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1. Introduction

Robust control problems for nonlinear systems are usually formulated as L2-induced norm

minimization problems and those problems are reduced to the solvability of the so-called

“Hamilton-Jacobi equation” (see, for example, van der Schaft (1996) and references therein).

However, in the case of bilinear systems the usual L2-induced norm minimization problem

leads to an obvious solution (the zero input is optimal!). To avoid the obvious solution

Shimizu et al. (1997) introduced nonlinear weights on the evaluated signal and proposed a

design method using linearization of the state-dependent matrix Riccati inequality derived

from the Hamilton-Jacobi equation. In contrast to this, the purpose of this paper is to propose

a new design method using SOS (Sum-of-Squares) optimization without linearization.

It is known that the Hamilton-Jacobi equality coming from the L2-induced norm minimization

problem is reduced to the solvability of an inequality condition of quadratic form, i.e.,

hT(x)M(x)h(x) ≥ 0, ∀x (1)

and this inequality is moreover reduced to the following matrix positive semi-definiteness

condition:

M(x) � 0, ∀x (2)

where M(x) is a Riccati-type matrix including the state variables. This matrix inequality

is usually called “a state-dependent matrix Riccati inequality” derived from the L2-induced

norm optimization problem. Most papers have tried to find a solution to the matrix inequality

(2) so far. See, for example, Ichihara (2009); Prajna et al. (2004) and the references therein.

However, it should be noted that the condition (2) is just a sufficient condition for (1) unless

h(x) is independent of x, because M(x) includes x. In most L2-induced norm optimization

cases, h(x) includes x (in our case h(x) = P−1x as shown in the later section) and hence the

methods of Ichihara (2009); Prajna et al. (2004) and other papers based upon the condition (2)

can have significant conservativeness. Note that Ichihara (2009) proposed a redesign method

for reducing the conservativeness; however, it has to find a solution to (2) before applying the

redesign method. Hence, the redesign method cannot be applied if the matrix inequality (2)

does not have a solution.
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In the present paper, to avoid the conservativeness we propose a new method for finding

a solution to (1) directly without finding a solution to (2). A key idea of our method is to

treat the dependency of h(x) with x as an equality condition and formulate the problem to

be concerned as an SOS (Sum of Squares) optimization problem with an equality constraint.

After that we apply SOS optimization technique to the problem to propose an iterative

algorithm for finding a robust feedback controller.

This paper is organized as follows: In Section 2, the plant to be concerned is described

and a robust control problem is formulated after introducing nonlinear weights. Moreover,

an inequality condition of quadratic form and the corresponding state-dependent matrix

Riccati inequality are derived without using the Hamilton-Jacobi equality. In Section 3, some

definitions and basic properties of SOS polynomials and SOS matrices are given. In Section

4, a new iterative method is proposed for finding a solution to the inequality condition of

quadratic form. In Section 5, a numerical example is demonstrated to show the efficiency of

our method, and in Section 6 this paper is concluded.

In this paper, the following notations are used:

R the set of real numbers.

Z the set of integers.

Z+ the set of non-negative integers.

R[x] the set of polynomials in x. (R[x] is also written as R[x1 · · · xn] for x = [x1 · · · xn]T .)

MT the transpose of the matrix M.

⊗ the Kroneckar product.

Σ the set of SOS polynomials. In particular, Σx denotes the set of SOS polynomials in x.

I an identity matrix of appropriate size. In particular, Ir denotes the r × r identity matrix.
Moreover, for a square matrix M, M ≻ 0 and M � 0 imply that M is positive definite and

positive semi-definite, respectively.

2. Problem statement

2.1 Plant and nonlinear weights

Consider the following bilinear systems:

ẋp(t) = Apxp(t) + Bp1w(t) +
nq

∑
i=1

Bp2ixp(t)ui(t)

= Apxp(t) + Bp1w(t) + Bp2(x)u(t) (3)

zp(t) = Cpxp(t) (4)

where xp ∈ Rnp is the state variable, u := [u1 · · · unq ]
T ∈ Rnq is the input, w ∈ Rnw is

the exogenous input, zp ∈ Rr is the output to be evaluated, and the matrices Ap, Bp1, Bp2i

(i = 1, . . . , nq) are real matrices of appropriate sizes with

Bp2(x) :=
nq

∑
i=1

Bp2ix.
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Fig. 1. Plant with frequency weights

G
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✲z

✲y

Fig. 2. Generalized plant

In this paper, we consider to evaluate the L2-induced norm from w to zp and u with the

following frequency weights Wz(s) and Wu(s), respectively (see Fig. 1):

Wz(s) :

{

ẋz(t) = Azxz(t) + Bzzp(t),
zz(t) = Czxz(t) + Dzzp(t),

(5)

Wu(s) :

{

ẋu(t) = Auxu + Buu(t),
zu(t) = Cuxu(t) + Duu(t)

(6)

where xz ∈ Rnz , xu ∈ Rnu and the matrices in (5) and (6) are real matrices of appropriate size.

Here, we assume that the state variable is available for feedback. Then the plant with the

frequency weights in Fig. 1 can be represented as a generalized plant G in Fig. 2 which is

given by

ẋ(t) = Ax(t) + B1w(t) + B2(x)u(t) (7)

z(t) =

[

C11

C12

]

x(t) +

[

0

D12

]

u(t)

y(t) = x(t) (8)

where y(t) is the output for feedback and

x(t) =

⎡

⎣

xp(t)
xz(t)
xu(t)

⎤

⎦ , z(t) =

[

zz(t)
zu(t)

]

, (9)
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A =

⎡

⎢

⎢

⎣

Ap 0 0

BzCp Az 0

0 0 Au

⎤

⎥

⎥

⎦

, B1 =

⎡

⎢

⎢

⎣

Bp1

0

0

⎤

⎥

⎥

⎦

, B2(x) =

⎡

⎢

⎢

⎣

Bp2(x)

0

Bu

⎤

⎥

⎥

⎦

, (10)

C11 =
[

DzCp Cz 0
]

, C12 =
[

0 0 Cu
]

, D12 = Du. (11)

Let n (:= np + nz + nu) denote the dimension of x.

The purpose of this paper is to find a feedback controller which reduces the effect of w on z.

For this purpose, the problem to minimize the L2-induced norm from w to z defined by

sup
w �=0

‖z‖2

‖w‖2
(12)

is usually considered where ‖ · ‖2 denotes the L2 norm. However, the bilinear system (3) is

uncontrollable for x = 0 because of B2(0) = 0, so that the effect of w cannot be reduced

around x = 0. Moreover, it is known that the zero input u = 0 is optimal for the problem

of minimizing the L2-induced norm (12) when the evaluated variable z is affine in x and u.

Hence, the minimization problem with respect to the L2-induced norm (12) is no use for our

purpose.

Although the system is uncontrollable at x = 0, the system behavior can be improved by

some proper controllers except at x = 0. To formulate the problem of finding such controllers

Shimizu et al. (1997) introduce nonlinear weights on z. It is shown by them that the obvious

solution (the zero input) can be avoided by introducing the nonlinear weights.

A

Bp2(x) ❡ 1

s
I Cp✲ ✲ ✲ ✲�

✛

✻
✲

Bp1 Wz(s) az(x)I

Wu(s) au(x)I

✲

❄

✲ ✲

✲ ✲

�

⌣

✲

�

✲

u

w

+

+

+

xp zp

z̄z

z̄u

Fig. 3. Plant with nonlinear weights

Ḡ

✲w

✲u
✲z̄

✲y

Fig. 4. Generalized plant including nonlinear weights

As in the paper of Shimizu et al. (1997) we will also introduce nonlinear weights on z as shown

in Fig. 3 where az(x) and au(x) are the nonlinear weights which are functions of x.
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A Sum of Squares Optimization Approach to Robust Control of Bilinear Systems 5

With the introduction of the nonlinear weights the new generalized plant Ḡ shown in Fig. 4 is

represented as

ẋ(t) = Ax(t) + B1w(t) + B2(x)u(t),

z̄(t) =

[

az(x)C11

au(x)C12

]

x(t) +

[

0

au(x)D12

]

u(t), (13)

y(t) = x(t)

where

z̄(t) : =

[

z̄z(t)

z̄u(t)

]

=

[

az(x)zz(t)

au(x)zu(t)

]

.

Then the problem to be considered in this paper is formulated as the one of finding the

feedback controller which minimizes the L2-induced norm from w to z̄ defined by

sup
w �=0

‖z̄‖2

‖w‖2
. (14)

The next theorem is shown by Ohsaku et al. (1998); Shimizu et al. (1997) using linealization.

Theorem 1. Consider the bilinear system (13) with C12 = 0. For given γ > 0 suppose that there

exits a positive definite symmetric matrix P which satisfies

PA + AT P +
1

γ2
PB1BT

1 P + CT
11C11 < 0 (15)

and the nonlinear weights az(x) and au(x) satisfy the condition

1

a2
u(x)

xT PB2(x)BT
2 (x)Px + (1 − a2

z(x))xTCT
11C11x ≥ 0. (16)

Then the L2-induced norm from w to z̄ is less than or equal to γ via the feedback control

u(t) = −
1

a2
u(x)

BT
2 (x)Px(t). (17)

This theorem gives a method for choosing the nonlinear weights after P is obtained; however,

this means that the nonlinear weights cannot be chosen before obtaining P and the condition

(16) restricts the choice of the nonlinear weights. In contract to this, in our method given below

the nonlinear weights can be chosen a priori and the condition which they have to satisfy is

just that a2
z(x) ∈ R[x] and 1/a2

u(x) ∈ R[x].

43A Sum of Squares Optimization Approach to Robust Control of Bilinear Systems
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A typical choice of the nonlinear weights is as follows:

az(x) =
√

1 + xT Rzx,

au(x) =
1

√

1 + xT Rux
(18)

where Rx � 0 and Ru � 0. Fig. 5 shows an example in the case of x ∈ R. The weight az(x)
shown in Fig. 5 is utilized for suppressing the effect of w on zz and au(x) is for allowing large

input values except at x = 0.

−2 −1 0 1 2
1

1.5

2

2.5

(a) az(x)

−2 −1 0 1 2
0.4

0.6

0.8

1

(b) au(x)

Fig. 5. Example of nonlinear weights

2.2 Derivation of state-dependent inequalities

In the sequel, we assume D12 = I for simplicity. Then we have the next theorem.

Theorem 2. Suppose that for given γ > 0 there exists a positive definite symmetric matrix P which

satisfies the following state-dependent inequality:

φ(x, P) :=xT

[

−P−1(A + B2(x)C12)− (A + B2(x)C12)
T P−1

− P−1

(

1

γ2
B1BT

1 −
1

a2
u(x)

B2(x)BT
2 (x)

)

P−1 − a2
z(x)CT

11C11

]

x > 0,

∀x( �= 0) ∈ Rn (19)

Then by the feedback

u(t) = −

(

1

a2
u(x)

BT
2 (x)P−1 + C12

)

x(t) (20)

the closed-loop system is asymptotically stable and the L2-induced norm (14) is less than or equal to γ,

i.e.,

sup
w �=0

‖z̄‖2

‖w‖2
≤ γ. (21)
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A Sum of Squares Optimization Approach to Robust Control of Bilinear Systems 7

Proof: First, we will show that the closed-loop system via the feedback (20) with w(t) = 0 is

stable when (19) holds. To show this we adopt V(t) = xT(t)P−1x(t) as a Lyapunov function

candidate. Then we have

d

dt
V(t) =ẋT P−1x + xT P−1 ẋ

=(Ax + B2(x)u)T P−1x + xT P−1(Ax + B2(x)u)

=

[

Ax − B2(x)

(

1

a2
u(x)

BT
2 (x)P−1 + C12

)

x

]T

P−1x

+ xT P−1

[

Ax − B2(x)

(

1

a2
u(x)

BT
2 (x)P−1 + C12

)

x

]

from (20)

=xT

[

P−1(A + B2(x)C12) + (A + B2(x)C12)
T P−1 −

2

a2
u

P−1B2(x)BT
2 (x)P−1

]

x

<− xT

[

1

γ2
P−1B1BT

1 P−1 + a2
zCT

11C11 +
1

a2
u

P−1B2(x)BT
2 (x)P−1

]

x from (19)

≤0, for x �= 0. (22)

This shows the closed-loop system is asymptotically stable.

Next, from (13) we have

γ2|w|2 − |z|2 = γ2|w|2 − a2
z xTCT

11C11x − a2
uxTCT

12C12x − a2
uuTu − 2a2

uxTCT
12u (23)

and the following identity holds:

0 = 2xT P−1 ẋ − 2xT P−1 ẋ

= 2xT P−1 ẋ − 2xT P−1 Ax − 2xT P−1B1w − 2xT P−1B2(x)u. (24)

By adding the both-sides of (24) to (23) and completing the square we have

γ2|w|2 − |z|2 =2xT P−1 ẋ + γ2wTw − 2xT P−1B1w

− a2
u

[

uTu + 2

(

1

a2
u

xT P−1B2(x) + xTCT
12

)

u

]

− xT
[

2P−1 A + a2
zCT

11C11 + a2
uCT

12C12

]

x

=2xT P−1 ẋ + γ2w̃Tw̃ −
1

γ2
xT P−1B1BT

1 P−1x

− a2
uũT ũ + a2

uxT

(

1

a2
u

P−1B2(x) + CT
12

)(

1

a2
u

BT
2 (x)P−1 + C12

)

x

− xT
[

2P−1 A + a2
zCT

11C11 + a2
uCT

12C12

]

x

=2xT P−1 ẋ + γ2w̃Tw̃ − a2
uũT ũ + φ(x, P) (25)

45A Sum of Squares Optimization Approach to Robust Control of Bilinear Systems
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where

w̃ = w −
1

γ2
BT

1 P−1x,

ũ = u +

(

1

a2
u

BT
2 (x)P−1 + C12

)

x.

Then from (19) and (20)

γ2|w|2 − |z|2 ≥ 2xT P−1 ẋ + γ2w̃Tw̃,

and hence
∫ τ

0
(γ2|w|2 − |z|2)dt ≥

∫ τ

0
(2xT P−1 ẋ + γ2w̃Tw̃)dt

=xT(τ)P−1x(τ)− xT(0)P−1x(0) +
∫ τ

0
(γ2w̃Tw̃)dt.

Here, let x(0) = 0 and τ → ∞ then

γ2‖w‖2 − ‖z‖2 =
∫ ∞

0
(γ2|w|2 − |z|2)dt =

∫ ∞

0
(γ2w̃Tw̃)dt ≥ 0, (26)

which leads to (21). Note that to derive (26) we use limτ→∞ x(τ) = 0 which holds because the

closed-loop is asymptotically stable. Q.E.D.

Note that φ(x, p) in (19) can be represented as

φ(x, P) = (P−1x)T M(x, P)(P−1x) (27)

where

M(x, P) :=− (A + B2(x)C12)P − P(A + B2(x)C12)
T

−

(

1

γ2
B1BT

1 −
1

a2
u(x)

B2(x)BT
2 (x)

)

− a2
z(x)PCT

11C11P. (28)

From this we have the next corollary.

Corollary 1. Suppose that for given γ > 0 there exists a positive definite symmetric matrix P which

satisfies the following state-dependent inequality:

M(x, P) ≻ 0, ∀x ∈ Rn (29)

Then by the feedback (20) the closed-loop system is asymptotically stable and the L2-induced norm (14)

is less than or equal to γ.

Proof: It is obvious from (27) that (19) is satisfied if (29) holds. Hence we obtain this corollary

from Theorem 2. Q.E.D.
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A Sum of Squares Optimization Approach to Robust Control of Bilinear Systems 9

The inequality (29) is called “a state-dependent matrix Riccati inequality” and equivalent to

hT [−(A + B2(x)C12)P − P(A + B2(x)C12)

−

(

1

γ2
B1BT

1 −
1

a2
u(x)

B2(x)BT
2 (x)

)

− a2
z(x)PCT

11C11P

]

h > 0,

∀x ∈ Rn, h( �= 0) ∈ Rn. (30)

Note that h is independent of x in (30), whereas there is a relationship of h = P−1x between h

and x in (19). This means that the condition (30) can be very conservative compared with the

condition (19). As mentioned in Introduction, most papers have tried to find P which satisfies

a matrix state-dependent inequality like (29) (or (30)). In contrary to this, we will try to find P

which satisfies (19) (instead of (30)) to reduce the conservativeness.

3. Sum of squares

In this section, we briefly survey the so-called “SOS (Sum of Squares) optimization.”

3.1 Definitions and basic properties

A monomial in x = [x1 · · · xn]T is represented as xα1

1 · · · xαn
n with α = (α1, . . . , αn) ∈ Zn

+.

This is also written as xα = xα1

1 · · · xαn
n . The degree of a monomial xα, denoted by deg(xα),

is defined by deg(xα) := ∑
n
i=1 αi and the degree of a polynomial f (x) ∈ R[x], denoted by

deg( f ), is defined by the degree of the monomial which has the highest degree among all

the monomials included in f (x). For a polynomial matrix F(x) ∈ Rq×r the degree of F(x),
denoted by deg(F), is defined by deg(F) := maxij deg(Fij) where Fij denotes the (i, j) element

of F(x).
A real polynomial f (x) ∈ R[x] is said to be an SOS (Sum of Squares) polynomial if it can

be represented as a sum of squares of some polynomials, i.e., there exist some polynomials

gi(x) ∈ R[x] (i = 1, . . . , p) such that

f (x) =
p

∑
i=1

g2
i (x). (31)

Moreover, a polynomial symmetric matrix F(x) ∈ Rr×r[x] is said to be an SOS matrix if it can

be represented as

F(x) = LT(x)L(x)

for some polynomial matrix L(x) of appropriate size. In this paper, we denote the set of SOS

polynomials by Σ, and the set of r × r SOS matrices by Σr×r.

From the definitions it is obvious that

f (x) ∈ Σ ⇒ f (x) ≥ 0 (∀x ∈ Rn), (32)

F(x) ∈ Σr×r ⇒ F(x) � 0 (∀x ∈ Rn). (33)

Here, for a positive integer d let vd(x) be a polynomial vector in x of size n+dCd defined by

vd(x) :=
[

1 x1 · · · xn x2
1 x1x2 · · · x2

n · · · xd
1 · · · xd

n

]T
, (34)

47A Sum of Squares Optimization Approach to Robust Control of Bilinear Systems
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which contains all monomials whose degrees are less than or equal to d where αCβ =
α!/(β!(α − β)!) for positive integers α and β with α ≥ β. Then the next lemmas are known.

Lemma 1. (Parrilo (2003)) Let deg( f ) = 2d where f (x) ∈ R[x]. Then the following (i) and (ii) are

equivalent:

(i) f (x) ∈ Σ.

(ii) There exists a positive semi-definite symmetric matrix of appropriate size such that f (x) =
vT

d (x)Qvd(x).

Lemma 2. (Scherer & Hol (2006)) Let deg(F) = 2d where F(x) ∈ R[x]r×r. Then the following (i)

and (ii) are equivalent:

(i) F(x) ∈ Σr×r.

(ii) There exists a positive semi-definite symmetric matrix of appropriate size Q such that F(x) =
(vd(x)⊗ Ir)TQ(vd(x)⊗ Ir).

Using these lemmas, the problem of determining whether a polynomial f (x) (or a polynomial

matrix F(x)) is an SOS polynomial (or an SOS matrix) or not is reduced to an SDP

(Semi-Definite Programming) problem, which can be solved numerically, of checking the

positive semi-definiteness of the corresponding matrix Q.

3.2 SOS polynomials with equality constraints

Let us consider the following equality constraints:

f j(x) = 0, j = 1, . . . , p (35)

where f j(x) ∈ R[x] and their feasible set is defined by

S := {x ∈ Rn | f j(x) = 0, j = 1, . . . , p}. (36)

Here we consider the problem of determining whether a given polynomial f0(x) ∈ R is

non-negative or not for all x ∈ R in the feasible set, i.e., the following condition holds or

not:

f0(x) ≥ 0, ∀x ∈ S. (37)

For this problem, define a generalized Lagrange function L(x, λ) by

L(x, λ) := f0(x)−
p

∑
j=1

λj(x) f j(x) (38)

where λj(x) ∈ R[x] and let

λ(x) :=
[

λ1(x) · · · λp(x)
]T

∈ R[x]p.

Then if for given λ[x] ∈ R[x]p

L(x, λ) ≥ 0, ∀x ∈ Rn (39)
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A Sum of Squares Optimization Approach to Robust Control of Bilinear Systems 11

holds, the condition (37) is satisfied. In fact, (39) implies

f0(x) ≥
p

∑
j=1

λj(x) f j(x) = 0, ∀x ∈ S. (40)

Moreover, if L(x, λ) ∈ Σ then (39) holds from Lemma 1 and hence (37) holds. These facts are

summarized in the following lemma.

Lemma 3. If the following (i) or (ii) holds, the condition (37) holds.

(i) There exists λ(x) ∈ R[x]p such that L(x, λ) ≥ 0 (∀x ∈ Rn).

(ii) There exists λ(x) ∈ R[x]p such that L(x, λ) ∈ Σ.

4. Proposed method

Theorem 2 implies that the state feedback (20) will stabilize the closed-loop system and (25) is

satisfied if we can obtain a positive definite symmetric matrix P satisfying (19). In this section,

we propose an SOS optimization method to find such P.

To this end, let us introduce sufficiently small ǫ > 0 and define

M̃(x, P) := M(x, P)− ǫI, (41)

φ̃(x, P) := (P−1x)T M̃(x, P)(P−1x). (42)

Then it is easy to see

M̃(x, P) � 0, ∀x ∈ Rn ⇒ M(x, P) ≻ 0, ∀x ∈ Rn, (43)

φ̃(x, P) ≥ 0, ∀x ∈ Rn ⇒ φ(x, P) > 0, ∀x( �= 0) ∈ Rn. (44)

Hence, for obtaining the feedback (20) it suffices to find P ≻ 0 such that

φ̃(x, P) ≥ 0, ∀x ∈ Rn. (45)

From (42), the condition (45) can be written as

hT M̃(x, P)h ≥ 0, ∀(x, h) ∈ R2n such that h = P−1x (46)

and moreover this can be written as

hT M̃(x, P)h ≥ 0, ∀(x, h) ∈ S̃ (47)

where

S̃ := {(x, h) ∈ R2n | x − Ph = 0}. (48)

By this, the condition (45) is represented as the condition (47) including the equality constraint

x − Ph = 0. For the condition (47) we define a generalized Lagrange function as in Section 3.2

as follows:
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L(x, h, λ; P) := hT M̃(x, P)h − λT(x, h)(x − Ph) (49)

where λ(x, h) ∈ R[x, h]n. Then, from Lemma 3, (47) is satisfied if there exit λ and P(≻ 0)
which satisfies

L(x, h, λ; P) ≥ 0, ∀(x, h) ∈ R2n (50)

Here, suppose the degree of λ is given, say m, then λ can be written as

λ(x, h) = Hvm(x, h)

where vm(x, h) is a vector of size 2n+mCm which contains all monomials in x and h whose

degrees are less than or equal to m, and H is an n × (2n+mCm) real matrix. From this, (50) is

reduced to

Lm(x, h; H, P) := hT M̃(x, P)h − vT
m(x, h)HT(x − Ph) ≥ 0, ∀(x, h) ∈ R2n, (51)

and the problem to be concerned becomes the one for finding matrices P and H which satisfies

(51).

Note that Lm(x, h; H, P) includes the product of H and P in the last term. Hence, we consider

an iterative algorithm which repeats a step of finding H for fixed P and a step of finding P for

fixed H.

First, suppose P is fixed. In this case, Lm(x, h; H, P) can be written as

Lm(x, h; H, P) = vT
d1
(x, h)Q1(H)vd1

(x, h) (52)

where d1 = deg(Lm), the degree of Lm as a polynomial in x and h, vd1
(x, h) is a vector of

size 2n+d1
Cd1

which contains all monomials in x and h whose degrees are less than or equal

to d1, and Q1(H) is a (2n+d1
Cd1

) × (2n+d1
Cd1

) symmetric matrix. Then Q1(H) is affine in H

because so is Lm. Hence, in the case of fixed P, the problem to be concerned is reduced to an

SDP problem to find H such that Q1(H) � 0, because (51) is satisfied if Lm ∈ Σ(x,h) which is

equivalent to the existence of Q1(H) � 0 by Lemma 1.

Next, suppose H is fixed. In this case, Lm is not affine in P, but by Schur complement (51) is

equivalent to

G(x, h; H, P) :=

[

G11(x, h; H, P) a2
z(x)hT PCT

11
a2

z(x)C11Ph a2
z(x)Inz

]

� 0, ∀(x, h) ∈ R2n, (53)

which is affine in P, where

G11(x, h; H, P) :=hT
[

−(A + B2(x)C12)P − P(A + B2(x)C12)
T − γ̄B1BT

1

+ ā2
u(x)B2(x)BT

2 (x)
]

h − vT
m(x, h)HT(x − Ph) (54)

and

γ̄ :=
1

γ2
, āu(x) :=

1

au(x)
. (55)
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Since G is afffine in P, it can be written as

G(x, h; H, P) = (vd2
(x, h)⊗ Inz+1)

TQ2(P)(vd2
(x, h)⊗ Inz+1) (56)

where d2 = deg(G), the degree of G as a polynomial matrix in x and h, vd2
(x, h) is a vector of

size 2n+d2
Cd2

which contains all monomials in x and h whose degrees are less than or equal to

d2, and Q2(P) is a real symmetric matrix of appropriate size. Hence, in the case of fixed H, the

problem to be concerned is reduced to an SDP problem to find P such that Q2(P) � 0, because

(51) is satisfied if G ∈ Σ
(nz+1)×(nz+1)
(x,h)

which is equivalent to the existence of Q2(H) � 0 by

Lemma 2.

Note that Lm and G are also affine in γ̄ and hence we can consider to maximize γ̄ = 1/γ2 (i.e.,

minimize γ).

Now, let us summarize our method as an algorithm.

Algorithm 1. Step. 0 Choose an initial value P0 ≻ 0 and small ǫ. Let k := 0 and γ̄0 = 0.

Step 1 Let P = Pk and get the optimal value γ̄∗ and its optimizer H∗ by solving numerically the next

SDP problem

max
γ̄,H

γ̄ s.t. Q1(H) � 0, (57)

and let Hk := H∗.

Step 2 Let H = Hk and get the optimal value γ̄∗ and its optimizer P∗ ≻ 0 by solving numerically

the next SDP problem

max
γ̄,P≻0

γ̄ s.t. Q2(P) � 0, (58)

and let γ̄k+1 := γ̄∗ and Pk+1 = P∗.

Step 3 If |γ̄k+1 − γ̄k| is sufficiently small (i.e., γ̄k is convergent), then return Pk+1 as a solution and

exit; otherwise, let k := k + 1 and go to Step 1.

Note that a feasible solution to M̃(0, P) � 0 for large γ can be used as an initial value P0,

because M̃(0, P) � 0 is a usual Riccati inequality and has a feasible solution for large γ.

5. Numerical example

In this section, we give a numerical example. The bilinear system to be concerned is the

semi-active suspension system for automobiles introduced by Ohsaku et al. (1998); Sampei et

al. (1999).

The motion equation of the suspension system is given by

Mb ẍb = Cs(ẋw − ẋb) + Cv(ẋw − ẋb) + Ks(xw − xb) (59)

Mw ẍw = −Cs(ẋw − ẋb)− Cv(ẋw − ẋb)− Ks(xw − xb) + Kt(xr − xw) (60)

where

xb is the displacement of the car body,

xw is the displacement of the car wheel,

xr is the displacement of the road,
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Mb is the mass of the car body,

Mw is the mass of the car wheel,

Ks is the spring constant of the suspension,

Kt is the elastic coefficient of the tire,

Cs is the fixed damping coefficient of the suspension,

Cv is the variable damping coefficient of the suspension,

and Cv is the input and ẋr is the disturbance.

Mb

Mw

✘✘❳❳❳✘✘✘❳❳❳✘✘

❡

✘✘❳❳❳✘✘✘❳❳❳✘✘

Ks

Kt

Cs

u = Cv✟✟✟✟✯

✻xr

✻xw

✻xb

✁✁ ✁
✁
✁
✁
✁✁✁✁ ✁✁ ✁✁ ✁✁

Fig. 6. Semi-active suspension system

Then the state-space representation of the generalized system with Wz = I, Wu = 1 and

nonlinear weights az(x), au(x) is given by

ẋ(t) = Ax(t) + B1w(t) + B2(x)u(t) (61)

z̄(t) = az(x)C11x(t) + au(x)u(t) (62)

where

x(t) =

⎡

⎢

⎢

⎢

⎢

⎣

xw(t)− xb(t)

ẋb(t)
xr(t)− xw(t)

ẋw(t)

⎤

⎥

⎥

⎥

⎥

⎦

, u(t) = Cv(t), w(t) = ẋr(t)

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −1 0 1

Ks
Mb

− Cs
Mb

0 Cs
Mb

0 0 0 −1

− Ks
Mw

Cs
Mw

Kt
Mw

− Cs
Mw

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B1 =

⎡

⎢

⎢

⎣

0

0

1

0

⎤

⎥

⎥

⎦

, B2(x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0

ẋw−ẋb
Mb

0

− ẋw−ẋb
Mw

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

C11 =
[

0 1 0 0
]
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and the nonlinear weights are given by

az(x) =
√

1 + xT Rzx,

au(x) =
1

√

1 + xT Rux
, (63)

Rz = mz I,

Ru = mu I,

with some positive numbers mz, mu. Note that this nonlinear weights do not satisfy the

condition (16) in Theorem 1 in general. Hence, the method by Ohsaku et al. (1998); Shimizu et

al. (1997) cannot be applied to this example with this weights.

The objective of the robust control to be concerned is to minimize the effect of the disturbance

(the road roughness) on the velocity of the car body, which is formulated as the problem of

minimizing the following L2-induced norm:

sup
w �=0

‖z̄‖2

‖w‖2
.

Fig. 7 shows the disturbance w(t) = ẋr(t) and Fig. 8 shows the simulation results where the

dashed red line shows the velocity of the car body without feedback control and the solid

blue line shows the one with feedback control designed by our method. It can be seen that

the amplitude of the body velocity by our method is suppressed compared with that without

feedback control. This means that the effect of the disturbance on the body velocity is reduced

by our method, which shows the efficiency of our method.

Fig. 7. Disturbance from the road surface
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Fig. 8. Velocities of the car body (dashed red: open-loop, solid blue: by our method)

6. Conclusions

In this paper, first we have derived an inequality condition of quadratic form for the robust

control problem of bilinear systems with nonlinear weights, and then proposed an iterative

method for finding a solution to the inequality condition. Finally, we have given a numerical

example to show the effectiveness of our method.
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