) [14]. 

1,026

1,028

1,030

1,032

1,034

1,036

1,038

1,040

D0-D1 D2-D11 D12-D20 > D21

Time in days (D)

e
S

G
 (

g
/m

L
)

*
*

*

www.intechopen.com



 
Computed Tomography – Special Applications 

 

30

predictors of outcome at ICU discharge and at one year. eSG of the overall intracranial 
content or of the non-contused areas were also predictors of outcome (Table 1). This study 
indicated also that eSG was strongly correlated with the intensity of therapeutics to maintain 
ICP below 20 mmHg.  To understand the relationship between eSG and brain swelling, we 
compared eSG values of TBI patients and high grade subarachnoid haemorrhage (SAH) 
patients with a similar severity of brain swelling. The increase of eSG was only highlighted in 
the TBI group [15]; it was not observed in the high grade SAH group. In a fourth study, we 
compared eSG value of the non-contused hemispheric areas before and after an hypertonic 
saline bolus administration, and we observed an increase of eSG associated with a decrease in 
the volume, corresponding to a correct permeability of the BBB in these areas [16].    
 

 

Table 1. Predicting factors of outcome at Intensive Care Unit (ICU) and 1 year later in 
patients with severe TBI. GOS: Glasgow outcome scale; SAPS: simplified acute physiological 
score; MVA: motor vehicle accident; * p<0.01; † p<0.001 [14] . 

4. Quantitative CT study of contused hemispheric areas 

In TBI, osmotherapy such as hypertonic saline has been shown to decrease ICP; therefore it 
is used in an emergency to control ICP augmentation. From a theoretical point of view, it 
can be expected that hypertonic saline is effective only in the areas of the brain where the 
BBB is still functional after trauma. As there seem to be BBB alterations in contusion areas, 
the patient population that is most likely to respond to hypertonic saline  needs to be further 
defined. A prospective study was designed to evaluate, using quantitative CT scan, the 
regional effects of hypertonic saline on contused and non-contused brain tissue after TBI 
[16]. Global and regional brain volumes, weights and eSGs were compared with Brainview 
before and after hypertonic saline bolus administration in a prospective series of 14 patients 
3±2 days after severe TBI. Hypertonic saline presented opposite effects on non-contused and 
contused hemispheric areas (Figure 5). Hypertonic saline decreased the volume of the non-
contused hemispheric tissue by 14 ± 9 mL while increasing the eSG by 0.029 ± 0.027 %. The 
volume of the contused tissue ranged from 3 mL to 157 mL (50 ± 55 mL). Hypertonic saline 
increased the volume of contused hemispheric tissue by 6 ± 4 mL without any concomitant 
change in density. The increase of the contusion’s volume with hypertonic saline injection 
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was significantly related to baseline contusion volume expressed in percentage (r2= 0.62, P = 
0.01, Figure 6). Hypertonic saline consistently decreased the weight of the non-contused 
areas while increasing the eSG, indicating a decrease in water content and, consequently, a 
functional BBB. On the other hand, hypertonic saline always increased the weight of the 
contused area. By using quantitative CT scan, this study was able to describe in human TBI 
the BBB permeability selectively in contused and non-contused areas. The BBB is still 
permeable in the contused areas 3 days after TBI, and thus hypertonic saline should be 
given with caution in TBI patients with large contusions after the immediate resuscitation 
period while the patient is in the ICU. 
 

 
Fig. 5. Mean effect of hypertonic saline on the weight and volume of contused and non- 
contused areas. The box plots summarize the distribution (25th and 75th quartiles). The line 
across the middle of the box identifies the median sample value. The whiskers extend from 
the ends from the sides of the box to the outermost data point that falls within the distances 
computed [16]. 

 

 

Fig. 6. Change in the weight of contusion according to its initial volume assessed in 
percentage of the hemispheres [16]. 
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5. Interpretation of estimated specific gravity variations 

As quantitative brain CT studies have shown, contused and non-contused hemispheric 
areas show opposite behaviour concerning eSG variation. In the non-contused areas, a large 
part of the TBI patients presented an early increase of eSG (5 hours after trauma). This 
increased eSG in TBI was diffuse, present in the white and grey matters, and required more 
than 10 days to become normal. The value of eSG was also correlated with the therapeutic 
intensity level in ICU and the outcome at ICU discharge. Contrary to the contused 
hemispheric areas, the BBB of the non-contused areas was sufficiently semi-permeable to 
lead to decreased water content after osmotherapy.  
The observation of increased eSG in patients with TBI is in opposition with some 
experimental literature. Studies performed in murine models of head trauma report a 
decrease in eSG with a rise in the cerebral water content [17, 18]. However, and as in our 
three different studies [14-16], Bullock at al. observed an increased SG with severe TBI in the 
same proportion [19]. In another human TBI study, specific gravity determined on small pieces 
of subcortical tissue using a graduated specific-gravity column was also increased [20].  
In our studies, eSG increase was concomitant to a gain of weight. One might argue that the 
increased eSG could be due exclusively to hyperemia caused by vascular dilation. However, 
there are some strong experimental [21] and human data against this hypothesis. Recently, 
Marmarou et al demonstrated, using MRI, that brain oedema is the major fluid component 
contributing to traumatic brain swelling following TBI in humans [22]. These authors 
observed a reduction in cerebral blood volume in proportion to cerebral blood flow 
following severe brain injury. As shown on the abacus presented in Figure 3, since blood 
has an eSG of 1.060 g/mL [23], theoretically an increase in cerebral blood volume of 45 mL 
would be necessary to increase hemispheric eSG from the mean value of controls to the 
mean value of TBI patients. Considering that normal cerebral blood volume is about 5% of 
the overall intracranial volume, this would mean a 65 % increase in cerebral blood volume. 
Together, the mean change of hemispheric volume that we observed was 85 mL, a value 
much higher that what could be explained by the change in cerebral blood volume alone.  
Another hypothesis to explain eSG increase could be the presence of traumatic macro-
haemorrhagic lesions. We first reported that the eSG value was increased in the white 
matter, excluding the subarachnoid space and thus subarachnoid haemorrhage [13]. Also, 
eSG values of the total intracranial content and of the non-contused hemispheric areas were 
similarly elevated [14], a finding that argues against a major role for visible macro-
hemorrhagic lesions in eSG elevation.  
The last hypothesis to explain eSG increase is the very early BBB disruption already 

described in different experimental models of TBI [24, 25]. There are many experimental 
arguments showing that the BBB disruption is early and brief. Time window studies 

indicate that the barrier seals within a few hours following severe head injury [26]. In the 
experimental model of Barzo et al, permeability of the BBB returned to control values as 

soon as 30 min after the head trauma  [1]. Tanno et al also observed a pronounced abnormal 
permeability to IgG and horseradish peroxidase occurring within the first hour after injury 

that was widespread throughout both hemispheres after a lateral, fluid percussive brain 
injury in the rat [27]. In that study, maximal permeability occurred at 1 hr after injury. This 

was confirmed by Baldwin et al [2]. In humans, this early, transient and diffuse opening of 
the BBB might be directly or indirectly involved in the increase of eSG. Theoretically, a leak 

of plasma decreases the overall hemispheric eSG since the SG of plasma (between 1.0245 
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and 1.0285 g/mL) is lower than that of the brain. According to Figure 3, the volume added 
in hemispheres of TBI patients should have a mean density of 1.045 g/mL to explain eSG 

increase. This value cannot be explained by plasma leakage alone and must also involve 
cells. Thus, it can be hypothesized that BBB opening occurs immediately after TBI in some 

patients, leading to extravasation of cells and proteins into the extracellular space. This 
extravasation could also be associated with leucocyte infiltration and microglia proliferation 

already described in TBI [27]. Immune cells’ proliferation increase tissue specific gravity and 
they also correlate with brain injuries severity, exacerbating the oedema and leading to 

prolonged ICP elevation and to higher treatment intensity. Thus, eSG may reflect the early 
BBB disruption and consequences specifically associated with TBI [15] and may explain why 

it is correlated with TBI outcome. 
Regarding the contused areas, experimental data suggest that BBB remains open for a 

prolonged period of time after trauma [2, 3]. Our quantitative CT scan study of contused 

areas suggested that this is true in human TBI, since hypertonic saline consistently increased 

the weight and volume of contused areas. In the experiment performed by Tanno and al, at 

24 hr after injury, abnormal permeability was restricted to the impact site and this area 

remained permeable up to 72 hr after trauma [28]. Experimentally, Beaumont et al 

demonstrated using an intravenous bolus of Gd-DTPA with serial T1 MR images that BBB 

permeability was the greatest in the site of contusion [29]. Gd-DTPA accumulation was 

greatly enhanced by secondary insult such as hypoxia and hypotension. Figure 7 represents 

an illustration of BBB regional and chronological modifications and CT scan observation 

after TBI in contused and non-contused areas.  
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Fig. 7. Illustration of BBB modification after TBI in contused and non-contused areas 
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6. Conclusion 

Quantitative CT scan is validated for brain imaging and may help to better characterize the 
regional differences (contused and non-contused areas) in TBI and the BBB disruption time-
course. These studies argue for a distinction between the contused and non-contused area 
and also for a consideration of the change of the lesions over time.  
The clinical usefulness of the automatic determination of eSG in human TBI to characterize 
the BBB state or to establish outcome information’s will have to be addressed in a large 
prospective study.  
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as a generic diagnostic tool for non destructive material testing and three dimensional visualization beyond its

medical use.
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