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1. Introduction

Harmonic pollution in the AC mains determines additional power losses and may cause
malfunctioning or even damage to connected equipments. Distortion of the currents
circulating on electric mains is mainly originated by non linear loads, as AC/DC uncontrolled
rectifiers used for motor drives, that absorb undesired current harmonics. Therefore, local
countermeasures have to be taken in order to keep the portion of grid affected by distortion
as small as possible, hence preventing relevant power losses and “saving” other equipments,
connected to the rest of the grid.

Traditionally, passive filtering components have been adopted to cope with harmonic
compensations, however they are affected by several drawbacks; they are very sensitive
to network impedance variation and environmental conditions, moreover they need to be
tuned on fixed frequencies. In order to overcome those limitations, in the last decades,
thanks also to the fast growth in power electronics and control processor technologies, a
remarkable research attempt has been devoted to the study of the so-called Active Power
Filters (APFs), both from a theoretical and technological point of view (see Gyugyi & Strycula
(1976), Akagi (1996), Singh & Al-Haddad (1999)). These devices are able to properly work in
a wide range of operating conditions, providing better performance and overtaking intrinsic
limitations of passive devices, they are far more insensitive to network impedance, they can
be tuned onto different frequencies just varying some software parameters. Furthermore, the
system reliability is improved, resonance phenomena are avoided and a diagnosis system can
be implemented on the control processor to monitor the system variables and adopt some
recovery strategy in case of faulty conditions.

In this chapter, the general issues related to analysis, dimensioning and control of a particular
class of APFs, the so-called Shunt Active Filters (SAFs), are addressed; the main purpose of
this kind of power system is to inject into mains a proper current, in order to cancel out,
partially or totally, the power distortions generated by nonlinear loads. The SAFs considered
in this work are based on a three-phases three-wires AC/DC boost converter topology (see
Fig. 1) connected in parallel to the distorting loads.
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The first step to properly design a SAF is the selection of suitable hardware components;
as it will become clear in the next section, owing to the structural properties of the system,
the sizing procedure cannot be considered apart from the canonical control aspects, hence a
correct dimensioning algorithm (Ronchi & Tilli, 2002) is proposed to ensure feasibility of the
desired control objectives and to minimize costs. In addition, according to such method, it
is shown how a time-scale separation between different dynamics of SAF usually takes place
“for free”. This point is very useful for control design and stability analysis.

Once a correct hardware sizing has been carried out, the first control issues to deal with are:
the current/power control algorithm and the load current analysis method adopted to define
the filter current reference. Various solutions have been proposed in literature. As regards
current/power harmonic tracking, in (Chandra et al.,, 2000) an hysteresis current control
(Kazmierkowski & Malesani, 1998) is proposed, while in (Jeong & Woo, 1997) predictive
current control is adopted. For what concerns the generation of the filter currents reference,
beside Fast Fourier Transform Techniques, instantaneous power theory (Akagi et al., 1984),
time domain correlation techniques (Van Harmelen & Enselin, 1993), notch filter theory
(Rastogi et al., 1995) and other methods have been proposed. Solution based on state observer
have been proposed, too, as in (Bhattacharya et al., 1995) and (Tilli et al., 2002).

However, what renders the SAF control problem challenging and different from other
conventional tracking problems is the presence of peculiar and unstable internal dynamics,
given by the voltage dynamics of the DC-link capacitor bank. This capacitor bank is the main
energy storage element, which provides the voltage, modulated by the control, to steer the
filter currents and, at the same time, is required to oscillate to exchange energy with the line
and the load to compensate for current harmonics. Actually, this element needs to be carefully
considered also in the previously-mentioned dimensioning stage; a correct capacitor sizing
is crucial for control objective feasibility, whatever control technique is adopted. Moreover,
it can be shown that, if perfect harmonic compensation is achieved, the DC-link voltage
dynamics are unstable, due to the system parasitic resistances that lead to a slow discharge
of the capacitor. Hence, a suitable stabilizing action for DC-link voltage dynamics needs to
be provided. Since no additional circuit is used to feed the DC-link capacitor independently
of the three-phase port used to inject currents, (see Fig. 1), the voltage stabilization would
need to be integrated with the controller devoted to harmonic compensation (the AC/DC
boost-based SAF is an underactuated system). This is a crucial point and it has to be tackled
preserving harmonic compensation performances as far as possible.

In this work a power/current controller, based on Internal Model Principle, (see Marconi
et al. (2003), Marconi et al. (2004), Marconi et al. (2007)) is designed in order to cancel
current harmonics, ensuring robustness with respect to SAF parameter uncertainties. By
exploiting the internal model approach, the proposed solution also allows to merge and
solve at the same time the two above-mentioned problems of current harmonics isolation and
current reference tracking. As regards the robust stabilization of the DC-link voltage internal
dynamics, a cascade control structure is proposed. An additional voltage controller, acting
on the references of the power/current controller, is introduced. This controller is designed
taking into account the structural voltage oscillations required for harmonic compensation
and minimizing the impact on harmonic compensation. In particular, by exploiting a proper
averaging (Sanders et al., 1991) of the capacitor voltage dynamics, the average value of the
capacitor voltage is chosen as output variable to be controlled (Hanschke et al., 2006).

As far as the overall stability is concerned, the previously mentioned time-scale separation
between portions of SAF dynamics can be effectively exploited to decouple power/current
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Fig. 1. Shunt Active Filter scheme.

tracking and voltage stabilization control problems, using averaging and singular perturbation
theory techniques (Khalil, 1996).

This chapter is organized as follows. In Section 2, the general framework is described, the
SAF model is derived and the control objectives are formally defined. In Section 3, two
methodological approaches are presented for the SAF components sizing. The first one is
based on the knowledge of the load currents harmonic spectrum, the values selected for the
hardware components are the minimums allowing the SAF to deal with the considered load
distortion. Differently, the second approach is related to the maximum current of the AC/DC
boost switching devices. In this case the selected components values are the minimums
which enable the SAF to compensate for all possible loads giving distorted currents smaller or
equal to the switches peak value. In Section 4 both the internal model-based power/current
controller and the averaging voltage controller design are presented, stability analysis is
carried out relying upon the time-scale separation imposed by the design algorithm; both
the power and the voltage subsystem are proven to be asymptotically stable, then practical
stability of the overall system is claimed exploiting general results on two time-scale averaged
systems (Teel et al., 2003). The effectiveness of the proposed control solution is tested in
Section 5 through simulations.

2. Shunt active filter model and control problem statement

The scheme of the shunt active filter considered in this chapter is reported in Fig. 1, as
mentioned in the introduction it is based on a three-phase three-wire AC/DC boost converter,
where the main energy storage element is a DC-bus capacitor, while the inductances are
exploited to steer the filter currents by means of the converter voltages. The switching devices
of the three-leg bridge (also called "inverter"’) are usually realized by IGBTs (Insulated Gate
Bipolar Transistors) and free-wheeling diodes.
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In this work the following notation is used to denote the SAF variables; v,,,p:=(Vma, Vmp, Vmc) T
is the mains voltage sinusoidal balanced and equilibrated tern, i,,=(ima, imp, imc)’ are the
mains currents, i;=(ij,, i1, i.)| are the load currents, while i=(i,, ij,ic)T are the filter currents.
L indicates the value of the inductances, and C the DC-link bus capacitor value.

2.1 Mathematical model
Considering the inductors dynamics, the filter model can be expressed as

Uma (1) J iag(t) ig(t) 1y (t) 1
Omp(E) | =L ip() | = R iy () | = Juy(t) | o(t) —onk |1 1)
Ume(t) ic(t) ic(t) uz(t) 1

where R is the parasitic resistance related to the inductance L and to the cables, vk is
the voltage between the nodes N and K reported in Fig. 1, v(f) is the voltage on the
DC-link capacitor, and u; = (uy, Uy, uZ)T is the switch command vector for the legs of the
converter. Since a PWM (Pulse Width Modulation) strategy is assumed to control the inverter,
the above-mentioned control inputs can be considered such that uy; € [0, 1], i = x,y,z.
According to the three-wire topology for any generic voltage/current vector x it holds

Y x%=0 )

i=a,b,c
hence, from the sum of the scalar equations in (1) it follows that

UNK = ux(t) + uy3(t) T ua(t) v(t) (3)

defining

1
tgpe = [ua(t), up(t), uc(t)]" = {uy(t) | - 1 )
1
it can be verified by direct computations that

[11 ugpe(t) =0 Vt > 0. 6

For what concerns the state equation relative to the capacitor voltage dynamics, it can be
derived considering an ideal inverter and applying a power balance condition between the
input and the output of the filter, then replacing (3) into (1), the complete filter model results

di R . o(t 1

a - _ZI3l<t> - %uabc(t) + Evmabc 6
do _ Lt (i) ©
dt — C abe

where the filter currents dynamics have been written in a more compact form with respect
to (1), multiplying the current vector by the identity matrix of suitable dimension I5.
Exploiting equations (3), (5), the system model can be reduced to the standard two-phase planar
representation of a three-phase balanced systems (Krause et al., 1995), which can be obtained
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Table 1. Control function table.

applying the following coordinates transformation

iap(t) = [in ig)" ="P Topci(t)
utx/%(t) = [”lx ”B]T =1 Tubc”abc(t)

Umap = [Umvcvmﬁ]T =P TabcUm @)
ap 2|1 _% _%
abec = 5 0 @ _\/Tg

the SAF dynamics expressed in this « — 8 reference frame become

dizx,B R . v(t) 1
i _EIZZaﬁ(t) - Tulxﬁ(t) + vatxﬁ @®)
dv

3 o
5 = o Yap(Diap(t)

according to the hypothesis of three-phase balanced sinusoidal line, the ideal main voltage
tern can be expressed in the above-defined bi-dimensional reference frame as follows

[Oma vmﬁ]T = Vyu[cos(wnm) sin(wm)]T

where V;, is the voltage amplitude and w;, the grid angular frequency. For what concerns the
control vector 1,., in this reference frame the eight possible configurations of the switching
network (reported in Tab. 1) can be mapped in the « —  plane, obtaining the vertexes and
the origin of the feasibility space illustrated in Fig.2, while each point in the hexagon can be
obtained as mean value in a PWM period. As it will become clear in the next sections, in
order to simplify the control objectives definition and the controller design, it is very useful
to adopt a further transformation from the two-phase current variables [iy ig] T to a two-phase
real-virtual (imaginary) power variables defined as

x = [x4 xq]T —4q Tupiap )
where

cos(wmt) sin(wpt)

dq _
Tap = Vin —sin(wmpt) cos(wmt)
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Fig. 2. Hexagon of feasible 1.

In this so-called synchronous coordinate setting, aligned with the mains voltage vector, the
model of the SAF is expressed as

%= M(R,L)x — %udq +dy
(10)

where

E,./L —R/L w 3
dy = { K } , M(R,L) = [—wm —RH}L} €= g,y Ent = Vi ttag =1 Toptip (1)
m

it is further to notice that, since the filter currents, the mains voltage and the DC-link voltage
are measurable, the full state (x,v) is available for feedback, moreover the actual control action
u = [uy Uy uz] can be determined from u ., which in turn can be derived from Ugy-

As regards the load description, the same two-phase real-virtual power representation can
be used, in particular following (Akagi et al., 1984), the load currents can be approximated
as periodic signals given by the sum of a finite number N of harmonics, with frequencies
multiple of f;, = wy, /2. Hence the load currents can be expressed in power variables as

N+1
x5 = Xijo + 21 Xijncos(nwmt + ), j=d q (42
n=

where the harmonics amplitudes Xj40, Xjg0, Xign, X1gn and phases ¢4, gn are constants. Since
the load currents and the mains voltages are measurable, also the variables (x4, xj;) will be
considered known and available for control purpose.

2.2 Problem statement and control objectives

Roughly speaking the main control objective of the considered SAF is to steer the variables
X4, Xg, injecting power into the line to compensate for the load harmonics. However the
ability of tracking current references relies upon the energy stored in the DC-link capacitor,
which is the main power source of the filter, therefore another general objective is to keep the
DC-link voltage confined in a suitable region, to avoid overcharge and, at the same time, to
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ensure the capability to steer the filter currents. On the other hand the ability of maintaining
DC-link voltage into a suitable region is strictly related to the power exchanged with the
mains, which in turn is affected by the current harmonics to be compensated for. The general
control objective is then two-folds; one related to the tracking of current disturbances, the
other concerns the voltage internal dynamics stabilization. In this paragraph a precise and
feasible control problem is formally defined, recalling the considerations made above, and
assuming that a suitable dimensioning, that will be deeply discussed in the next section, has
been carried out.

Bearing in mind the power variables representation of a generic nonlinear load expressed in
(12), it turns out that the only desired load component is Xy, since it represents first-order
harmonics aligned with the mains voltages, while the remaining part of the real component
x4 — X140 is an oscillatory signal with null balance over a line period, and the imaginary
component x;, represent a measure of the misalignment between mains ideal voltage and load
currents (see Mohan et al. (1989)) and do not contribute to the power flow. In this respect, the
terms x;; — Xj40, X1 are undesired components which should be canceled by the injected filter
currents, hence ideally the control problem can be formulated as a state tracking problem, for
system (10), of the following reference

T
(1) =[xy x)" = (X0 =34 — 31 (13)

a prefect tracking of this reference would ensure pure sinusoidal mains currents perfectly
aligned with the mains voltages. However, this ideal objective is in contrast with the
requirement to have a DC-link voltage bounded behavior. In order to formally motivate
this claim, consider the steady state voltage dynamics in case perfect tracking of the power
reference x*(t) is achieved, after some computations it results

2

ddit = eL (dg + M(R, L)x*(t) — " ()T x* := e¥ (x*(t)) (14)
the signal e¥(x*(t)) which drives the integrator is periodic with period T = 1/f, and
it is composed by the sum of a zero mean value signal eL(dy — ¥*)Tx*, and the signal
eL(M(R,L)x*)Tx* which has negative mean value as long as parasitic resistance R or
reference x* are not zero. By this, no matter the starting voltage value of the DC-link, the
capacitor will be discharged and the voltage will drop, providing a loss of controllability of
the system.

To avoid this phenomenon, the reference must be revised, taking into account an additional
power term, which should be drained from the line grid by the active filter, in order to
compensate for its power losses. Following this motivation, and recalling that the unique
useful component for the energy exchange is the real part of the power variables, the ideal
reference signal (13) is modified as

xj;O =x" 4 (o O)T (15)
in which ¢ is a solution of the following equation

2 1/ fm *2 *2
R@3 — Epao + Rfm/o (x2 (1) + x;2(1))dT =0 (16)
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this represents the power balancing condition which guarantees that the internal voltage
dynamics in case of perfect tracking of the modified reference xy, is

dv?(t)
dt

— e¥(x), (1)) (17)

and the right hand side ¥ (xg, ) is periodic with period 1/ f;, with zero mean value. A brief
discussion is needed for the solutions of equation (16), it has two real positive solutions if the
following condition is verified

1/fm
E2 > 4R2f,, /O (x2(7) + x2(1))d (18)

from a physical viewpoint relation (18) set an upper bound on the admissible undesired
components which can be compensated and on the parasitic resistance R, however, as
typically E,,; >> R, this condition is not limitative at all. The two solutions of (16) under
condition (18) are

R 1/ fu
g0~ p—fu [ (1) + ()T~ 0
Ema™" Jo (19)
%Emd
Po~

the first solution, minimizing the power drained from the line grid to compensate the power
losses, is the physically most plausible, because the power consumed by parasitic resistances
in the filter is usually quite small, hence it will be considered throughout the chapter.
The control problem which will be faced in this work can now be precisely stated; the issue is
to design the control vector u,;, in a way such that the following objectives are fulfilled:
A) Given the reference signal x, defined in (15), asymptotic tracking must be achieved, that
is

lim (x(t) — x5 ) = 0; (20)

t—ro00
B) Given a safe voltage range [vy;, vp], with vy > vy, > 0, and assuming v(tg) € [vm, vy, it
is required that
v(t) € [vm, vml, VE > to; (21)

it can be verified that the tracking of the modified power reference is potentially achievable
keeping the voltage dynamics inside the safe region, only if the zero mean value oscillating
component of ¥ (xy, ) is properly bounded, this can be ensured by a suitable capacitor design.
In the regulator design, saturation of the actual input 11, imposed by PWM strategy, will not
be taken explicitly into account, also this approximation takes advantage of a correct sizing
methodology; as it will become clear in Section 3, a suitable choice of the DC-link voltage
lower bound v;,, depending on the currents to be compensated for, has to be made to meet
the constraint u; € [0, 1], at least when the power tracking error is reasonably small.

A further consideration needs to be made on the requirement v(ty) € [vm, vp); according to
the AC/DC boost converter theory (Mohan et al., 1989), the natural response of the system
would lead the DC-link voltage at twice the line voltage peak value, due to the resonant
behavior of the LC pair and the free-wheeling diodes of the switching bridge. If a proper
design has been performed, this value is expected to be greater than the voltage range lower

www.intechopen.com



Analysis, Dimensioning and Robust Control
of Shunt Active Filter for Harmonic Currents Compensation in Electrical Mains 351

bound v;,;; hence, after a transient period, the controller can be switched on having the initial
voltage value inside the admissible region as required by objective B.
Finally it is further to remark that x depends on parasitic resistance R through (16), hence
it has to be considered as an unknown variable, to be reconstructed by estimating the power
losses by means of a proper elaboration of the DC-link voltage signal.

3. Shunt active filter sizing methodology

The aim of this section is to present a precise algorithm to properly select the SAF hardware
components, two different design objectives are considered, the first is to select the minimal
component values dependent on the level of current distortion imposed by the load, while
the second is to find the minimum capacitor value necessary to compensate all the possible
loads compatible with the maximum current rating of the inverter switching devices. Both
the methods are control-oriented, that is they ensure the feasibility of control objectives stated
in 2.2 and that control input saturation is avoided under nominal load and line voltage
conditions.

The proposed design method is based on the model derived in Section 2, a further
approximation is considered with respect to equation (6); the inductors are modeled as pure
inductance, that is the parasitic resistance R is neglected, while ideal mains voltage tern and
converter switches are considered as in the previous section.

3.1 Inductance value selection

The inductance value can be selected regardless the loads, hence this part of the design
procedure is the same for both the design objectives previously defined.

The design criterion is based on the maximum current ripple Alpyp, allowed for the filter
currents; current ripple is a consequence of the PWM technique applied to obtain the reference
command value u¥, , it has to be bounded in order to limit high frequency distortion. The

abc’
actual command vector u,,.(t) and filter current i(t) are affected by a ripple component

i(t) = i*(t) + Ai(t)

(22)
Uape(t) = Ugpc(t) + Dutgpe(t)
substituting these expressions in the state equation (6) it turns out
Ai(t
LAY g (helt) 23)

by simple computation it can be showed that the worst ripple case occurs when the desired
command value u7, .is in the middle of a feasibility hexagon side (see Fig. 3). In this condition,
assuming that the DC-link voltage has constant value V in a PWM period, the peak to peak

current ripple is
HT/2 dAi(t) Vv
Al = dt = 24
PP /t dt 6fpwmL 29

where the sampling period T and the PWM frequency fpyy are assumed already set before
starting the sizing procedure. If the peak to peak ripple must be bounded by the desired
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Fig. 3. Current ripple worst case.

maximum value Alpypyp, the following inequality needs to be fulfilled

UM oM
L>_»™ M (25)
6fpwmA Ippp "6 fpwmAIMpp

the upper bound of the voltage range v); depends only on the kind of capacitor and it
can be supposed already chosen before starting the design procedure, hence the minimum
inductance value L,,;,, compatible with the desired maximum current ripple can be selected
applying equation (25).

3.2 Load-based approach

Let us now consider the first design algorithm based on the knowledge of the load to be
compensated for. The load distortion will be modeled as in equation (12), taking into account
the constraint on the maximum current I,y of the device implementing the bridge switches.
The switching devices sizing depends on the total amount of power (distorted and reactive)
P = 3VurmsIsarrms that the filter has to compensate for (if the load is known then P
is known), hence by the route mean square value Isargryms, the maximum current that the
switches need to drain can be readily obtained as I;;5x = V2I5 AFRMS-

The desired filter currents (denoted with *) necessary to fulfill the tracking objective A defined
in 2.2 can be effectively imposed by the converter if each component is less than the maximum

allowed value, i.e
i*(t) = [i5(8) i5 (1) X (D] < Inax[111)7, Wt (26)

this feasibility condition can be graphically represented considering that each projection of the
filter currents vector must be less then I;;4x, hence the feasibility space is an hexagon similar
to that reported in Fig. 4 (obtained taking P = 45kVAR as filter size, V;;rpms = 220V and
then I;;;x = 70A). Therefore condition (26) can be readily checked considering the inscribed
circle in the feasibility hexagon. If the load currents do not satisfy constraint (26) the number
of current harmonics to be compensated for has to be reduced, differently, when the filter
performance cannot be decreased, the opportunity to connect two shunt active filters to the
same load can be considered.

Assuming that an inductance value such that L > L,,;, has been selected, the voltages at the
input of the six switches bridge can be calculated as

di
05 (1) = 0(t)ujy (1) = Fﬂ - % + {_gm “3"] i, 27)
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Fig. 4. Hexagon of feasible filter current.

the above equation is obtained by inversion of equation (10) with R = 0 and expressing the
model in the synchronous reference frame in current rather than in power variables, in order to
directly consider the load currents in the design approach.

The constraints on the command inputs need to be considered too, by (27) the inductance
value must be as low as possible in order to make u . feasible, taking into account also the
current ripple limitation we select L = L,,;,,. As mentioned, the choice of the of the capacitor
voltage lower bound value plays a key role to avoid saturation issues on command inputs,
this can be easily verified approximating the hexagon in Fig. 2 with the inscribed circle. In
order to avoid control action saturation (assuming perfect power tracking) it must be imposed

that
Hvabc( )H < Hvabc( >H <y = L Yt (28)

ugpel| = < < Tin ,
o(t) Um V3

with r;, the radius of the inscribed circle and v
U, can be obtained

* —

e = v(t)u’, . From (28) design equation for

n n—+1
fn" fm

vt (t
szvaw,WE{

},n:O,l,... (29)
Tin

usually v, is oversized with respect the value given by the inequality above, in order to avoid
saturation even if non-zero tracking errors are present. If condition (29) cannot be satisfied,
some alternatives need to be considered; the capacitor can be changed in order to adopt an
higher upper bound vj;, when the costs of the project have to be limited and the kind of
capacitor cannot be substituted, the number of harmonics considered must be reduced until
(29) is satisfied. To preserve the number of harmonics to compensate, the inductance value
can be reduced, penalizing the current ripple and then tolerating a greater high frequency
distortion.

The capacitor value can then be selected assuming an ideal converter and writing the balance
equation between the instantaneous reference power at the input of the six switches bridge
and the power of the DC-link capacitor, hence

prin(t) = a3y (1) = 5 (56220)) @0
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the corresponding energy can be calculated as

t
Efue(t) = | prn(x)de Q)

by the hypothesis of sinusoidal load currents and ideal mains voltages E;;(t) is periodic of
frequency f,; and its mean value is zero. Defining

Emax = maxlEfilt(t) |

UM + Om (32)
Uref = T

and imposing that the voltage variation corresponding to E;;x is vy, = Um, the capacitor value
design equation can be written as

2F
C= o (33)
Vyer = U

3.3 Switches-based approach

As stated at the beginning of this section, a different design method aims to find the capacitor
value that makes the filter able to compensate for the worst load compatible with the switches
maximum current. If the resulting capacitor value is not too expensive, this method allows to
design the filter only knowing the amount of current that has to be compensated.

During the optimization procedure the load currents need to be the only varying parameters
while all the other values must be fixed. The inductance value is chosen equal to the
minimum compatible with the allowed ripple, while the minimum capacitor voltage v, is
supposed sufficiently low to make simple the voltage control, and, at the same time, the
resulting capacitor value feasible. Writing the filter currents spectrum in the d — g synchronous
reference frame, an expression similar to (12) can be obtained

N+1
1]<t) = ljo + 2 I]'nCOS(ZTCTmet + llJ]n), ] = d,q (34)
n=1

the parameters to be varied in order to calculate the worst Ej,y are the 2N + 1) + 1
magnitudes and the 2N + 1 phases, so the following optimization problem

t
Egret = maxmax| | [ogy (7)) igg (1) )
0

has to be solved with respect to the array z of 4(N + 1) + 1 variables, taking into account the
following constraints

e switches currents must be less than the maximum allowed, that is the current vector
must be inside an hexagon similar to that reported in Fig. 4. This can be easily checked
approximating the hexagon with its inscribed circle;

¢ the control output must be feasible, that is the vector u,,. must be inside the hexagon
reported in Fig. 2. This can be easily checked approximating the hexagon with its inscribed
circle;

* harmonics components phases have to be greater than — 7 and less than 7.
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Once EX9%st has been determined, substituting its value in (33), the capacitor value relative to
the switches-based design approach can be selected.
In the discussion above, ideal mains voltages have been assumed, if also the grid line voltages
are distorted, the capacitor has to provide more energy to the load, hence its value must be
higher than the one calculated under ideal conditions.
In case of ideal mains voltages the load instant power is the one calculated in (12) and the only
power term that the filter must deliver is x4, = Zyjll Xgncos(nwpt + g,) = Vinijg, having
zero mean value. If the mains voltages are distorted, their representation in the synchronous
reference frame is

Umdq(t) = [Vin + Omdns Omg)" (36)

line voltages harmonic perturbation produces additive terms in the load instantaneous power
expression, that by direct computation can be written as

Pladd = Omdn(8)i1an(t) + Omgizg(t) (37)

the above equation shows that the filter has to provide more power to the load, furthermore
the power mean value in a PWM period can be different from zero. Hence also assuming that
the mean value becomes zero in a finite time, the capacitor must be oversized with respect to
the ideal situation, in order to accumulate more energy.

4. Robust controller design

In this section the control problem defined in 2.2 is addressed, relying upon a suitable
capacitor value given by the procedure described in the previous section, the two interlaced
objectives A and B defined in 2.2 can be approached individually by exploiting the principle
of singular perturbation. Two independent controllers (reported in the block diagram of Fig.
5) will be designed. An internal model-based controller (IMC) is proposed in order to deal
with the problem of robust reference tracking (defined in objective A) for the fast subsystems
composed by the power variables dynamics, while an independent voltage controller for the
slow DC-link voltage subsystem is designed to produce a reference modification 77 which
compensate the unknown power losses term ¢, allowing to achieve objective B. The averaged
voltage value is chosen as the controlled variable, and a phasor variables representation
is exploited to design the regulator, this choice allows for the necessary voltage oscillation
during nominal operation, and improves the voltage dynamics behavior with respect to
other proposed solutions (Marconi et al., 2007). Stability analysis is carried out in two steps;
the reduced averaged dynamics, obtained replacing the steady state of the fast subsystem into
the slow voltage dynamics and carrying out the average value to obtain a phasor variables
representation, and the boundary layer system, obtained considering the SAF currents dynamics
and an ideal energy storage element, are proved to be asymptotically stabilized by the
proposed controllers. Then practical stability for the overall closed-loop error system is stated
exploiting well-established singular perturbation and two time-scale systems theory results.
Before detailing the proposed control structure, consider the first preliminary control law

i(t) = o()ugy(t) (38)
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n Voltage | - V2
Controller | \E+
V2
IMC u > SAF L
X

Fig. 5. Controller structure.

which is always well defined provided that v(t) > v, > 0 for all t > 0 according to objective
B. Replacing (38) into (10) yields

¥ =M(R,L)x + %a +dy

39
ﬁ = el x >
dt
now consider the modified power reference
Xy =x"+ (1 0T (40)
and define the change of variables
X=x—x, z=v>—V*? 41)

where V*2 = (v3, + v%,)/(2) is the reference value for the square DC-link voltage. Note that
the requirement B of having v(t) € [vy, vp] forall t > ty can be equivalently formulated in the
error variable Z requiring £(t) € [—I* I*] forall t > ty, with [* = (v%; — v3,) /2. The complete
system (39) can be then expressed in the error variables defined in (41), the transformed model
results .
¥=M(R, L)X — Eu+d0—xf]+Mx; @)
f=eil [+ x;]
The controller design will be carried out considering the error dynamics in (42), in summary
the idea is to steer the closed loop dynamics toward a steady state in which Z is free to oscillate
within the admissible region, but its mean value is steered to zero (i.e the DC-link voltage
mean value is steered to V*), and X is steered to zero, i.e the power x follows a reference which
is the sum of the term x*, which takes into account the undesired harmonic load components,
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and a constant bias # which is needed in order to compensate the power losses and to make
the range [v;; v)] an invariant subspace for the voltage dynamics.

4.1 Averaging voltage controller

In order to fulfill objective B the voltage dynamics need to be stabilized, in this respect the
subsystem composed by the capacitor voltage dynamics will be considered, a suitable reduced
averaged system will be sought, and then a controller for the capacitor voltage DC component
will be designed.

The first step is to average the voltage differential equation to obtain the dynamics in the
so-called phasor-variables, then, a control law, itself expressed on phasor representation, can be
designed following an approach similar to that proposed in (Valderrama et. al, 2001), however
in this work the only voltage subsystem is controlled using phasor variables, while the power
subsystem is controlled in the real time domain.

The controlled variable is chosen to be the time-window averaged value Z, of the square
voltage error Z, and the averaging is performed over the time interval [t — T,t]. In terms
of (Sanders et al., 1991) this average value is a zero-order phasor defined as

Za(t) = /t iTZ(T)dT 43)

the fact that Z, is a zero-order phasor allows to obtain its derivative by simply applying the
same averaging procedure to its differential equation in (42)

t t
5, = ;/t_TZ(T)dT e[ al[r+ gl (44)

note that the average voltage derivative can also be expressed as the difference over one period
of the actual voltage, hence

—F(t—T)

¢ -
e =2 [ sae =20 )
this insight connotes the availability of Z; for measurement in real time, and, as it will later
clarified, it is of crucial importance for an actual implementation of the controller.

All further elaborations will focus on the integral-differential equation (44) representing the
averaged error voltage dynamics. This equation depends on i which is actually provided by
the power tracking controller, to eliminate 7 consider that the differential equation for % in
(42) can be rewritten as

i = L(M(R, L)x;; — %, + M(R, L)% +do — X) (46)
replacing (46) into (44) the following equation is obtained

_eL t

o= | (MR L)x; — i + do)"x;dt + eLD(%) (47)

where D(X) collects all the terms depending on the power tracking error ¥. The next step
is to exploit the fact that the reference term x* is T-periodic (T = 1/ f), hence it results in
a constant value when averaged over this period, this is a key advantage of the averaging
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approach for the voltage system. The T-periodic terms in (47) can be summarized to

T/ M(R, L)x* — 2* + do)Tx*]dt (48)

since x* is periodic in T, D* is a constant disturbance, and, due to power losses induced
by the parasitic resistance R, it also follows that D* < 0. For further simplification the
integral operator can be applied to the occurring derivative terms. Using definitions (11), (40),
after some computations the averaged error voltage dynamics can be expressed completely in
phasor variables

21 = €|Epafta — 2Rvg — Ly + LD* + LD] (49)

where the following nonlinear term has been defined

v(e) = (0 510 +5;) 50

which enters (49) with its average and its averaged derivative

=1

. <t>—;a<t—T>

(51)

the averaged error voltage system is thus controlled by means of the averaged control input

t
m(t) =1 [ _n(x)dr 62

According to singular perturbation theory, the voltage controller design can be carried out
considering only the reduced dynamics, obtained confusing the value of ¥ with its steady state
value ¥ = 0.

As previously remarked, this approximation can be introduced thanks to the small value of €
which, multiplying the voltage dynamics in the second of (42), makes the voltage subsystem
much slower with respect to the power dynamics in the first of (42) (this phenomenon is
usually referred as two time-scale system behavior) that will approach the steady state much
faster then Z. Thus reduced voltage dynamics can be obtained by (49) simply dropping the
coupling term D, because by definition D(0) = 0.

The nonlinear terms v,, and v, cannot be managed easily, beside non-linearity they contain an
integral, a time delay and a time-varying term x}. In order to simplify the mathematical
treatment, a sort of linearized version of system (49) will be considered. This linear
approximation is motivated by several facts; since the parasitic resistance R and the filter
inductance value L are usually very small with respect to the term E,,; in every realistic setup,
nonlinear term are much smaller than the linear ones. Furthermore the component x; has no
influence at all in averaging terms if 7 is constant, thanks to the fact that it is T-periodic with
zero mean value. Hence it will influence the averaged system only while 7 is varying, and also
in this case its oscillatory part will be filtered by the averaging procedure. As a result of the
previous steps and considerations, the linearized averaged model for the reduced dynamics
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can be written as
Za = €Epalta — 0] (53)
where, as mentioned, ¢ is the smallest solution of equation (16).

Now it is possible to design the control input 7, in order to stabilize the origin of system (53),
a standard PI regulator in the averaged variables is proposed

77a — _KPZQ + 9

. 54

it is further to notice that the € factor in the integral action of the controller is introduced
to keep the voltage controller speed in scale with the voltage subsystem to control, thus
maintaining the two-time scale behavior of the overall system.

In order to prove the asymptotic stability of the closed-loop system resulting by the
interconnection of (54) and (53) consider the change of coordinates § = 6 — ¢, which results
in the closed-loop error dynamics

dt{é]_e{ K 0 ||é 5)
since €, E,,; are positive, the matrix in (55) is Hurwitz for all Kp > 0, K; > 0, and system (55)
result asymptotically stable despite the unknown disturbance ¢.
The problem with implementing the regulator (55) is that the resulting control signal is the
average value of the actual control input 7, thus some procedure is required to synthesize a

real-world control signal whose mean value satisfies the above conditions. In the SAF specific
case this problem can be solved, consider the derivative of signal 7,

d d1 t
il = T t_T’7(T>dT (56)

it can be rewritten on the left side as the difference over one period, while the right side is
replaced with the derivative of 1, expressed in (54);

1 . 2 .
T1(8) =yt =T)] = —KpZa +6 = —Kpzs — €Kiz (57)
solving for #(t) yields

1(t) = —TKpZa(t) — eTK Zq(t) +(t = T) (58)

using (45), the derivative of the averaged square voltage error is actually measurable, thus
the above formula is implementable. However, while the interconnection between voltage
subsystem and controller is stable in sense of the averaged value, a further step is required.
In the incremental implementation (58) there is no more an integral action, the control input
history is kept in memory for one period, still the controller provides stability for the averaged
voltage error Z;. Consider now that for the phasor variables system, a stable steady-state
guarantees that all the variables have a constant average value, while being allowed to
oscillate freely. This property is desired for what concern the capacitor voltage and it is the
main motivation for applying the averaging procedure, however implementation according
to (58) can introduce undesired periodic oscillation in the control input 77, moreover oscillation

www.intechopen.com



360 Recent Advances in Robust Control — Theory and Applications in Robotics and Electromechanics

will persist being remembered through the time delay term. In summary, while 7, will
approach the constant power loss value ¢, the actual input 7 might be any periodic signal
with average value equal to ¢y. Recalling that 7 modifies the real power reference value xJ,
any oscillation will result in a non-zero error for the power tracking controller.

In order to avoid this situation the following term can be added to (58)

dy(t) =n(t =T) —na(t = T/2) (59)

the reason of this modification is to cancel the oscillations stored in memory, by correcting
the stored signal towards its own mean value 7, (t — T/2). It is important to remark that the
averaged value is not the actual mean value of its corresponding signal, the mean value s, of
a signal s(t) is defined as
1 pt+T/2

Sm= /t—T/Z s(t)dt (60)
the above equation is identical to the zero-order phasor definition, except for a time shift of
T /2. For this reason the mean value of the stored signal 77(t — T) has been expressed as its time
shifted average value, note that the mean value of this stored signal can be computed because
alsoits “future” values are available. The additive term d), is a zero mean value signal, because
it is obtained removing its DC-value to a periodic signal. Since the control input # enters the
averaged system (55) after being averaged itself, any modification having zero mean value
will not affect the behavior of the averaged system dynamics. Hence the final implementation
of control input together with (59) is

n(t) = —TKp2, — €TK Za + 1a(t — T/2) (61)

this controller will not introduce undesired oscillation because it depends solely on averaged
signals, whose simplified dynamics (55) cannot give oscillations.

4.2 Power tracking controller
The voltage controller output reported in (61) can be replaced into the filter error power
dynamics in (42), recalling also equation (54), it turns out

#=M(R,L)Z — —a+d(t) + f(e,24,0,%,,0) (62)

=~

where
d(t) =dop+ M(R,L)x* — %" + M(R,L)¢g (63)

is a T-periodic term composed by the sum of a constant term and sinusoids having known
frequency, while

F(20,0,%0,0,€) = TKpZs + €KiZq + KpZa(t — T/2) — 6(t — T/2)

64
+M(R,L)[~TKpz, — €KiZa — KpZa(t — T/2) + 6(t — T/2)]. (4

The problem of forcing % in (62) clearly requires the ability of the control law to compensate
for the signal d(t), perfect tracking cannot be achieved by a feedforward action since SAF
parameters and d(t) are not fully known. To comply with uncertainties and provide
robustness we propose an internal model-based controller. Each component of the vector
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d(t) can be seen as the output of the following linear system
(65)

where T'; € RU*2N+1) are suitably defined vectors and matrix Q) € REN+1)x(2N+1) js defined
as Q) = blkdiag(Q);) with Qg = 0 and

0 jwm

Q; = {—jwm 0 } j=1,...,N (66)

with the pairs (I';,()) observable. Defining ® = blkdiag(Q2,()) and I' = blkdiag(I'y, '), the
following internal model-based controller can be designed

¢ =d¢+Qx

i =T¢+ K% (€7)

where matrices Q and K need to be properly assigned. Once chosen i as in (67) and defined
the internal model error variables as { = ¢ — Lw, where w := [wg, wg] T the power subsystem
closed-loop error dynamics can be rewritten as

%= (M(R,L)— %K)x -

& = ®E+ Qx.

According to the general two time-scale averaging theory, the power tracking problem can be
studied focusing on the boundary layer system, obtained by putting € = 0 into the overall error

1 5
L (68)

dynamics, hence by (47), (54) and Z, = 0, § = 0, thus system (68) becomes

X = (M(R,L)— lI<)az -

' L
&= dE+ Qx.

Now matrices K, Q need to be selected such that asymptotic stability is provided for the
boundary layer system. Define two arbitrary Hurwitz matrices Fy, F; € R(2N +1) x (2N +1),
and two arbitrary vectors G;, G, such that the pairs (F;, G;), (F;, G4) are controllable, taking
the controller matrices as

kg 0 _|ESt 0
K=k[§ kq]'Q‘lo ;!

with kg, kg two arbitrary positive scalars, k a positive design parameter, and E4, E; defined as
non-singular solutions of the following Sylvester equations:

1.
718+ f(20,6,0,0,0) (69)

G, 0
{0 Gq] : 70

F4Eq — EqQq = —Gyl'y

(71)
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asymptotic stability of the boundary layer system can be stated. In order to prove this claim
let us define the vector .
R wm L
Re=|—%— 0Oy ——— Oy (72)
¢ l—‘dl l—‘ql
where I'y1, Ty denote the first element of vectors I'y, Ty respectively and Oy is a zero raw
vector having dimension 2N. Consider now the change of variables

X =E¢—ERg(0(t — T/2) — Kpza(t — T/2)) + LGX (73)
where E = blkdiag(E4, E;), G = blkdiag(G,, Gy), in this coordinates system (69) results

1

= (M(R,L)— K+ IL~'G)x — =TE 'y

=

(74)
4% =F%—L(FG—GM(R,L))x

where F = blkdiag(F;, F;). Using standard linear system tools it can be verified that a value
k exists, such that V k > k the state matrix of the system in the new coordinates is Hurwitz,
hence asymptotic stability of the boundary layer system can be stated.

4.3 Overall system stability
Asymptotic stability has been stated for the boundary layer system and a linearized version
of the averaged reduced voltage dynamics. Exploiting the main results of the two time-scale
averaged systems theory, it can be proved that the two separately designed controllers are
able to provide practical stability for the complete system (42), i.e it is possible to claim that
the set

{(#&:8=0, =0} x A,, with A, ={(£,0): 2] <I*,0 =0}

is practically stable (Khalil, 1996) for the closed-loop trajectories of the complete error system.
More precisely we can define the positive values €*, k, I¥, such that for all positive Is < I, k >
k, € < €*, the trajectories of the overall closed loop system with initial condition (%(0), &(0))
belonging to an arbitrary compact set, and (2(0), 6(0)), such that dist((2(0),0(0)), A7) < I
(dist denotes the distance of the initial state vector from the set A;), are bounded. Moreover
there exist positive M, A, and a class KL function (Khalil, 1996) B such that

%(1)] < Me™M|%(0)] +v

) - (75)
dist((2,0), A;) < B(dist((2(0),0(0)), Az),et) +v

for all v > 0. Proof of this result is omitted owing to space limitation, it relies upon the results
for two-time scale averaged systems given in (Teel et al., 2003) (see in particular Theorem 1).
Analyzing the previous result, it can be clarified how the proposed controller satisfies the
objectives in a practical way; by the second of (75) we deduce that 8 tends arbitrary close to
the power loss term ¢(, while by the first of (75), it can be seen that the power vector x is
steered arbitrary close to the reference value xj, . In particular the asymptotic tracking error
can be arbitrary reduced by taking a smaller value for €, namely by increasing the capacitor
value C.

It’s further to notice that the practical stability result is semi-global for what concerns the

power variables, i.e the initial state (£(0), £(0)) can belong to an arbitrary compact set, while
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it is only local with respect to the set A, for the voltage initial condition (2(0), 8(0)). However,
as remarked in 2.2, this is not a constraint for Z(0), since it is always possible to switch on the
control when the capacitor voltage is inside the admissible range, as regards 6, since typical
values of ¢ are usually very small, the restriction on the initial state §(0) is always in practice
fulfilled taking 6(0) = 0.

In summary, even if asymptotic stability of the complete system has not been stated, and
formally the tracking error is not asymptotically null, in practice the two control objectives
defined in 2.2 can be considered achieved, in fact, by properly tuning the control parameters
and dimensioning the hardware components, we can ideally (assuming no cost or technology
limitations) improve the filter tracking performance keeping the capacitor voltage value in a
safe range.

5. Simulation results

Simulation tests have been performed in order to validate the proposed control solution.
Two different scenarios have been adopted; first model (6) has been implemented in
MATLAB/Simulink and a load scenario with two harmonics at 7w,; and 13w, has been
chosen. Then, in order to validate the controller performance in a situation closer to a real
setup, the proposed continuous-time regulator has been discretized adopting a sampling
frequency fs = 7KHz, then the SAF converter components have been modeled by using
Simulink /SimPowerSystems toolbox, and a suitable PWM technique with a carrier frequency
equal to fs has been implemented. Finally a three-phase diode bridge has been selected as
nonlinear load scenario.

The following system parameters have been set, according to the procedure illustrated in
Section 3; C = 4400uF, L = 3.3mH, R = 0.12Q), while the DC-link voltage limits have been set
to vy, = 700V, vy = 900V. Ideal three-phase mains voltages with amplitude V;, = 310V and
frequency f; = 50Hz have been modeled.

For what concern the simulations in time continuous domain, the internal-model based
controller has been tuned to the load disturbances, according to the procedure described in
4.2. As regards the diode rectifier load scenario, the most relevant power disturbances, that
is the 6! and the 12! load current harmonics expressed in the synchronous d — q reference
frame (corresponding respectively to the 5 and the 7", and to the 11 and the 13" in the
fixed reference frame), have been considered. Then the IMC controller has been discretized
according to the procedure reported in (Ronchi et al., 2003), thus the following matrices have
been selected; Q) = blkdiag(Qg, O, O12), Ty = Ty = (1,1,0, 1,0)T, K = diag(200,200) and
Q = 10°diag(Qg4, Qq), where Q; = Q, = (40.6,80.7,7.15,78.7,17.6)T. For what concerns the
voltage stabilizer described in 4.1, the following parameters have been selected Kp = 0.3,
Ky =37

Consider now the performance obtained on the first simulation scenario, with ideal SAF
model and the 7", 13" disturbance harmonics; in Fig. 6 the tracking error on both real and
imaginary power variables is reported, as expected, asymptotic tracking is achieved and the
vector ¥ is steered arbitrary close to the origin. This ideal behavior is confirmed by Fig. 7, 8;
the two harmonics currents are totally canceled out by the filter currents, while a small current
component oscillating at the first-order harmonic frequency and aligned to the corresponding
voltage, arises on the line side due to the voltage controller action. In table 2 the harmonics
compensation performance are summarized.

For what concerns the voltage controller, in order to validate the stability properties, a value
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Harmonic frequency (Hz) i, (A)|i], (A)|Compensation percentage
350 0.0039| 10 99.96%
650 0.0038 | 10 99.96%

Table 2. Compensation performance for the two harmonics disturbance scenario.

quite far from the mean voltage reference value (v2, + v%,)/2 = 800V has been chosen as
initial condition for the capacitor voltage. As showed in Fig. 9, even though the average value
is initialized at zero and needs one period before representing the actual voltage, the controller
reacts immediately, thanks to its dependence on the averaged derivative Z,. Hence the voltage
averaged error is successfully steered to zero, and the capacitor voltage is brought back to
the middle of the safe interval, without exceeding the upper and lower bounds. The initial
nonlinear behavior of the voltage error trajectories is originated by the neglected nonlinearities
and also by the coupling term D(%), although it has been discarded due to two time-scale
behavior hypothesis, it is excited by the internal model controller transient when harmonics
compensation starts.

As regards the second simulation scenario, carried out in discrete time domain and with a
more detailed filter physical model, the power tracking performance are reported in Fig. 10,
11, 12. In this case the power error variables %, ¥, are higher with respect to the previous
situation, due to the fact that the AC/DC rectifier high order harmonics are not compensated
by the internal model, furthermore the discretization effects have to be taken into account.
However the load currents harmonics for which the controller has been tuned are strongly
reduced at the line side, as the currents magnitude spectrum reported in Fig. 12 shows.
Analyzing the currents waveform in the time domain (Fig. 11), it can be verified that the
mains currents are almost sinusoidal and perfectly aligned with the corresponding phase
voltages, hence also the load imaginary power is almost totally compensated. The ripple
introduced by the pulse with modulation can be noted on the filter current, it affects also the
mains currents, however thanks to a correct inductance sizing, the high frequency distortion is
properly bounded. Quantitative performance of the power-tracking controller obtained with
this scenario are summarized in Tab. 3.

The current component corresponding to the line frequency oscillation is slightly larger at

the line side than at the load side, due to the additional active power drained to compensate
for the filter losses.
As regards the averaging voltage controller, a discrete time version has been implemented,
while the same initial conditions of the first scenario have been reproduced. In Fig. 13 the
squared voltage error, its averaged value and the actual capacitor voltage are reported, also
in this case the objective relative to the voltage dynamics behavior is accomplished, similar
considerations to those made for the previous scenario can be made.

Harmonic frequency (Hz) |i;,2(A)|i,(A) |[Compensation percentage
250 0.03 | 3.88 99.2%
350 0.04 | 1.91 97.9%
550 0.03 | 1.57 98.1%
650 0.02 | 1.08 98.1%

Table 3. Compensation performance for the diode bridge load scenario.
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Fig. 6. Error variables X, ¥;: two harmonics load scenario.
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Fig. 7. Current and line voltage waveforms on phase a: two harmonics load scenario.
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Fig. 8. FFT of the a-phase main current and of the corresponding load current: two
harmonics load scenario.
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Fig. 9. Voltage controller performance: two harmonics load scenario.
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Fig. 10. Error variables ¥;, X;: diode bridge load scenario.
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Fig. 11. Current and line voltage waveforms on phase a: diode bridge load scenario.
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Fig. 13. Voltage controller performance: diode bridge load scenario.

6. Conclusions

In this chapter a nonlinear robust control solution for a shunt active filter has been proposed,
the focus has been firstly put on the hardware components design issue, providing a suitable
algorithm, based on the structural system properties, which gives guarantees on the feasibility
of the control problem and allows to obtain a crucial time-scale separation between the power
and voltage dynamics. Then exploiting nonlinear systems analysis well established tools,
such as averaging and singular perturbation theory, an averaging capacitor voltage controller
and a power tracking controller based on the internal model principle, have been presented.
The former exploits the insight that, regulating the averaged voltage value, makes it possible
to ignore the necessary oscillations for a proper filter operation, and improves the voltage
dynamics behavior. The second is chosen in order to ensure asymptotic tracking of undesired
load current components, providing also robustness with respect to disturbances and model
uncertainties.

Saturation issues have not been explicitly addressed in this work, owing to space limitation,
however it is of utmost importance to deal with these phenomena for an actual industrial
implementation with stability and performance guarantees. Some solutions, for the SAF
specific case, have been proposed (see Cavini et al. (2004), Cavini et al. (2004)), however
this is still an open research topic. Future effort will thus be devoted to improve the filter
performance under control input saturation, analyzing the problem in the context of modern
anti-windup approaches, hence providing a rigorous characterization of the system under
saturation constraints. Moreover discretization issues relative to the nonlinear controller
here discussed will be further analyzed, in order to improve the discrete-time controller
performance with respect to that obtained applying standard discretization techniques.
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