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1. Introduction 

Diabetes is a major world health problem, which affects more than 23 million people in the 
US and an estimated 250 million worldwide. Diabetes mellitus is a metabolic disease 

characterized by high blood glucose levels resulted from an inability in pancreatic insulin 
secretion or insulin resistance. Usually diabetes mellitus is mainly divided into type 1 

diabetes characterized by loss of the insulin production from beta cells of the pancreatic 
islets and type 2 diabetes characterized by insulin resistance (defective responsiveness of 

body tissues to insulin) and relatively reduced insulin secretion. Although type II diabetes is 
by far the most common affecting 90 to 95% of the US diabetic population, the studies 

focusing on the type 1 diabetes cannot be ignored because about 1 in every 400 to 600 
children and adolescents has type 1 diabetes and about 2 million adolescents aged 12-19 

have pre-diabetes in the US.  
Diabetes mellitus is chronic progressive disease that usually cannot be cured. Following the 

natural progression of disease, diabetes without proper treatments can cause many severe 

complications including diabetic ketoacidosis, cardiovascular disease, chronic renal failure, 
retinal damage. These complications obviously enhance the risk for diabetic patients. In 

these complications of the diabetes mellitus, cardiovascular autonomic dysfunction is a 
serious although poorly understood long term diabetic complication. Indeed, diabetic 

patients with cardiovascular autonomic dysfunction have consistently been shown to have 
an enhanced risk of premature death (Rosengard-Barlund et al., 2009).  More importantly, 

the age-adjusted relative risk for cardiovascular disease in type 1 diabetes far exceeds that of 
type 2 diabetes (Krolewski et al., 1987; Libby et al., 2005). Therefore, exploring the 

mechanisms responsible to the cardiovascular autonomic dysfunction can provide an 
important and new pharmacological and genetic target for improving the prognosis and 

reducing the mortality in diabetic state. 

2. Baroreflex dysfunction in type 1 diabetes and the contribution of the 
baroreflex dysfunction in prognosis and mortality of the type 1 diabetes 

Cardiovascular autonomic function is the autonomic neural regulation of cardiovascular 
function, which presents the balance between sympathetic and parasympathetic innervation 
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resulting in periodic fluctuation in heart rate and rhythm. Although there are many invasive 
and non-invasive methods to evaluate the cardiovascular autonomic function in diverse 
clinical and research settings, cardiovascular autonomic function typically is measured by a 
short-term evoked cardiovascular reflex, especially arterial baroreflex.  

2.1 Baroreflex dysfunction 
The arterial baroreflex normally acts to prevent wide oscillations in blood pressure and 
heart rate, acting on both sympathetic and parasympathetic limbs of the cardiovascular 
autonomic nervous system. Dysfunction of the arterial baroreflex control on the blood 
pressure and heart rate has been described in many studies not only in the type I diabetic 
patients, but also in experimental models of the type I diabetes. 
In the diabetic patients, heart rate variability is the most widely used index of the arterial 
baroreflex function. Some studies in more heterogeneous groups of patients with type 1 
diabetes have indicated that: (1) showing lower global heart rate variability; (2) relative 
increase in the low-frequency component (sympathetic activity) of the heart rate variability; 
(3) relative reduction in the high-frequency component (parasympathetic activity) of the 
heart rate variability; and (4) higher ratio of the low frequency to the high-frequency 
(Lishner et al., 1987; Rosengard-Barlund et al., 2009; Ziegler et al., 2001). Clinical research 
data have confirmed that arterial baroreflex sensitivity is reduced in type 1 diabetic patients 
with a wide range of age and diabetic duration (Lefrandt et al., 1999; Weston et al., 
1996;Weston et al., 1998; Dalla et al., 2007). More importantly, this attenuated arterial 
baroreflex function was found in the type 1 diabetic patients without the clinical 
complications, the alterations of the other autonomic function tests, or the overt autonomic 
neuropathy (Lefrandt et al., 1999; Rosengard-Barlund et al., 2009). Therefore, it is of note that 
the reduced arterial baroreflex sensitivity can be an earlier sensitive marker of the 
cardiovascular autonomic dysfunction in the type 1 diabetic patients. 
In order to obtain new insights into human type 1 diabetes, animal models of the type 1 

diabetes have been widely used in the biomedical studies focusing on the type 1 diabetes, 

such as alloxan-induced diabetic rabbits (McDowell et al., 1994b), streptozotocin-induced 

diabetic rats (Hicks et al., 1998; Maeda et al., 1995; Van et al., 1998; Chen et al., 2008), and 

calmodulin transgenic OVE26 diabetic mice (Gu et al., 2008). Streptozotocin (STZ)-induced 

diabetic rat is an animal model of insulin-dependent diabetes usually used to study the 

cardiovascular alterations including cardiovascular autonomic dysfunction caused by 

diabetes even if the changes of cardiovascular function in this animal model don’t fully 

match the alterations observed under the clinical type 1 diabetic states (Hicks et al., 1998). In 

the STZ-induced diabetic rats, the arterial baroreflex dysfunction is presented as early as 5 

days after the STZ administration (Maeda et al., 1995). Much evidence has documented that 

the arterial baroreflex is decreased in all kinds of type 1 diabetic models (Chen et al., 2008; 

Dall'Ago et al., 1997; De Angelis et al., 2000; Gu et al., 2008; Maliszewska-Scislo et al., 2003; 

McDowell et al., 1994b; Van et al., 1998). 

2.2 Association of cardiovascular autonomic dysfunction with mortality rate 
30 years ago, Ewing et al (Ewing et al., 1980) first reported that there was a mortality rate of 
53% after 5 years in diabetic patients with abnormal autonomic function, compared with a 
mortality rate of about 15% over the 5 year period among diabetic patients without 
abnormal autonomic function. Thereafter the growing evidence has confirmed that 
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cardiovascular autonomic dysfunction is associated with a high risk of cardiac arrhythmias 
and with sudden death in the diabetic state. A longitudinal study by O’Brien et al (O'Brien et 
al., 1991) has investigated 5-year survival in 506 randomly selected patients with insulin-
dependent diabetes mellitus. In this study, the cumulative 5-year mortality rate in the 
diabetic patients with cardiovascular autonomic dysfunction (27%) is about 5-fold more 
than in the diabetic patients with normal cardiovascular autonomic function (5%). However, 
there is no difference in duration of diabetes between the deceased diabetic patients with 
and without cardiovascular autonomic dysfunction (O'Brien et al., 1991).  A meta-analysis 
(Maser et al., 2003) and the epidemiology of diabetes complication study (Orchard et al., 
1996) also showed that cardiovascular autonomic dysfunction could contribute to the 
increased risk of mortality rate in the individuals with diabetes. In the recent EURODIAB 
prospective complications study, the researchers have found that cardiovascular autonomic 
dysfunction is an important risk marker for mortality rate, exceeding the effect of the 
traditional risk factors (such as age, waist-to-hip ratio, pulse pressure, and non-HDL 
cholesterol) (Soedamah-Muthu et al., 2008).  
Since the diabetic patients are more likely to have many known diabetes-associated risk 

factors besides cardiovascular autonomic dysfunction (Soedamah-Muthu et al., 2008), the 

question is whether cardiovascular autonomic dysfunction is an independent risk factor to 

predict the mortality rate of the diabetic patients. Some studies have addressed this question 

to minimize the potential interference of other risk factors (for example age, sex, height, 

smoking, diabetes duration, etc) by matching these variables in the diabetic patients with 

and without cardiovascular autonomic dysfunction (O'Brien et al., 1991; Orchard et al., 1996; 

Rathmann et al., 1993).  In Rathmann’s study (Rathmann et al., 1993), diabetic patients with 

and without cardiovascular autonomic dysfunction were matched for age, sex, and duration 

of diabetes. The 8-year survival rate estimate in patients with cardiovascular autonomic 

dysfunction was 77% compared with 97% in those with normal cardiovascular autonomic 

function in this study (Rathmann et al., 1993).  O’Brien et al. have also matched age, sex, and 

duration of diabetes in the diabetic patients with and without cardiac autonomic 

dysfunction in their study (O'Brien et al., 1991). They found that the cardiovascular 

autonomic dysfunction was associated with the mortality rate of the type 1 diabetic patients 

(O'Brien et al., 1991). 

2.3 Potential mechanisms responsible for cardiovascular autonomic dysfunction-
increased mortality rate 
Although many studies mentioned above have confirmed that the cardiovascular autonomic 

dysfunction is involved in increasing mortality rate of type 1 diabetic patients, we really 

don’t know whether cardiovascular autonomic dysfunction is directly or indirectly 

responsible for the increased mortality rate. It is possible that several possible mechanisms 

are involved in this clinical phenomenon.    

First, a few clinical studies have reported that some type 1 diabetic patients in good health 
the previous day are found dead in the morning in an undisturbed bed with no sign of the 
symptoms (such as sweating and struggle) and negative autopsy results, which is named 
as the ‘dead in bed’ syndrome (Tattersall & Gill, 1991; Weston & Gill, 1999). One recent 
clinical study has found that ECG abnormalities including QT prolongation, cardiac 
rhythm disturbance, and subsequent ventricular tachyarrhythmia appear in the ambulant 
patients with type 1 diabetes (Gill et al., 2009). The ECG abnormalities can serve as 
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principal underlying causes of the ‘dead in bed’ syndrome (Gill et al., 2009). 
Cardiovascular autonomic dysfunction itself can link to the QT prolongation and sudden 
death (Weston & Gill, 1999). In another study, type 1 diabetic adolescents with impaired 
cardiovascular autonomic function are associated with the possible development of 
cardiac arrhythmias and left-ventricular hypertrophy (Karavanaki et al., 2007). In 
addition, decreased heart rate variability is also a predictive risk factor for ventricular 
arrhythmia and sudden cardiac death (Kleiger et al., 1987). Loss of cardiac vagal drive 
combined with loss of baroreceptor reflex sensitivity is thought to mediate the decreased 
heart rate variability and autonomic instability that exacerbate arrhythmia susceptibility 
(Binkley et al., 1991). These studies indicate that cardiovascular autonomic dysfunction 
(decreased heart rate variability and loss of baroreceptor reflex sensitivity) is correlated 
with the prognosis and mortality in patients with type 1 diabetes via increasing the 
susceptibility to the lethal arrhythmias.   
Second, although cardiovascular autonomic dysfunction is an independent risk factor to 
predict the mortality rate of the diabetic patients described above, other abnormalities (such 
as increased stiffness of the vascular walls at the site of the arterial baroreceptors, left 
ventricular hypertrophy, endothelial dysfunction, renal failure, peripheral neuropathy, etc) 
usually coexist with cardiovascular autonomic dysfunction in type 1 diabetic patients 
(Toyry et al., 1997; Lluch et al., 1998; Lefrandt et al., 2010). Therefore, it is possible that the 
interaction between cardiovascular autonomic dysfunction and other concomitant 
abnormalities is responsible for the increased mortality rate in type 1 diabetic patients. It has 
been shown that cardiovascular autonomic function is easily impaired in type 1 diabetic 
patients with microalbuminuria (renal dysfunction) (Lefrandt et al., 1999; Clarke et al., 1999). 
O’Brien et al have reported that renal failure-induced mortality rate is higher in type 1 
diabetic patients with cardiovascular autonomic dysfunction than in those without 
cardiovascular autonomic dysfunction (O'Brien et al., 1991). In a 23 year follow-up study, 
cardiovascular autonomic dysfunction may be involved in a higher mortality rate induced 
by microalbuminuria in type 1 diabetic patients (Messent et al., 1992). Similarly, renal 
disease also can partially explicate the cardiovascular autonomic dysfunction-increased 
mortality rate in patients with diabetes mellitus (Weinrauch et al., 1998; Kim et al., 2009). In 
addition, using logistic regression analysis, one recent study has addressed the relationship 
between cardiovascular autonomic dysfunction and other abnormalities in 684 type 1 
diabetic patients (Pavy-Le et al., 2010). The research data have shown that retinopathy, 
peripheral neuropathy, and erectile dysfunction are closely correlated to the severity of the 
cardiovascular autonomic dysfunction (Pavy-Le et al., 2010). Furthermore, some studies 
have also found a consistent association between cardiovascular autonomic dysfunction and 
silent myocardial ischemia, in which the patient’s risk coefficient related to the 
cardiovascular autonomic dysfunction is higher in asymptomatic diabetic patients with 
silent myocardial ischemia than in those without silent myocardial ischemia (Valensi et al., 
2001; Vinik & Ziegler, 2007; Katz et al., 1999).  
Finally, several studies reported the involvement of cardiorespiratory arrest in the mortality 
of the diabetic patients with cardiovascular autonomic dysfunction (Page & Watkins, 1978; 
Bergner & Goldberger, 2010; Douglas et al., 1981). The research data from Page et al. (Page & 
Watkins, 1978) have demonstrated that young diabetic patients with severe cardiovascular 
autonomic dysfunction can appear to have cardiorespiratory arrest due to the impairment of 
cardiorespiratory function. The cardiorespiratory arrest may be responsible for the mortality 
of these diabetic patients (Page & Watkins, 1978).  
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3. Mechanisms responsible for the reduced baroreflex function in type 1 
diabetes 

The arterial baroreflex is a homeostatic mechanism that alters heart rate and blood pressure 
in response to changes in arterial wall tension detected by the baroreceptors in the carotid 
sinus and aortic arch. The arterial baroreflex arc includes an afferent limb, a central neural 
component and autonomic neuroeffector components. As the primary afferent limb of the 
baroreceptor reflex, baroreceptor neurons sense blood pressure by increasing their discharge 
(excitation) when arterial blood pressure rises. This excited signal in baroreceptor neurons 
reaches to the dorsal medial nucleus tractus solitarii (NTS, the first site of baroreceptor 
neuron contacting with central nervous system), in which the integrated input signal 
inhibits the efferent sympathetic outflow to the heart and peripheral vascular, and activates 
efferent parasympathetic activity to the heart those decrease peripheral vascular resistance, 
heart rate, and arterial blood pressure. Conversely, the baroreceptor afferent signal 
decreases when arterial blood pressure falls, which reflexly induces an increase in heart rate 
and arterial blood pressure.  
As mentioned above, blunted arterial baroreflex sensitivity is observed in type 1 diabetic 
patients and animal models. What are the mechanisms responsible for the attenuated 
arterial baroreflex sensitivity in type 1 diabetes? Every site within the baroreflex arc may be 
responsible for the depressed baroreflex sensitivity in type 1 diabetes. Therefore, we will 
discuss the fact that the reduced baroreflex sensitivity results from functional and/or 
structural changes in the baroreceptors (including nerve terminals and neuron somata), 
central neural integration, and autonomic efferent component. 

3.1 Role of baroreceptor in the blunted arterial baroreflex in type 1 diabetes 
As the primary afferent limb of the arterial baroreceptor reflex, baroreceptor neurons are 
pseudo-unipolar neurons (T-shaped neurons) consisting of a cell body existing in the 
nodose or petrosal ganglia and an initial axon segment. This axon segment bifurcates near 
the soma into a peripheral process innervating aortic arch and carotid sinus for sensing the 
alteration of the arterial blood pressure and a central process terminating in the NTS for 
conveying the afferent signals to the central nervous system. The mechanisms responsible 
for mediating afferent sensitivity of barosensitive neurons to pressure are complex and not 
thoroughly understood. The process of translating changes in arterial wall tension into 
impulse traffic to the NTS involves 2 broad functional steps: 1) mechanotransduction which 
is governed by the properties of mechanosensitive ion channels in the nerve terminal and 
the mechanical properties of the coupling of the arterial wall to the sensory terminal; and 2) 
spike initiation which is governed by the excitability of membrane voltage sensitive ion 
channels that influence the electrical (cable) properties of the axonal process and cell body. 
All of these factors could be (and likely are) altered in type 1 diabetes, which can directly 
affect the arterial baroreflex function. 

3.1.1 Changes of baroreceptor afferent nerve and terminal in type 1 diabetes 
Although some studies have suggested that diabetes-induced postural hypotension results 
from impairments of afferent baroreceptors and of sympathetic neurons innervating the 
vascular wall and heart in diabetic patients (Low et al., 1975; Iovino et al., 2011), there is only 
fragmentary evidence to support this assumption because of the inability of clinical 
cardiovascular autonomic function tests to separate the role of the afferent, central, and 
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efferent components of the arterial baroreflex. In general, the function of the baroreceptor 
afferent nerve and terminal is investigated by recording the single fiber or multifiber activity 
of the aortic depressor nerve or carotid sinus nerve in a perfused isolated aortic arch/carotid 
sinus preparation (do Carmo et al., 2007; Doan et al., 2004; Fazan, Jr. et al., 1997; McDowell et 
al., 1994b; Reynolds et al., 1994; Reynolds et al., 1999; Xiao et al., 2007; Zhang et al., 2004). 
However, the baroreceptor function in the diabetic state is studied only in the aortic 
depressor nerve (Fazan, Jr. et al., 1997; Fazan, Jr. et al., 1999; McDowell et al., 1994b; Reynolds 
et al., 1999) but not in the carotid sinus nerve (Salgado et al., 2001). This may be because there 
are only baroreceptor afferent fibers and no chemoreceptor afferent fibers in rat aortic 
depressor nerve unlike the carotid sinus nerve (Fan et al., 1996; Kobayashi et al., 1999; Sapru 
& Krieger, 1977; Sapru et al., 1981).  Based on the results from some studies, there is no 
evidence to show the changes of the aortic depressor nerve activity in STZ-induced type 1 
diabetic rats (Fazan, Jr. et al., 1997; Reynolds et al., 1999; Dall'Ago et al., 2002) and alloxan-
induced diabetic rabbits (McDowell et al., 1994b), compared to the sham animals. In 
addition, Gu et al  (Gu et al., 2008) have found that the baroreceptor function of the aortic 
depressor nerve is preserved in the ascending phase of the arterial blood pressure but is 
blunted in the descending phase of the arterial blood pressure in type 1 diabetic mice. 
Nevertheless, the results obtained by a new approach, named as cross-spectral analysis, 
indicate that a significant decrease of the aortic baroreceptor nerve function is observed in 
anesthetized rats with either short term (10-20 days) or long term (12-18 weeks) STZ-
induced diabetes (Fazan, Jr. et al., 1999). This new approach uses the magnitude of the 
transfer function obtained by analyzing the relationship between beat-by-beat time series of 
mean arterial blood pressure and aortic depressor nerve activity as the index of the aortic 
baroreceptor nerve function, whose advantage is to evaluate the aortic baroreceptor nerve 
function under more physiological conditions (Salgado et al., 2001; Fazan, Jr. et al., 1999; 
deBoer et al., 1987) compared to the arterial blood pressure/aortic depressor nerve activity 
curve used in other studies (Dall'Ago et al., 2002; Fazan, Jr. et al., 1997; Gu et al., 2008; 
McDowell et al., 1994b; Reynolds et al., 1999). In addition, Fazan et al have found that the 
morphological change in the aortic depressor nerve, an afferent arm of the baroreflex may 
result in the arterial baroreflex impairment in the STZ-induced diabetic rats (Fazan et al., 
2006). Therefore, the functional and structural alterations of the baroreceptor afferent nerve 
in type 1 diabetes still need to be further clarified in future study.   
By light, electron, and confocal microscopies, some researchers have identified the aortic 

baroreceptor terminals in the adventitia of the aortic arch from dogs, rabbits, cats, rats, and 

mice (Aumonier, 1972; Cheng et al., 1997; Krauhs, 1979; Li et al., 2010).  More importantly, Li 

et al have demonstrated that diabetes induces morphological atrophy of the aortic 

baroreceptor terminals in type 1 diabetic mice (Li et al., 2010). However, there is no report on 

the functional role of the aortic baroreceptor terminals in sham and type 1 diabetic animals 

because it is difficult to separate aortic baroreceptor terminals to other tissues (such as 

smooth muscle and endothelium) in the aortic arch. It is possible that using gene and short 

hairpin RNA (shRNA) transfection can solve this problem in future study. 

3.1.2 Role of aortic baroreceptor neurons in the arterial baroreflex in the type 1 
diabetes 
Many studies have used the responses of blood pressure and heart rate to electrical 
stimulation of baroreceptor-containing nerve (aortic depressor nerve) for the evaluation of 
the baroreflex sensitivity in rats (Fan & Andresen, 1998; Salgado et al., 2007; Tang & 
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Dworkin, 2007). The aortic depressor nerves (the peripheral process of the aortic 
baroreceptor neuron) are composed of both afferent A-type (myelinated) axons (about 25%) 
and C-type (unmyelinated) axons (about 75%) (Yamasaki et al., 2004). There are very 
different dynamic sensory discharge characteristics between A-type and C-type 
baroreceptor afferents. C-type afferents are activated mainly at very high pressure and have 
lower firing frequencies, irregular discharge patterns (Thoren et al., 1999), and appear to be 
the primary regulators of tonic baseline levels of arterial blood pressure besides regulating 
the baroreflex sensitivity (Seagard et al., 1993). A-type afferents have lower pressure 
thresholds with very stable, proportional firing patterns (Thoren et al., 1999), which are 
thought to regulate the baroreflex sensitivity but not baseline levels of arterial blood 
pressure (Seagard et al., 1993). Electrical Stimulation of the rat aortic depressor nerve has 
several advantages to examine the baroreflex function. First, the rat aortic depressor nerve 
contains only baroreceptor afferent fibers and no chemoreceptor afferent fibers to transmit 
the chemoreceptor information (Fan et al., 1996; Kobayashi et al., 1999; Sapru & Krieger, 
1977; Sapru et al., 1981). Second, the baroreflex induced by stimulating rat aortic depressor 
nerve is measured without the aortic baroreceptor terminals in the reflex arc, which allows 
us to specifically examine the role of electrical excitability of aortic baroreceptor in the 
baroreflex function (second process mentioned above). Third, by varying the frequency of 
stimulus, one can differentially activate A- and C- afferent fibers, and thus evaluate the 
relative contribution of each to the altered aortic baroreceptor excitability and baroreflex 
function in STZ-induced diabetes. In our preliminary study, the baroreflex responses of 
blood pressure and heart rate to the electrical stimulation of the aortic baroreceptor nerve 
are significantly depressed in STZ-induced diabetic rats (Fig. 1). In addition, our study also 
found that microinjection of angiotensin II type 1 (AT1) receptor antagonist (20 µM L158,809) 
into the nodose ganglia significantly improved the baroreflex sensitivity induced by aortic 
depressor nerve stimulation in STZ-induced diabetic rats (Fig. 1). Simultaneously, AT1 
receptor antagonist also normalized the depressed cell excitability in the aortic baroreceptor 
neurons of STZ-induced diabetic rats (Li & Zheng, 2011). The fact is that nodose neurons are 
found to influence the conduction and frequency of the electrical impulses in the 
baroreceptor central axons projecting to the central nervous system when electrical signals 
in the baroreceptor peripheral axons reach the nodose neurons (Ducreux et al., 1993).  One 
review paper has concluded that the excitability of vagal afferent neurons has dramatic 
consequences for the regulation and modulation of vago-vagal reflex (Browning, 2003). 
Furthermore, Devor (Devor, 1999) has reported that electrical excitability of the soma in the 
dorsal root ganglia may be required to insure the reliable afferent electrical impulses 
transmitted to the spinal cord.  These results, taken together, demonstrate that the reduced 
cell excitability of the aortic baroreceptor neurons contributes to the blunted baroreflex 
sensitivity in STZ-induced diabetic rats. 
However, results from reflex experiments evoked by the electrical stimulation need to be 

tempered because the electrical stimulation technique does not represent a physiological 

substrate for baroreceptor activation. Thus, arterial baroreflex evoked by changes in arterial 

blood pressure should be done to further address the role of the aortic baroreceptor neurons 

in the arterial baroreflex in the type 1 diabetes. Of course, in this approach (blood pressure-

mediated baroreflex sensitivity),  possible alterations in the mechanotransduction process at 

the baro-sensory nerve terminal may also play a role in the suppressed baroreceptor 

function in response to pressure changes. 
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Fig. 1. Reflex ΔMAP and ΔHR in response to different frequencies of ADN stimulation in 
anesthetized sham and STZ-induced diabetic rats (n=8 in each group). L158,809: AT1 
receptor antagonist; CsCl: HCN channel blocker. MBP, mean blood pressure; HR, heart rate; 
ADN, aortic depressor nerve. 

3.1.3 Contribution of the HCN channel to the cell excitability of aortic baroreceptor 
neuron in the type 1 diabetes 
Until now it is controversial whether either severe degenerative changes or neuronal cell 

loss in sensory and autonomic nervous tissues are found in STZ-induced diabetic animals 

(Yagihashi, 1997). Apoptotic cell death was reported in the sensory neurons, satellite cells, 

and Schwann cells from dorsal root ganglia (DRG) of STZ-induced diabetic rats (Russell et 

al., 1999; Srinivasan et al., 2000). Kogawa et al. also found that apoptotic cell death of DRG 

neurons and impaired sensory nerve regeneration were induced by sciatic nerve crush in 

STZ-induced diabetic rats (Kogawa et al., 2000). On the other hand, the findings from Sango 

et al (Sango et al., 1991; Sango et al., 1995; Sango et al., 1997) indicated no difference in the 

dissociated neurons from DRG between sham and STZ-induced diabetic mice. Furthermore, 

some studies have demonstrated that there are no morphological changes of the peripheral 

nerves (Sharma & Thomas, 1987) and cell death of the nodose afferent neurons (Sango et al., 

2002) in STZ-induced diabetic animals. Our recent study (Tu et al., 2010) also suggests that 

STZ-induced diabetes does not change the total cell number of the nodose afferent neurons 

and the ratio of A-/C-type neurons (Fig. 2). These results provide an important piece of 

information that the parasympathetic reflex dysfunction (Li et al., 2008b; Thomas & 

Tomlinson, 1993; Ziegler, 1994) in STZ-induced diabetes might be not due to the structural 

changes in the nodose afferent neurons but most likely due to the functional changes at the 

cellular and molecular levels.  

As everyone knows, many ion channels (such as sodium channels, calcium channels, 

potassium channels, etc) are responsible for the cell excitation in the excitable cells such as 

cardiac/skeletal myocytes and neurons including aortic baroreceptor neurons. However, 

much evidence has indicates that Hyperpolarization-activated cyclic nucleotide-gated 

(HCN) channels play an important role in the cell excitability of the aortic baroreceptor 

neurons from sham and STZ-induced diabetic rats.  
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HCN channels have been found in various types of cells including cardiac and neuronal 

cells (DiFrancesco, 1985; DiFrancesco, 1993; Pape, 1996). In these spontaneously exciting 

cells, HCN channels normally associate to the cardiac pacemaker activity and the neuronal 

oscillatory behavior (Brown et al., 1979; DiFrancesco, 1993; Kaupp & Seifert, 2001; Notomi & 

Shigemoto, 2004; Pape, 1996; Robinson & Siegelbaum, 2003). However, HCN channels may 

have a different role in the nodose ganglion neurons (the non-oscillatory and non-automatic 

exciting cells) because the nodose neurons are inactive except in response to a depolarizing 

stimulus generated by their peripheral sensory terminals (Doan & Kunze, 1999; Li et al., 

2008a). In the nodose neurons, the resting membrane potential is about -50 to -65 mV, in 

which voltage-dependent sodium, calcium, and potassium channels are almost inactivated 

(Robinson & Siegelbaum, 2003). The inactivation of these voltage-dependent channels can be 

recovered to the activation state during the hyperpolarization of the resting membrane 

potential, which means the number of available voltage-dependent channels for activation is 

increased if the nodose neurons receive the depolarizing stimulus (Doan & Kunze, 1999). 

Inhibition of HCN channels has been shown to hyperpolarize the nodose neurons 

(increasing the resting membrane potential) and to reduce action potential threshold in 

response to a depolarizing current stimulation, which suggests that HCN channels are 

involved in the cell excitability of the nodose neurons (Doan et al., 2004; Li et al., 2008a). 

Results from our recent studies (Li et al., 2008a; Li & Zheng, 2011; Tu et al., 2010) confirm 

that the HCN current density in A- and C-type aortic baroreceptor neurons from STZ-

induced diabetic rats is larger than that from the sham rats (Fig. 3). In addition, the resting 

membrane potential is depolarized and the current threshold induced the action potentials 

was elevated in the A-/C-type aortic baroreceptor neurons from STZ-induced diabetic rats, 

compared with that in sham rats (Li et al., 2008a; Li & Zheng, 2011). Furthermore, HCN 

channel blockers (CsCl and ZD-7288) lowered the HCN current density, hyperpolarized the 

resting membrane potential, and raised the cell membrane excitability in A-/C-type aortic 

baroreceptor neurons from sham and STZ-induced diabetic rats (Li et al., 2008a; Zhang et al., 

2010). These results clearly indicate that the HCN channels are involved in the regulation of 

aortic baroreceptor neuron excitability. The enhancement of HCN currents can contribute to 

the blunted aortic baroreceptor neuron excitability, and subsequently attenuate the arterial 

baroreflex sensitivity in STZ-induced diabetic rats. This is true because microinjection of 

HCN channel blocker (5 mM CsCl) improves the arterial baroreflex sensitivity induced by 

the electrical stimulation of the aortic depressor nerve (Fig. 1) (Li et al., 2008b). 

Four mammalian genes encoding HCN channel isoforms (HCN1, HCN2, HCN3, and 
HCN4) have been identified (Doan et al., 2004; Ishii et al., 1999; Ludwig et al., 1998; Santoro et 
al., 1998; Vaccari et al., 1999). In cell lines transfected HCN isoform cDNA, 
electrophysiological studies have shown that each channel isoform is activated by 
membrane hyperpolarization with distinct activation kinetics (Ludwig et al., 1999; 
Moosmang et al., 2001; Qu et al., 2002; Santoro et al., 1998). Activation of the HCN channels is 
also directly modulated by cAMP, which is dependent on the HCN channel isoform (Stieber 
et al., 2003; Wainger et al., 2001; Wang et al., 2002). HCN channels are activated with the 
different activation rates in this order: HCN1>HCN2>HCN3>HCN4 (Accili et al., 2002; 
Altomare et al., 2001; Moosmang et al., 2001; Stieber et al., 2003; Stieber et al., 2005). HCN1 
and HCN3 are only weakly affected by cAMP whereas HCN2 and HCN4 are very sensitive 
to cAMP (Accili et al., 2002; Stieber et al., 2005; Wahl-Schott & Biel, 2009; Wang et al., 2001). 
Our studies (Li et al., 2008a; Tu et al., 2010) have found that a fast-activated and cAMP- 
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Fig. 2. Ratio of A-type/C-type neurons (A and B) and total neuron number (C) in nodose 
ganglia from sham and STZ-induced diabetic rats. Calibration bar: 100 µm. RT97, A-type 
neuron marker; IB4, C-type neuron marker; DAPI, cell nucleus marker. Yellow arrows 
indicate nodose neurons in DAPI staining (Adapted and reprinted from Tu et al., 2010, page 
42, with permission from Elsevier) 
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Fig. 3. Original HCN current recording and current density-voltage curves in A- and C-type 
neurons from sham and STZ-induced diabetic rats. *P<0.05 vs. sham rats (Reprinted from 
Tu et al., 2010, page 48, with permission from Elsevier). 

insensitive HCN current is induced in sham A-type aortic baroreceptor neurons whereas a 

slow-activated and cAMP-sensitive HCN current is induced in sham C-type aortic 
baroreceptor neurons. From these electrophysiological results, we can imagine that there is a 

differential distribution of the HCN channel isoforms in the A- and C-type aortic 
baroreceptor neurons. Data from immunofluorescent double staining also show that HCN1, 

HCN3, and HCN4 are expressed in sham A-type nodose neurons, whereas HCN2, HCN3, 
and HCN4 are expressed in sham C-type nodose neurons (Li et al., 2008a; Tu et al., 2010). 

Based on these results, it is reasonable to assume that there are marked different activation 
kinetics and cAMP sensitivity of HCN channels between A-fiber neurons and C-fiber 

neurons, which might be due to the neuron cell-specific expression of HCN channel 
isoforms.  
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Our studies further demonstrate that diabetes enhances the HCN currents and the 
expression of HCN1, HCN2, and HCH 3 channel proteins in A-type aortic baroreceptor 
neurons (Li et al., 2008a; Tu et al., 2010). Overexpression of HCN1, HCN2, and HCN3 but not 
HCN4 channel isoforms can link to the enhanced HCN currents, the slow-activated HCN 
channel kinetics, and the increased cAMP-sensitivity of HCN channels in diabetic A-type 
aortic baroreceptor neurons (Li et al., 2008a; Tu et al., 2010). Although diabetes also increases 
the HCN currents and the expression of HCN2 and HCN3 channel proteins in C-type aortic 
baroreceptor neurons, diabetes does not change the activation kinetics and the cAMP 
sensitivity of the HCN channels in C-type aortic baroreceptor neurons due to no expression 
of HCN1 channel in diabetic C-type aortic baroreceptor neurons (Li et al., 2008a; Tu et al., 
2010). From these results, we propose that HCN currents are markedly enhanced via 
increasing the numbers of HCN channels and sensitivity of HCN channels to cAMP in the 
aortic baroreceptor neurons. The enhanced HCN currents can contribute to the depressed 
neuron excitability in diabetic aortic baroreceptor neurons. However, we do realize that 
these data cannot explain why diabetes induces the different changes of HCN channel 
protein expression and cannot identify the contribution of the various HCN channel 
isoforms to the enhanced HCN currents in diabetic A- and C-type aortic baroreceptor 
neurons. 

3.1.4 Regulation of the angiotensin II-superoxide signaling on the HCN channel in the 
type 1 diabetes 
Angiotensin II, an endogenous peptide, has been thought to be a prime candidate in the 
regulation of the HCN channel function and cell excitability in the diabetic state. It is known 
that circulating and tissue angiotensin II concentrations are elevated in human and animals 
with diabetes (Frustaci et al., 2000; Sechi et al., 1994; Shimoni & Liu, 2004). Previous 
autoradiographic study has identified a high density of angiotensin II receptor binding sites 
over the nodose neurons (Allen et al., 1988). Widdop, et al. provided evidence for the direct 
neuronal effects of angiotensin II on the vagal afferent neurons (Widdop et al., 1992). Indeed, 
our research data not only confirm AT1 and AT2 receptors exist in nodose neuronal cells, but 
also indicate that exogenous angiotensin II enhances the HCN currents and subsequently 
reduces cell excitability in the aortic baroreceptor neurons from normal rats (Zhang et al., 
2010). This is via NADPH oxidase-derived superoxide because a specific HCN channel 
blocker blunts the inhibitory effect of the exogenous angiotensin II on action potentials 
(Zhang et al., 2010). More importantly, angiotensin II concentration and protein expression 
of AT1 receptors are increased in the nodose neuronal cells from STZ-induced diabetic rats 
(Li & Zheng, 2011). At the same time, mRNA expression of AT1 receptors measured by 
single cell real-time PCR technique is enhanced in the aortic baroreceptor neuron cells from 
the STZ-induced diabetic rats (Li & Zheng, 2011). In addition, AT1 receptor antagonist 
(losartan) significantly normalizes the enhanced HCN currents and the attenuated cell 
excitability (including depolarization of the resting membrane potential, fall in the input 
resistance, and decrease in the action potential number) in the aortic baroreceptor neurons 
induced by diabetes (Li & Zheng, 2011) or exogenous angiotensin II (Zhang et al., 2010). 
Furthermore, angiotensin II-AT1 receptor is also involved in the attenuated arterial 
baroreflex sensitivity in STZ-induced diabetic rats (Fig. 1) (Li et al., 2008b). Based on these 
results, it is reasonable to assume that elevation of local angiotensin II level can blunt the 
membrane excitability of the aortic baroreceptor neurons via enhancement of the HCN 
currents, and consequently attenuate the aortic baroreflex function in the type 1 diabetes.  
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Above results suggest that elevation of local tissue angiotensin II plays an important role on 
the enhanced HCN channel activity and the blunted cell excitability in the AB neurons in 
diabetes. However, it is unclear how angiotensin II and its antagonist within an isolated 
aortic baroreceptor neuron from diabetic rat interact with AT1 receptor to affect the HCN 
channel activity and cell excitability. Classical viewpoint about the effects of angiotensin II 
binding with AT1 receptor is that angiotensin II binds with AT1 receptor at the cell 
membrane, and following the phosphorylation of the AT1 receptor, angiotensin II induces 
intracellular responses via activating intracellular downstream signal transduction. 
However, Zhuo, et al. (Zhuo et al., 2002) have found that there is substantial intracellular 
accumulation of angiotensin II in renal cortical endosomes during angiotensin II-dependent 
hypertension via an AT1 receptor-mediated process. Recent studies have shown that 
intracellular administration of angiotensin II increases the peak inward calcium current 
density and decreases the junctional conductance via intracellular angiotensin II receptors in 
cardiac myocytes (De Mello, 2003; De Mello & Monterrubio, 2004). Intracellular treatment of 
losartan (a selective AT1 receptor antagonist) abolishes the effect of intracellular angiotensin 
II (Allen et al., 1988; Bacal & Kunze, 1994). Based on these studies, we reason that diabetes-
induced elevation of intracellular angiotensin II concentration in the nodose neurons 
contributes to the enhanced HCN channel activity and the blunted cell excitability in the AB 
neurons in diabetes. This viewpoint is confirmed by our observation that intracellular 
administration of losartan (added to the recording pipette solution) decreased the HCN 
current density and increased the cell excitability in the AB neurons from diabetic rats (Li & 
Zheng, 2011). Therefore, it is possible there is an intracellular angiotensin II production 
system in the nodose ganglion tissue. Of course, it would be optimal to measure 
intracellular angiotensin II concentration in the aortic baroreceptor neurons, but there is no 
appropriate measurement for it so far due to insufficient cellular material of tiny nodose 
ganglia. This issue needs to be confirmed by further study. 
Growing evidence has shown that the AT1 and AT2 receptors are defined on the basis of 
their opposite pharmacological and biochemical effects (Levy, 2004). Activation of AT1 
receptors mainly results in vasoconstriction, augmentation of cardiac contractility, cell 
proliferation, vascular and cardiac hypertrophy, oxidative stress, and inhibition of the 
neuronal potassium currents (Gelband et al., 1999; Levy, 2004; Sumners et al., 1996). On the 
other hand, stimulation of AT2 receptors induces vasodilation, anti-growth, anti-
hypertrophy, and enhancement of the neuronal potassium currents (Horiuchi et al., 1999; 
Kang et al., 1995; Martens et al., 1996; Matsubara, 1998; Siragy, 2000). Although AT2 receptors 
are expressed in the rat nodose neurons, activation of AT2 receptors does not affect the 
activation of HCN channels because AT2 receptor antagonist (PD123,319) does not alter the 
effect of angiotensin II on the HCN currents (Zhang et al., 2010).  Until now there is no study 
to explain this result, but it is possible that many factors (such as species, tissue, channel 
sensitivity, etc) are responsible for this discrepancy.   
Now the question is how angiotensin II regulates the activation of HCN channels and what 
is the downstream of angiotensin II-AT1 receptor. NADPH oxidase has been considered as a 
main source of intracellular superoxide in many tissues (Cifuentes et al., 2000; Franco et al., 
2003; Gao et al., 2004; Griendling et al., 2000; Li et al., 2007; Schieffer et al., 2000). NADPH 
oxidase is a multicomponent enzyme composed of three cytosolic subunits (p40phox, p47phox, 
and p67phox), two membrane-associated subunits (gp91phox and p22phox), and the small G-
proteins (Rac and Rap1a) (Kim & Iwao, 2000; Lassegue & Clempus, 2003). Angiotensin II 
significantly activates NADPH oxidase via AT1 receptors, resulting in the superoxide 
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production (Touyz & Berry, 2002). In the nodose ganglia from STZ-induced diabetic rats, the 
protein expression of the NADPH oxidase components (gp91phox, p22phox, p40phox, p47phox, 
and p67phox) is elevated, compared to sham rats (Li & Zheng, 2011). In addition, NADPH 
oxidase inhibitor or superoxide scavenger significantly improves the superoxide over-
production, the enhanced HCN currents, and the lowered membrane excitability induced by 
exogenous angiotensin II (Zhang et al., 2010) or diabetes (Li & Zheng, 2011). These results 
strongly indicate that NADPH-derived superoxide can mediate the effect of endogenous 
angiotensin II on the HCN channels and membrane excitability in diabetic rat aortic 
baroreceptor neurons. 

3.1.5 Role of other channels in the aortic baroreceptor neuron in the type 1 diabetes 
Using patch-clamp technique, all major voltage-gated ion channels including channels 

subunits are recorded in the nodose neurons, such as sodium channels (tetrodotoxin-

sensitive and tetrodotoxin-resistant sodium channels), calcium channels (N-type, L-type, T-

/R-type, and other type calcium channels), and potassium channels (4-aminopyridine-

sensitive, tetraethylammonium-sensitive, and calcium-activated potassium channels) 

(Lancaster et al., 2002; Li et al., 2005; Li & Schild, 2006; Schild & Li, 2001). These channels all 

are involved in the initiation and formation of the action potential and affect the nodose 

neuron excitability. Angiotensin II is known to modulate the calcium channel kinetics in the 

nodose neurons (Bacal & Kunze, 1994; Moreira et al., 2005). However, until now we did not 

obtain any information about the changes of these channels in the aortic baroreceptor 

neurons in the type 1 diabetes. Therefore, the role of these channels in the diabetic 

baroreceptor neurons remains to be revealed.  

3.2 Involvement of the central neural component in the blunted arterial baroreflex in 
type 1 diabetes 
Central neural integration of the input signals from the baroreceptors usually occurs at the 
level of nucleus tractus solitarii and rostral ventrolateral medulla (Spyer et al., 1997).  
Although many studies have shown that diabetes causes a variety of functional and 
morphological disorders in the central nervous system (including hippocampus, cortex, and 
cerebellum) (Biessels et al., 1999; Selvarajah & Tesfaye, 2006; Mooradian, 1997a; Mooradian, 
1997b; Guven et al., 2009), the role of the central neural component in the blunted arterial 
baroreflex in type 1 diabetes is less well documented.  One recent study from Gu, et al (Gu et 
al., 2008) suggests that a deficit of the central neural component contributes to the 
attenuation of arterial baroreflex in OVE26 type 1 diabetic mice. This is because they found 
that stimulation of the aortic depressor nerve induced a lesser magnitude of bradycardia in 
OVE26 type 1 diabetic mice as compared to sham mice, but the bradycardic response to 
vagal efferent stimulation was enhanced (Gu et al., 2008).  Immunoreactive study has shown 
that reduced c-Fos expression (an indicator of early cellular response to many extracellular 
signals) in the nucleus tractus solitarii links to the attenuated arterial baroreflex sensitivity in 
STZ-induced diabetic rats (Gouty et al., 2001). In addition, Chen, et al (Chen et al., 2008) have 
reported that neural firing activity of the nucleus tractus solitarii in STZ-induced diabetes is 
reduced, which is involved in the impaired arterial baroreflex function in STZ-induced 
diabetic rats. Furthermore, a chronic intracerebroventricular infusion of leptin (a hormone 
produced by fat cells and improving glucose utilization, Minokoshi et al., 1999; Wang et al., 
1999) totally normalizes the impaired arterial baroreflex sensitivity in STZ-induced diabetic 
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rats (do Carmo et al., 2008), which indirectly suggests that impairment of the central neural 
system is associated with the arterial baroreflex dysfunction in type 1 diabetes. These 
findings allow us to assume the involvement of the impaired central neural integration in 
the blunted arterial baroreflex in type 1 diabetes even though there is no report focusing on 
the mechanisms responsible for the impairment of the central neural component of the 
arterial baroreflex.  

3.3 Participation of autonomic neuroeffector component in the blunted arterial 
baroreflex in type 1 diabetes 
The autonomic neuroeffector component of the arterial baroreflex includes intracardiac 
ganglia, parasympathetic efferents, and sympathetic efferents. Morphological studies have 
shown that there is a remarkable structural remodeling of the intracardiac ganglia (such as 
cellular contraction, cytoplasmic condensation, degenerated axons, reduced cell size and 
number) in STZ-induced diabetic rats (Kamal et al., 1991; Lund et al., 1992), mice (Lin et al., 
2010), and diabetic patients (Tsujimura et al., 1986). Biochemical studies also found a 
decrease in acetylcholine (a neurotransmitter in both the central and parasympathetic 
nervous system) concentration in alloxan-induced diabetic rats (Kuntscherova & Vlk, 1970) 
and a reduced choline acetyltransferase activity (an enzyme producing acetylcholine) in the 
hearts of the STZ-induced diabetic rats (Lund et al., 1992). In addition, the function of the 
parasympathetic (vagal) efferent is reduced in STZ-induced diabetic rats (Maeda et al., 1995; 
Yagihashi, 1995). However, functional studies have reported normal, reduced, or enhanced 
heart rate response to vagal efferent nerve stimulation in diabetic animal models (Dall'Ago 
et al., 2007; de et al., 2002; Lin et al., 2010; Maeda et al., 1995; McDowell et al., 1994a). This 
discrepancy might be due to different animal species, experimental diabetic animal models, 
and time course of development of diabetes.  Therefore, further studies are needed to 
explore whether the altered efferent component of the arterial baroreflex is responsible for 
the arterial baroreflex dysfunction in type 1 diabetes besides the arterial baroreceptor and 
central integration. 

4. Conclusion 

As a homeostatic mechanism, the arterial baroreflex normally alters heart rate and blood 
pressure in response to changes in arterial wall tension detected by the baroreceptors in the 
carotid sinus and aortic arch. As illustrated by the above evidence, arterial baroreflex 
impairment, a characteristic of the autonomic cardiovascular dysfunction is a frequent 
complication in type 1 diabetic patients and animal models. The arterial baroreflex 
dysfunction not only is an independent predictor for mortality of the type 1 diabetic 
patients, but also is associated with a poor prognosis and bad quality of life in the type 1 
diabetic patients.  
Although the mechanisms responsible for attenuated arterial baroreflex function in the type 
1 diabetes are not yet fully understood, any part of the arterial baroreflex arc including an 
afferent limb, a central neural component, and an autonomic neuroeffector component can 
contribute to the arterial baroreflex dysfunction in the type 1 diabetic state. Especially at the 
level of the afferent limb, recent studies have revealed that aortic depressor nerve discharge 
and excitability of aortic baroreceptor neurons are blunted in the type 1 diabetic animals. 
HCN channels are significantly suppressed in the aortic baroreceptor neurons and are 
involved in the blunted baroreceptor neuron excitability in the type 1 diabetes. Angiotensin 
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II/AT1 receptor-NADPH oxidase-superoxide signaling regulates this alteration of the HCN 
channels in the aortic baroreceptor neurons and consequently decreases the arterial 
baroreflex function. In addition, we also consider that angiotensin II/AT1 receptor-NADPH 
oxidase-superoxide signaling affects the changes in the central neural and autonomic 
neuroeffector components beyond the afferent limb of the arterial baroreflex arc. These 
studies provide new information on the mechanisms underlying the impaired arterial 
baroreflex in the type 1 diabetes and unveil important pharmacological and genomic targets 
for improving the arterial baroreflex function and reducing the mortality in the type 1 
diabetes.  
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