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1. Introduction  

Despite recent advances in surgery, chemotherapy, and radiation treatment, survival of 
patients with advanced malignancy remains suboptimal. Photodynamic therapy (PDT) is 
now established as a clinical treatment modality for various diseases including cancer 
(Dougherty et al., 1998). PDT involves the combined action of a photosensitizer, visible light 
of an appropriate wavelength and molecular oxygen to produce reactive oxygen species 
(ROS) like singlet oxygen, a short-lived species with highly cytotoxic effect (Dougherty et 
al., 1998, Solban et al., 2005). In biological system, the generated ROS trigger a cascade of 
biochemical effects that result in cell death. Singlet oxygen is thought to be the main 
mediator of cellular death, involving apoptotic and necrotic responses within treated 
tumours and produces microvascular injury leading to inflammation and hypoxia. PDT 
effects are mediated not only through direct killing of tumour cells but also through indirect 
effects, which involve both the initiation of an immune response against tumour cells and 
the destruction of tumour neovasculature. Indeed, the vascular effect plays a critical role in 
the eradication of tumour by PDT as it may cause deprivation of life-sustaining nutrients 
and oxygen supply from the existing blood vessels of the surrounding tissue. This present 
chapter will focus on recent and significant advances and developments in targeting 
strategies in PDT with the emphasis on vascular target specificity. 

2. Targeted photodynamic therapy 

In cancer treatment, PDT is a locoregional treatment used to reduce the volume of a tumour 

mass and obtain a radical cure of a small superficial tumour. PDT has been developed for 

the treatment of various cancers, e.g. esophagus (Radu et al., 2000), bronchi (Metz & 

Friedberg 2001, Savary et al., 1997), and bladder (Guillemin et al., 2001, Jichlinski & 
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Leisinger 2001), as well as for other non-oncological applications, such as for the treatment 

of age-related macular degeneration (AMD) (Brown et al., 2004). Moreover, PDT has also 

been used as a successful non-invasive therapeutic modality for treating cutaneous 

neoplasm (Fritsch et al., 1998, Karrer et al., 2001).   

PDT can enhance the quality of life and lengthen survival. It has minimal side effects, 
selective and curative targeting therapy, no drug resistance and reduced toxicity that allows 
for repeated treatment (Dolmans et al., 2003). Thus, the successful of PDT will widely 
depend on the nature of the photosensitizer, which upon absorption of light, induces a 
chemical or physical alteration of another chemical entity. Early studies of photosensitizers 
for PDT were focused on a complex mixture of porphyrins named haematoporphyrin 
derivative (HpD), the first generation of photosensitizer.  
One of the most clinically used photosensitizer is porfimer sodium (Photofrin®), a purified 
product from the HpD derivative. Photofrin® is the first drug approved by the Food and 
Drug Administration (FDA) (Konan et al., 2002). It has also been indicated for the treatment 
of superficial bladder cancer in Canada and early lung and advanced esophageal cancers in 
Netherlands and Japan. It has been used in thousands of patients for more than 20 years and 
no long-term safety issues have emerged. Despite its continuing effectiveness, Photofrin® 
has several disadvantages. The main disadvantages are the drug induces protracted skin 
photosensitivity and the initial selectivity for the tumour tissue remains low (Gilson et al., 
1988, Moriwaki et al., 2001). These limitations led to the development of the second 
generation of photosensitizers.  
One of the well known second generation photosensitizer is temoporfin (meta-
tetra(hydroxyphenyl)chlorin, also known as m-THPC or Foscan®). It has been effectively used 
for the palliative treatment of head and neck cancers and it has received an approval in Europe 
for this indication in 2001. Nonetheless, like Photofrin®, temoporfin is also correlated with a 
pronounced skin photosensitivity, slow elimination from the blood compartment and weak 
selectivity between tumour and healthy tissue (Sharman et al., 1999). The disadvantages of 
temoporfin are contrast to Pd-bacteriopheophorbide (Tookad® or WST09) and its derivative 
WST11 which are believed to be purely vascular mediated (Woodhams et al., 2006). Moreover, 
Tookad® exhibits rapid elimination from the circulation and its plasma half-life is less than a 
few hours. Another second generation photosensitizer is benzoporphyrin derivative, 
verteporfin (Visudyne®), which was also recently approved, but it was only developed for the 
treatment of age-related macular degeneration, and not indicated for cancer treatment (Kertes 
2006). Protoporphyrin IX (PpIX) is the one example of photosensitizers used for topical 
application to treat skin lesions. It can be produced in nucleated cells after topical application 
of either aminolevulinic acid (ALA) or methyl aminolevulinate (mALA) to the site of skin 
cancer or precancerous lesion (Vihinen et al., 2005 ). This discovery has resulted in the 
approval of ALA in the USA and mALA in Europe (Brown et al., 2004).   
Thousands of patients have already been treated with PDT using the first and second 
generation of photosensitizers for a variety of advanced neoplasms, and have shown a great 
improvement in their quality of life and lengthened their survival. In spite of PDT 
advantages, it has a limitation in the cancer treatment due to the low of selectivity of 
photosensitizers; the ideal drug delivery system in PDT should be selectively accumulated 
in the tumour tissues and the delivery of therapeutic concentrations of photosensitizer to the 
target site with little or no uptake by non-target cells. However, the majority of 
photosensitizers are taken up non-selectively by all cell types, hence, they are found 
accumulated not only in tumour cells but also in normal cells. 
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This situation led to the development of the third generation of photosensitizers, a 
derivative of the second generation of photosensitizer attached to or introduced into 
chemical devices. The chemical devices inquiring some biological specificity to deliver or to 
target such drug for selective accumulation of photosensitizer or vectors with 
photosensitizer such as nanoparticles, liposomes and miscellaneous (Bechet et al., 2008). 
Indeed, the new generation of photosensitizers are being designed and developed to 
enhance selectivity and efficacy of PDT. This could be done by improving the existing 
photosensitizers, adding specific moieties and using delivery vehicles to specifically target 
these compounds (Sharman et al., 2004). Thus, targeted-PDT employing the improved 
photosensitizers could offer better advantage in delivering the photosensitizers across the 
cellular plasma membrane and resulting in intracellular accumulation of the 
photosensitizer. For example the use of nanoparticles or peptides as carriers of 
photosensitizers offer very promising approach for an ideal PDT targeting agent (Bechet et 
al., 2008). The advantages of targeting strategy include the selective  targeted delivery of the 
photosensitizer to the tumour site that induces low toxicity and minimal damage to the 
normal tissues. This strategy contributes in the mechanism of PDT in cancer treatment 
through direct killing of tumour cells but also through indirect effects, which involves both 
the initiation of an immune response against tumour cells and the destruction of the 
neovasculature.  

3. PDT - Tumour vascular targeting 

The targeting of tumour vasculature has become a very promising area of focus for the 
development of new cancer therapeutics (Tozer et al., 2005). It is well known that solid 
tumours cannot grow larger than 1 mm3 without developing a vascular network (Siemann 
et al., 2004). This is due to the fact that when a tumour grows, its need for nutrients and 
oxygen increases, as well as the removal of metabolic waste, and consequently the number 
and size of blood vessels increase proportionately. In addition, to sustain the tumour 
growth, tumour tissues need to depend upon existing blood vessels as well as development 
of new blood vessels from the pre-existing vasculature (angiogenesis) for maintaining the 
blood supply. Tumour vasculature is also responsible for the progression of cancer from 
small, localized neoplasm to larger, growing and potentially spread cancer to other parts of 
the body.  
The vessels that nourish tumours possess structural and functional properties different from 
those of normal vessels (Fig. 1). Normal vasculature is characterized by dichotomous 
branching, but tumour vasculature is unorganized and exhibits significant abnormalities in 
vessel architectures (tortuousity, dilatation, irregular branching, and lack of pericyte and 
basement membrane coverage) and functions (stagnant blood flow and increased vascular 
permeability) (Fukumura & Jain 2007). Moreover, tumour vasculature can present 
trifurcations and branches with uneven diameters. Perivascular cells in tumour vessels have 
abnormal morphology and heterogeneous association with vessels (McDonald & Choyke 
2003).  
The process of angiogenesis involves the initiation, progression and metastasis of smooth 
muscle and endothelial cells to invade, proliferate, migrate and survive in response to 
angiogenic stimuli, leading to the formation of new microvessels. This process is facilitated 
by a variety of proangiogenic factors that basically consist of four groups of proteins, which 
are the angiogenic factors, the integrins, the matrix metalloproteinases (MMP) and the 
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plasminogen activator system. The first class of angiogenic factors group is composed of 
molecules that promote endothelial cells survival and proliferation, including VEGFs, 
angiopoietins, epithelial growth factor (EGF), fibroblast growth factors (FGFs), platelet-
derived growth factor (PDGF), placenta growth factor (PlGF), insulin-like growth factor 
(IGF), angiogenic cytokines such as interelukin-8 (IL-8) and their endothelial receptors. 
Among them, VEGF plays a critical role in vascular formation and it is the most potent 
angiogenic cytokines. It has been first characterized for its ability to induce vascular leakage 
and permeability and to promote vascular endothelial cell proliferation (Dvorak et al., 1999, 
Ferrara & Davis-Smyth 1997). Another group of proangiogenic factors is the molecules that 
related with the cell-cell and cell-matrix interactions, which provide signals for endothelial 
survival, adhesion and vascular integrity. This group consists of integrins and other 
adherent molecules. A selective expression of adhesion receptor, ǂvǃ3 integrin, has been 
detected during tumour angiogenesis (Brooks et al., 1994a, Brooks et al., 1994b). The 
survival of new endothelial cells is increased by a specific signal following the recognition of 
ǂvǃ3 integrin from its receptor. The other group of proangiogenic factors is matrix 
metalloproteinases which comprise a group of proteolytic enzymes that facilitate the 
propagation of tumour and break down the extracellular matrix (ECM), thereby facilitating 
cell motility and thus allow the migration of  endothelial cells to form new vessels (Ahmad 
et al., 2010). The last group is a cascade of proteases called the plasminogen activator system 
which plays an important role during the process of angiogenesis.  
 

 

Fig. 1. Structural differentiation of normal blood vessels (vasa vasorum of carotid sinus rat, 
left) and tumour vasculature (human tumour xenograft in nude mice, right) using SEM 
microscopy (Konerding et al., 2001, McDonald & Choyke 2003). 

On the basis of angiogenesis and vasculogenesis studies, Judah Folkman had proposed a 
hypothesis that ‘’solid tumours are angiogenesis-dependent’’ and ‘’anti-angiogenesis could 
be a potential therapeutic approach’’ (Folkman 1971). In his pioneer work, he found cancer 
cells implanted in vascular sites of animal grew rapidly and formed large tumours. In 
contrast, cells implanted in avascular sites were unable to form tumour masses more than 1 
to 2 mm in size. Therefore, he proposed to inhibit the new blood vessels formation to 
prevent the tumour growth and thus kill cancer cells. Since then, it becomes a relevant target 
for tumour therapy. It gives some hopes that tumour growth can be interrupted or stopped 
by inhibiting the progression of angiogenesis and therefore destroys the tumour metastasis. 
In addition, the malignant tissue would be starved of its oxygen and nutrients supply and 
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also unable to eliminate metabolic wastes (Denekamp 1999). This also implies the destroying 
of tumour neovasculature, which can be an effective approach to control the tumour growth 
and provide the basis for selective tumour vasculature targeting.  
Tumour vascular targeting can be divided into two general categories, anti-angiogenic 
therapy, referring to interfere with new blood vessel development and vascular targeted 
therapy, associating with the damage of the established tumour vasculature (Bloemendal et 
al., 1999, Ellis et al., 2001, Siemann et al., 2005, Siemann et al., 2004, Thorpe 2004). The 
inhibitors of anti-angiogenic therapy seek to inhibit or interrupt the tumour-initiated 
angiogenesis process by disrupting essential aspects of angiogenesis, particularly signaling 
between the tumour and endothelial cells, and between the tumour and stromal cells. In 
addition, anti-angiogenic therapy can disrupt endothelial function in order to prevent new 
blood vessel formation. Nevertheless, anti-angiogenic therapy is the other subject that can be 
discussed in another topic interest and will therefore not be discussed further in the present 
chapter.  
Vascular targeted photodynamic therapy (VTP) is related to the destruction of functional 
vasculature which is necessary for efficient tumour eradication by PDT. The strategy aims to 
destroy neovasculature of tumours. Thereby, vascular damage is considered to be a major 
phenomenon occurring during PDT of tumours, which largely contributes to its efficacy. 
Vascular targeting in PDT is considered active when the photosensitizing compounds 
selectively accumulate in the targeted neovascular components, thus bringing out a 
preferential vascular response (B. Chen et al., 2006a). Vascular targeting can be passive 
when the injected photosensitizer is mainly confined in the blood vessels and reaches peak 
plasma concentration and will further provide a therapeutic window for vascular treatment. 
Recently, a combination of vascular targeted strategy and photodynamic therapy named 
vascular targeted photodynamic therapy (VTP) has become a promising subject to be 
explored and developed. VTP is being developed either by changing PDT schedule, for 
example, decrease the period between the photosensitizer’s injection and irradiation of the 
tumour site (drug-light interval, DLI) or by designing photosensitizers localizing primarily 
in the vascular compartment (Star et al., 1986, Fingar et al., 1996, Kurohane et al., 2001).  
VTP has several advantages, which are: 
i. the tumour endothelial cells are directly accessible to intravenously administered 

photosensitizer thus permitting a rapid localization of a high percentage of the injected 
dose 

ii. the molecular oxygen required for photochemical reaction is also more readily available 
iii. since each capillary provides oxygen and nutrients and also removes the metabolic 

wastes for thousands of tumour cells, occlusion of the vessel has an amplified effect on 
tumour cells 

iv. the outgrowth of mutant endothelial cells lacking the target antigen is unlikely because 
they are a normal, genetically stable cells population 

v. finally, since tumour vessels share common morphological and biochemical properties, 
this strategy should be applicable to different tumour types (Veikkola et al., 2000). 

For example, the use of hematoporphyrin in the tumour cell death after photoirradiation by 
PDT is caused by vasoconstriction and complete stasis that occurs secondary to demolish 
the microvasculature (Star et al., 1986). It changes the morphological of neovasculature 
which led to the absence of the capillary layer and mitochondrial degeneration, thus 
supporting tumour demolition (Chaudhuri et al., 1987). By using vertoporfin in VTP, it 
resulted to cause a dose- and time-dependent increase in vascular permeability, but 
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decrease in blood perfusion. Vertoporfin in VTP is known to permeabilize blood vessels 
through the formation of endothelial intercellular gaps, hence, triggering the loss of 
endothelial barrier function that enhance the tumour vascular shutdown (Chen et al., 2008, 
Chen et al., 2006b). Another example is Photofrin® which induces changes in vessel 
constriction, vessel leakage and thrombus formation (Fingar et al., 1992), while higher 
dosage of Photofrin® during PDT causes vessel constriction and changes in permeability 
(Fingar et al., 1997).  
With these several advantages, tumour targeting has become a promising strategy for the 
development of active photosensitizer delivery systems that able to enhance selectivity and 
efficiency of vascular PDT for cancer treatment. The next subtopic will focus on the main 
molecular targets explored in the vascular-targeting PDT for cancer, including the vascular 
endothelial growth factor receptors (VEGFRs such as neuropilin-1 (NRP-1)), ǂvǃ3 integrin, 
matrix metalloproteinase (MMPs) and receptor tissue factor (TF) activities. 

3.1 Vascular Endothelial Growth Factor (VEGF) receptors 
Vascular endothelial growth factor (VEGF) is an endothelial cell -specific mitogen for 

vascular endothelial cells which is an important regulator of normal and pathological 

angiogenesis including cells survival and proliferation (Ferrara 2002, Ferrara & Davis-Smyth 

1997). VEGF is upregulated in the bulky neoplastic cells, generally as a response to hypoxia 

and many oncogenes, and its overproduction is correlated with high microvascular density 

and poor prognosis (Ishigami et al., 1998). VEGF encourages the growth of vascular 

endothelial cells derived from arteries, veins, and lymphatics. VEGF induces a strong 

angiogenic response in a variety of both in vivo (Leung et al., 1989, Plouet et al., 1989) and in 
vitro models (Pepper et al., 1994) and also inducing confluent microvascular endothelial cells 

to invade collagen gels and form capillary-like-structures (Pepper et al., 1992).  

The overexpression of VEGF results in the upregulation of VEGF receptors namely VEGFR-
1 (also known as fms-like tyrosine kinase, flt-1), VEGFR-2 (fetal liver kinase-1, flk-1 or kinase 
domain region, KDR) and VEGFR-3 (KDR/flt-1) (Bando et al., 2005, Kremer et al., 1997, 
Plate et al., 1992). VEGFR-1 and VEGFR-3 are expressed in distinct vascular beds, whereas 
VEGFR-2 is selectively expressed on almost all endothelial cells (Ferrara 2004). VEGFR-1 
and VEGFR-2 are associated with angiogenesis, while VEGFR-3 is affiliated with 
lymphangiogenesis (Ferrara 2004).  
Among of the three primary receptors of VEGF, VEGFR-2 becomes an interest for most 

active targeting strategies and this receptor is believed to be the main receptor that mediates 

VEGF biological activities and also plays a major role in tumour-associated angiogenesis. 

VEGF/VEGFR-2 signaling pathway is critical for tumour angiogenesis and for solid tumour 

growth. Expression of VEGFR-2 in various cell types results in the ability to respond ligands 

by the transduction of a mitogenic signal. VEGFR-2 is highly expressed in both vascular 

endothelial cells and lymphatic endothelial cells in tumour neovasculature, as well as other 

cell types such as megakaryocytes (Katoh et al., 1995), hematopoietic stem cells (Katoh et al., 

1995), and chronic myelogenous leukemia (CML) (Grosskreutz et al., 1999, Ishida et al., 

2001). Therefore, VEGFR-2 is seen as promising molecular target for anti-angiogenic drug 

delivery, and that specific targeting of VEGFR-2 could provide an interesting approach for 

selective and efficient photosensitizer delivery to tumour neovasculature.  

Although VEGFR-2 has been widely known as a promising target for the selective delivery 
of therapeutic drugs for conventional therapies, the number of photoactivatable drugs 
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targeting VEGFR-2 remains limited. Targeted verteporfin (Visudyne®) has been reported as 
the first research works that investigated the potential of VEGFR-2 as a molecular target for 
vascular PDT. In a recent study Renno et al. conjugated the verteporfin, first to polyvinyl 
alcohol (PVA) polymer, then to a peptidic motif ATWLPPR which was reported to bind 
VEGFR-2. The use of the conjugated drug efficiently caused choroidal neovascularization 
(CNV) closure and exhibited more selective than nonconjugated verteporfin (Renno et al., 
2004). Although these results showed the targeting VEGFR-2 can be an effective strategy to 
the tumour neovasculature, more recent studies demonstrated a contrast finding that 
ATWLPPR does not recognize KDR but  bind to NRP-1 (Perret et al., 2004, Tirand et al., 
2006). These results have then attracted a great interest on the potential of NRP-1 as 
promising target for targeted vascular PDT.  
The neuropilins were originally reported as a mediator of axon guidance and later serve as a 
receptor that involved in normal blood vessel development, tumour angiogenesis and 
tumour progression (Ellis 2006, Favier et al., 2006, Gu et al., 2002, Neufeld et al., 2002). 
Therefore, neuropilins appear to serve as a co-receptor or a ‘hub’ receptor due to its ability 
to bind with high affinity into two structurally unrelated classes of ligands with distinct 
biological functions, the class 3 semaphorins and various members of the VEGF family. As 
co-receptors of VEGF, the neuropilins have been identified to modulate binding to other 
receptors without being active in signaling (Soker et al., 1998) and though to increase the 
binding affinity of the various VEGF ligands to the primary receptors. Neuropilins are 
described in two family members, neuropilin-1 (NRP-1) and neuropilin-2 (NRP-2). NRP-1 
was identified at first as high-affinity cell surface receptors for secreted class 3 semaphorins, 
but more recently, it was reported as a co-receptor for VEGF. NRP-2 was recognized by 
sequence analysis and it was reported to share the same domain arrangement as NRP-1 and 
also share with 44% identity with NRP-1 (Chen et al., 1997, Kolodkin et al., 1997).   
Neuropilins are expressed specifically in tumour angiogenic vessels and some tumour cells, 

and also promote tumour angiogenesis and progression (Miao et al., 2000). When co-

expressed with VEGFR-2, NRP-1 enhanced the binding of VEGF165 to VEGFR-2. This 

situation can be explained when the NRP-1 serve as a receptor for the VEGF165 isoform 

through the exon 7-encoded region of VEGF (Soker et al., 1998). VEGF165 has also been 

shown to bind with the receptors VEGFR-1 and VEGFR-2 via the exons 3-and 4-encoded 

peptides, respectively (Keyt et al., 1996). This situation leads the VEGF165 to form a bridge 

between VEGFR-2 and NRP-1 (Soker et al., 1998), and thus mediate the formation of a 

ternary complex between VEGF165, VEGFR-2 and NRP-1 (Fuh et al., 2000, Soker et al., 2002, 

Staton et al., 2007). It may explain the possible reason why NRP-1 enhances VEGF binding 

and activity by bringing these receptors into closer proximity (Soker et al., 2002, Soker et al., 

1998). Besides that, NRP-1 co-expression with VEGFR-2 enhanced VEGF-induced 

chemotaxis in comparison with cells expressing VEGFR-2 alone, and also enhanced the 

VEGF binding to VEGFR-2, VEGFR-2 phosphorylation and VEGF-induced signaling and 

migration (Bernatchez et al., 2002, Rollin et al., 2004). Therefore, NRP-1 has become a 

promising target for selective vascular localization of photosensitizers, and thus enhances 

the vascular photodynamic effects.  

In conjunction with that, our group introduced the conjugation of a photosensitizer (5-(4-
carboxyphenyl)-10,15,20-triphenyl-chlorin, TPC) to a VEGF receptor-specific heptapeptide, 
H-Ala-Thr-Trp-Leu-Pro-Pro-Arg-OH (ATWLPPR), via a spacer (6-aminohexanoic acid, 
Ahx), noticed TPC-Ahx-ATWLPPR (Fig. 2) (Tirand et al., 2006). We showed that ATWLPPR 
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and TPC-Ahx-ATWLPPR bound exclusively to NRP-1 but were devoid of affinity for 
VEGFR-2 or KDR, to which ATWLPPR was originally thought to bind. This peptide 
conjugation ATWLPPR has proved to be very efficient in endothelial cells compared to its 
nonconjugated counterpart. Our study demonstrated that TPC-Ahx-ATWLPPR 
accumulated up to 25-fold more in human umbilical vein endothelial cells (HUVEC) than 
free TPC over a 24 hours period. The accumulation of the conjugated photosensitizer was 
related to NRP-1-dependent mechanisms but also to non-specific mechanisms (Thomas et 
al., 2008, Tirand et al., 2007). In vivo biodistribution studies in nude mice xenografted with 
U87 human malignant glioma cells revealed significant tumour level to normal ratios as 
early as 1 hour after intravenous injection of TPC-Ahx-ATWLPPR.  We also studied the in 
vivo vascular effect by measuring the tumour blood flow during PDT using both conjugated 
and nonconjugated photosensitizer (Fig. 3). Only the conjugate-mediated VTP produced a 
selective vascular effect, leading to vascular shutdown and tumour growth delay  (Bechet et 
al., 2010).  
From the biological mechanism point of view, the conjugate-mediated vascular effect 
implies the induction of tissue factor (TF) expression leading to the thrombogenic effect 
within the vessel lumen (Fig. 4) (Bechet et al., 2010). 
These findings shed some light that the targeting strategy using a peptide competing with 

VEGF165 binding on NRP-1 could have a better accumulation of photosensitizer in 

endothelial cells lining tumour vessels. Nonetheless, using this strategy, the affinity of 

conjugated photosensitizer for NRP-1 remains low compared to the peptide alone. The 

possible reason may include, (i) intramolecular interactions between chlorin and peptide, 

and steric hindrance due to the TPC moiety, (Ishigami et al., 1998) (ii) aggregation of the 

photosensitizer molecules, and (iii) low stability of the peptide moiety that, may be due to 

sensitivity to circulating peptidases action. In order to overcome these drawbacks, a linker 

can be used as a spacer to couple the photoactivable compound to the peptides, in order to 

individualize these two moieties. The bioavailability of the peptide can also be enhanced by 

the introduction of a non-amidic moiety at the cleavage site (Pernot et al, 2011). 

 
 

N
H

Ala

Thr

Trp

Leu

Pro

Pro

O

O
NNH

N HN

Arg

OH

 
 
 

Fig. 2. ATWLPPR peptide conjugated with a chlorin (Tirand et al., 2006) 
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Fig. 3. Localization of the photosensitizers 4 hours after intravenous injection. (A) Color 
composite image of TPC-Ahx-ATWLPPR fluorescence (red). (B) Color composite image of 
CD31-staining (green) in the same region as (A). Analysis of the tumour sections 4 hours 
after TPC-Ahx-ATWLPPR administration showed that the photosensitizer was mainly 
colocalized inside the vascular endothelium (Thomas et al., 2008). 

 

 

Fig. 4. Immediately after PDT, TPC-Ahx-ATWLPPR-induced (upper left) photodynamic 
activity induced TF expression (brown staining) compared to the nonconjugated 
photosensitizer (TPC) (upper right). Tissue factor staining appeared to be non-uniform and 
was not limited to vessel lumen areas but also present in tumour tissues. Bottom is the 
enlarged view of the corresponding specimen (Bechet et al., 2010).  
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3.2 v3 Integrin   
The vǃ3 integrin, a heterodimeric transmembrane glycoprotein receptor is highly expressed 

in many tumour cells including osteocarcinomas, neuroblastomas and lung carcinomas. The 

vǃ3 integrin is upregulated in both tumour cells and angiogenic endothelial cells 

(Desgrosellier & Cheresh 2010) but poorly expressed in resting endothelial cells and most 

normal organs. This integrin serves as an endothelial cell receptor for extracellular matrix 

proteins which includes fibrinogen (fibrin), vibronectin, thrombospondin, osteopondin and 

fibronectin (Desgrosellier & Cheresh 2010), and plays an important role in the calcium-

dependent signaling pathway leading to endothelial cell migration (Byrne et al., 2008). 

Linear and cyclic derivatives of RGD peptidic motif (H-Arg-Gly-Asp-OH) are the well 

characterized oligopeptides known to bind to endothelial vǃ3 integrin. Therefore, vǃ3 

integrin is believed as an attractive molecular target for antivascular therapies. In this sense, 

several studies have been done to explore the potential of vǃ3  integrin in vascular-targeted 

PDT.  

Solid phase synthesis of four porphyrin derivatives bearing the vǃ3  integrin ligand RGD 

peptide was reported by Chaleix et al. (Chaleix et al., 2004). Three of these porphyrin 

derivatives exhibited photodynamic activity on K562 leukemia cells to a degree comparable 

to that of Photofrin®. The same authors later described the synthesis of a cyclic 

dithiopentapeptide CRGDC, containing the RGD sequence which has been found to adopt 

conformations showing an increased affinity for integrins (Fig. 5) (Chaleix et al., 2004, 

Haubner et al., 2001). The replacement of the disulfide bonds of the cyclic peptide by 

carbon-carbon bond increases it stability and plasmatic residence time (Haubner et al., 2001). 

Carboxy-glucosylporphyrins coupled to this cyclic peptide via a spacer arm showed the 

same efficiency for singlet oxygen production as hematoporphyrin under the same 

experimental conditions.  
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Fig. 5. Chemical structure of RGD-porphyrin conjugates prepared by Chaleix et al., 2004. 
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In another study, Allen et al. tested the use of viral proteins as delivery vehicles for 
photosensitizer to enhance their target selectivity (Allen et al., 1999). Adenoviruses most 
commonly caused illness of the respiratory system but they may also cause various other 
illnesses such as gastroenteritis, conjunctivitis, cystitis and rash illness. Adenoviruses 
received a great deal of attention as gene therapy vectors, due to ease and safe to manipulate 
and to store. Haddada et al. have shown that adenoviruses can infect several cell and tissue 
types including fully differentiated tissues and nonreplacing cells, and gain access into a cell 
via receptor-mediated endocytosis. This requires two separate receptors; one mediating 
attachment and the other mediating internalization. The first receptor allows the attachment 
of adenoviruses to cells via the fiber capsid protein/receptor interaction, while the second 

receptor, known as v integrin, is required for virus internalization. The binding of 

adenoviruses to v integrin is mediated by adenoviruses penton base proteins containing 
RGD peptide motif. Tetrasulfonated aluminum phthalocyanines (AlPcS4) was covalently 
coupled to the various adenoviruses capsid proteins including the hexon, penton bases and 
fiber antigen via one or two caproic acid spacer chains, and these derivatives were tested 
both in vitro and in vivo. It was shown that the penton base conjugate was the most efficient 
in vitro, as measured in two positive cell lines (A549, Hep2) expressing integrins (Allen et al., 
1999). These findings suggested that adenoviral proteins can be used as delivery vehicles for 
photosensitizers to target tumour cells. However, vehicles may promote inflammation and 
anti-protein cellular immunity, which could limit their usefulness.  
Some years ago, our group described a new family of peptidic photosensitizer by the 

conjugation of 5-(4-carboxyphenyl)-10,15,20-triphenylchlorin or porphyrin to the linear RGD 

or cyclic [RGDfK] motif (Frochot et al., 2007). The results showed that RGD-containing 

linear or cyclic peptide targeted tetraphenylchlorin were incorporated up to 98- and 80-fold 

more, respectively, than the nonconjugated photosensitizer over a 24 hour exposure in 

HUVEC overexpressing vǃ3 integrin. However, we found a non-specific increased cellular 

uptake by murine mammary carcinoma cells (EMT-6), lacking vǃ3 integrin receptor. 

Survival measurements clearly demonstrated that HUVEC were more sensitive to peptide 

conjugate-mediated photodynamic therapy than the nonconjugated photosensitizer, 

demonstrating that the higher photodynamic efficiency was related to the high cellular 

uptake of the conjugate (Frochot et al., 2007). Moreover, study showed that the peptide 

moiety also introduces a balance between hydrophilicity and hydrophobicity providing 

excellent water solubility and weak tendency to form aggregates, which is a required feature 

for an efficient photodynamic activity. More recently, our team has described the synthesis, 

characterization, fluorescence, and singlet oxygen quantum yields of tetraphenylporphyrin 

and tetraphenylchlorin coupled to RGD peptides and they found that some of these 

compounds are very promising for potential photodynamic therapy applications (Boisbrun 

et al., 2008).  

3.3 Matrix metalloproteinases 
The matrix metalloproteinases (MMPs) are a family of extracellular proteinases (Fig. 6) that 
have an essential role in tumour metastasis and angiogenesis, more particularly in 
endothelial cell growth, invasion and migration, in the formation of capillary tubes and in 
the recruitment of accessory cells, due to its ability to degrade components of the 
extracellular matrix (ECM) (van Kempen et al., 2006, Vihinen et al., 2005). ECM is a complex 
network of macromolecules secreted by the cells, including carbohydrates and proteins such 
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as fibronectin, vitronectin, laminin, tenascin and collagen. While components of the ECM 
are involved in the regulation of different cell functions such as motility, morphogenesis, 
differentiation and proliferation, proteolytic degradation of the ECM is considered as an 
important mechanism favouring cancer development, invasion and metastasis, which is 
associated with increased expression of several proteases. Indeed, several studies have 
reported increased expression of proteases such as MMPs in many human malignant tissue 
types often correlating with poor prognosis (Egeblad & Werb 2002).  
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Fig. 6. Overview of different proteases. 

MMPs-induced extracellular matrix proteolysis is also involved in the angiogenesis 
necessary for the continued growth of solid tumors. Indeed, MMPs are involved in different 
steps of angiogenesis (Chetty et al., 2010, Sharwani et al., 2006), thus become potential 
interesting targets in PDT for cancer treatment. MMPs facilitate endothelial cell  migration 
by releasing them from their basement membranes, degrading perivascular ECM, and 
generating ECM degradation products that are chemotactic for endothelial cells. Fiore et al. 
demonstrated that MMPs have an ability to cleave not only components of  the ECM, but 
also other proteinases, latent growth factors and growth factor binding proteins, chemotactic 
molecules, cell surface receptors and cell-cell adhesion molecules (Fiore et al., 2002). These 
findings came out with at least five main groups of MMPs; collagenases, gelatinases, 
stromelysins, the matrilysins and membrane-type MMPs, which differ according to their 
substrate specificity, primary structure and cellular localization.  
MMPs are thought to play an important role at different stages of tumour development. 
Many studies offer strong evidence that MMP-2 (gelatinase A) and MMP-9 (gelatinase B) 
play a major role in the tumour growth and angiogenesis processes. These gelatinases can 
degrade the type IV collagen of basal laminae and other nonhelical collagen domains such 
as laminin (Chambers & Matrisian 1997, Xu et al., 2005). There is increasing evidence 
supporting the theory that MMP-2 and MMP-9 expression is associated with disease 
outcomes in different cancers such as ovarian and breast tumours (Davidson et al., 1999, 
Yoneda et al., 1997). Therefore, protease-sensitive macromolecular prodrugs have attracted 
interest for bio-responsive drug delivery to sites with up-regulated proteolytic activities.  
Another interesting target is MMP-7, which is associated with many cancers. The MMPs 
regulate normal development but also play a role in the pathogenesis of cancers. MMP-7 in 
particular is found upregulated in several cancers including pancreatic, colon, breast, and 
non small-cell lung cancer (Leinonen et al., 2006, Shiomi & Okada 2003). Pham and co-
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workers designed a peptide-based near-infrared (NIR) fluorescence probe consisting of a 
NIR fluorescence emitter linked via a MMP-7 substrate peptide linker to a NIR fluorescence 
absorber for sensing tumour-associated MMP-7 activity (Pham et al., 2004). They applied the 
Forster resonance energy transfer (FRET) principle for controlling fluorescence emission 
between the donor and the acceptor. The absence of proteases results in the quenched 
fluorescence for the donor; however, in the presence of proteases, the substrate peptide 
linker is cleaved, releasing the FRET interaction between the donor-acceptor fluorophore, 
which result in a four-fold increase in the fluorescence signal for an initially quenched 
molecular dye (Verma et al., 2007).   
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Fig. 7. MMP7-triggered photosensitizing molecular beacon concept. PS: photosensitizer, Q: 
quencher. 

Considering this, photodynamic molecular beacons (PMB) provide an additional 
mechanism of selectivity in PDT over and above the targeting afforded by current 
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photosensitizers and specific light delivery (Zheng et al., 2007). Photodynamic molecular 
beacons consist of a disease-specific linker, a photosensitizer, and a fluorescence singlet 
oxygen quencher (Q). The photodynamic molecular beacons are noncytotoxic because of the 
energy transfer from the excited photosensitizer to quencher. Upon activation by the target 
enzyme, the linker will be cleaved, which allows the separation between the photosensitizer 
and the quencher. Upon irradiation, this leads to fluorescence emission restoration and 
singlet oxygen generation. Therefore, photodynamic molecular beacons offer a control of 
fluorescence emission and singlet oxygen generation of photosensitizer in response to 
specific cancer target activation. Thus, molecular beacons are FRET-based target-activatable 
probes. 
Zheng et al. have combined the two principles of FRET and PDT and introduced a concept 
of photodynamic molecular beacons for controlling the photosensitizer’s ability to generate 
singlet oxygen, and thus for controlling its PDT activity (Zheng et al., 2007). They reported 
the synthesis and characterization of a MMP-7-triggered photodynamic molecular beacon, 
using: (i) pyropheophorbide as the photosensitizer, because of its excellent singlet oxygen 
quantum yield, NIR fluorescence emission and high tumour affinity; (ii) black hole quencher 
3 (BHQ3) as a dual fluorescence and singlet oxygen quencher; and (iii) a short peptide 
sequence, GPLGLARK, as the MMP-7 cleavable linker, with the cleavage site, as indicated 
by italics in Fig. 7  (Ishigami et al., 1998). This figure shows that the pyropheophorbide and 
the quencher are linked to the opposite ends of the MMP-7-specific cleavable peptide linker 
to keep them in close proximity, permitting FRET and singlet oxygen quenching to form 
inactive prodrug; silent and photodynamically inactive, until the linker interacts with the 
target tumour-associated MMP-7. After characterizing the MMP-7-triggered production of 
singlet oxygen in solution, the authors also demonstrated the MMP-7-mediated 
photodynamic cytotoxicity in cancer cells. In vivo studies revealed the MMP-7-activated PDT 
efficacy (Zheng et al., 2007). This finding validated the main principal of the photodynamic 
molecular beacons concept demonstrating that selective PDT-induced cell death can be 
achieved by controlling of the photosensitizer’s ability to produce singlet oxygen.  

3.4 Receptor Tissue Factor (TF) 
Tissue factor (TF) is a transmembrane receptor protein that belongs to the class II cytokine 
receptor family. It is known to bind with high affinity to its endogenous ligand coagulation 
factor VII (fVII), thus initiating the blood coagulation cascade via the extrinsic pathway 
(Nemerson 1988). In addition to its role in coagulation, accumulating studies suggest that 
receptor TF regulates intracellular signaling pathway (Spek 2004), play an important role in 
embryonic development (Pedersen et al., 2005), inflammation (Chu 2005), angiogenesis 
(Chen et al., 2001) and, tumour growth and metastasis (Versteeg et al., 2004). Many studies 
revealed that receptor TF is expressed on endothelial cells of pathological blood vessels 
associated with solid tumours (Chen et al., 2001, Contrino et al., 1996, Hu & Garen 2000, 
2001, Hu et al., 1999, Shoji et al., 1998, Tang et al., 2007), wet macular degeneration (wMD) 
(Bora et al., 2003, Tezel et al., 2007) and endometriosis (Krikun et al., 2010), but not on 
endothelial cells of normal blood vessels (Contrino et al., 1996, Drake et al., 1989, Hu & 
Garen 2000, 2001, Hu et al., 1999, Mulder et al., 1995, Osterud 1997, Rao & Pendurthi 1998, 
Tang et al., 2007). It has also been reported that VEGF protein secreted by tumour cells 
induces endothelial cells in tumour vasculature to express receptor TF (Clauss et al., 1990, 
Zucker et al., 1998). All these findings suggest that receptor TF provide accessible and 
specific therapeutic target for tumour cells and tumour vasculature (Shoji et al., 2008). 
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According to that, several strategies have been developed to target cancer cells and tumour 
neovasculature for alternative treatment using fVII as a drug carrier. 
Hu et al. developed a ligand-targeted photodynamic therapy system by conjugating factor 
VII protein with verteporfin (Hu et al., 1999). The fVII-targeted verteporfin PDT and non-
targeted verteporfin have been tested both in vitro and in vivo to kill breast cancer cells and 
VEGF-stimulated vascular endothelial cells, and to inhibit the tumour growth of breast 
tumours in mouse xenograft model (Hu et al., 2010). Their results showed that: (i) fVII 
protein could be conjugated to verteporfin without affecting its binding activity; fVII-
targeted PDT could selectively kill receptor TF-expressing breast cancer cells and VEGF-
stimulated angiogenic HUVECs but no side effect on non-receptor TF expressing 
unstimulated HUVEC, CHO-K1 and 293 cells; (iii) fVII targeting enhanced the effect of 
verteporfin PDT by three to four-fold; (iv) fVII-targeted PDT induced significantly stronger 
levels of apoptosis and necrosis than non-targeted PDT; and (v) fVII-targeted PDT had a 
significantly stronger effect on inhibiting breast tumour growth in mice than non-targeted 
PDT (Hu et al., 2010). Since receptor TF is expressed in many types of cancer cells including 
leukemia cells, and selectively on angiogenic vascular endothelial cells, these findings 
suggest that fVII-targeted PDT could have broad therapeutic applications for cancer 
treatment. 

4. Conclusion  

Vasculature damage is an important mechanism involved in PDT mediated tumour 
eradication. Vascular targeted photodynamic therapy (VTP) is developed and designed to 
further strengthen the vascular photosensitization effect by site-targeted delivery of 
photosensitizing agents to the vascular target. In addition, selective delivery of therapeutic 
amounts of photosensitizers in diseased tissues is recognized as an absolute requirement for 
efficient and safe PDT for the treatment of cancers. It gives a big challenge to extend the 
application of PDT for the treatment of a broad ranges of tumour types, as such modality 
present many advantages over the conventional therapies. To achieve this goal, the 
development in targeted PDT continues to take advantage of the advances in the 
characterization of molecular mechanisms of tumour development. A large variety of 
specific molecular targets have been characterized and explored in tumour targeting. Many 
photosensitizing agents have been elaborated and evaluated through both in vitro and in 
vivo studies; nevertheless, only very few have reached clinical evaluation phases. Each 
photosensitizer has specific characteristics, but none includes all the properties of an ideal 
photosensitizer. Although third-generation photosensitizers have been widely described for 
selective targeting, very few have been evaluated for clinical applications as the in vivo 
selectivity was not sufficiently high.  

5. References  

Ahmad M. Z., Akhter S., Jain G. K., Rahman M., Pathan S. A., Ahmad F. J. & Khar R. K. 
(2010). Metallic nanoparticles: Technology overview and drug delivery applications 
in oncology. Expert Opinion on Drug Delivery, 7, 8, pp. 927-942. 

Allen C. M., Sharman W. M., La Madeleine C., Weber J. M., Langlois R., Quellet R. & Van 
Lier J. E. (1999). Photodynamic therapy: Tumor targeting with adenoviral proteins. 
Photochemistry and Photobiology, 70, 4, pp. 512-523. 

www.intechopen.com



 
Advances in Cancer Therapy 

 

114 

Bando H., Weich H. A., Brokelmann M., Horiguchi S., Funata N., Ogawa T. & Toi M. (2005). 
Association between intratumoral free and total VEGF, soluble VEGFR-1, VEGFR-2 
and prognosis in breast cancer. British Journal of Cancer, 92, 3, pp. 553-561. 

Bechet D., Couleaud P., Frochot C., Viriot M. L., Guillemin F. & Barberi-Heyob M. (2008). 
Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends in 
Biotechnology, 26, 11, pp. 612-621. 

Bechet D., Tirand L., Faivre B., Plenat F., Bonnet C., Bastogne T., Frochot C., Guillemin F. & 
Barberi-Heyob M. (2010). Neuropilin-1 targeting photosensitization-induced early 
stages of thrombosis via tissue factor release. Pharmaceutical Research, 27, 3, pp. 468-
479. 

Bernatchez P. N., S. Rollin, S. Soker & Sirois M. G. (2002). Relative effects of VEGF-A and 
VEGF-C on endothelial cell proliferation, migration, and PAF synthesis: Role of 
neuropilin-1. Journal of Cellular Biochemistry, 85, 3, pp. 629-639. 

Bloemendal H. J., T. Logtenberg & Voest E. E. (1999). New strategies in anti-vascular cancer 
therapy. European Journal of Clinical Investigation, 29, 9, pp. 802-809. 

Boisbrun M.,. Vanderesse R, Engrand P., Olie A., Hupont S.,. Regnouf-de-Vains J. B & 
Frochot C. (2008). Design and photophysical properties of new RGD targeted 
tetraphenylchlorins and porphyrins. Tetrahedron, 64, 16, pp. 3494-3504. 

Bora P. S., Hu Z., Tezel T. H., Sohn J. H., Kang S. G., Cruz J. M. C., Bora N. S., Garen A. & 
Kaplan H. J. (2003). Immunotherapy for choroidal neovascularization in a laser-
induced mouse model simulating exudative (wet) macular degeneration. 
Proceedings of the National Academy of Sciences of the United States of America, 100, 5, 
pp. 2679-2684. 

Brooks P. C., Clark R. A. F. & Cheresh D. A. (1994a). Requirement of vascular integrin alpha 
(v) beta (3) for angiogenesis. Science, 264, 5158, pp. 569-571. 

Brooks P. C., Montgomery A. M. P., Rosenfeld M., Reisfeld R. A., Hu T., Klier G. & Cheresh 
D. A. (1994b). Integrin alpha (v) beta (3) antagonists promote tumor regression by 
inducing apoptosis of angiogenic blood vessels. Cell, 79, 7, pp. 1157-1164. 

Brown S. B., Brown E. A. & Walker I. (2004). The present and future role of photodynamic 
therapy in cancer treatment. Lancet Oncology, 5, 8, pp. 497-508. 

Byrne J. D., Betancourt T. & Brannon-Peppas L. (2008). Active targeting schemes for 
nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews, 60, 15, 
pp. 1615-1626. 

Chaleix V., Sol V., Guilloton M., Granet R. & Krausz P. (2004). Efficient synthesis of RGD-
containing cyclic peptide-porphyrin conjugates by ring-closing metathesis on solid 
support. Tetrahedron Letters, 45, 27, pp. 5295-5299. 

Chambers A. F. & Matrisian L. M. (1997). Changing views of the role of matrix 
metalloproteinases in metastasis. Journal of the National Cancer Institute, 89, 17, pp. 
1260-1270. 

Chaudhuri K., Keck R. W. & Selman S. H. (1987). Morphological changes of tumor 
microvasculature following hematoporphyrin derivative sensitized photodynamic 
therapy. Photochemistry and Photobiology, 46, 5, pp. 823-827. 

Chen B., Pogue B. W., Hoopes P. J. & Hasan T. (2006a). Vascular and cellular targeting for 
photodynamic therapy. Critical Reviews in Eukaryotic Gene Expression, 16, 4, pp. 279-
306. 

www.intechopen.com



 
Vascular-Targeted Photodynamic Therapy (VTP) 

 

115 

Chen B., Pogue B. W., Luna J. M., Hardman R. L., Hoopes P. J. & Hasan T. (2006b). Tumor 
vascular permeabilization by vascular-targeting photosensitization: Effects, 
mechanism, and therapeutic implications. Clinical Cancer Research, 12, 3 I, pp. 917-
923. 

Chen B., Crane C., He C., Gondek D., Agharkar P., Savellano M. D., Hoopes P. J. & Pogue B. 
W. (2008). Disparity between prostate tumor interior versus peripheral vasculature 
in response to verteporfin-mediated vascular-targeting therapy. International Journal 
of Cancer, 123, 3, pp. 695-701. 

Chen H., Chedotal A., He Z., Goodman C. S. & Tessier-Lavigne M. (1997). Neuropilin-2, a 
novel member of the neuropilin family, is a high affinity receptor for the 
semaphorins Sema E & Sema IV but not Sema III. Neuron, 19, 3, pp. 547-559. 

Chen J., Bierhaus A., Schiekofer S., Andrassy M., Chen B., Stern D. M. & Nawroth P. P. 
(2001). Tissue factor - A receptor involved in the control of cellular properties, 
including angiogenesis. Thrombosis and Haemostasis, 86, 1, pp. 334-345. 

Chetty C., Lakka S. S., Bhoopathi P. & Rao J. S. (2010). MMP-2 alters VEGF expression via 
alpha-v beta-3integrin-mediated PI3K/AKT signaling in A549 lung cancer cells. 
International Journal of Cancer, 127, 5, pp. 1081-1095. 

Chu A. J. (2005). Tissue factor mediates inflammation. Archives of Biochemistry and Biophysics, 
440, 2, pp. 122-131. 

Clauss M., Gerlach M., Gerlach H., Brett J., Wang F., Famillettiv, Pan Y. C. E., Olander J. V., 
Connolly D. T. & Stern D. (1990). Vascular permeability factor: A tumor-derived 
polypeptide that induces endothelial cell and monocyte procoagulant activity, and 
promotes monocyte migration. Journal of Experimental Medicine, 172, 6, pp. 1535-
1545. 

Contrino J., Hair G.,. Kreutzer D. L & Rickles F. R. (1996). In situ detection of tissue factor in 
vascular endothelial cells: Correlation with the malignant phenotype of human 
breast disease. Nature Medicine, 2, 2, pp. 209-215. 

Davidson B., I. Goldberg, W. H. Gotlieb, J. Kopolovic, G. Ben-Baruch, J. M. Nesland, A. 
Berner, M. Bryne & R. (1999). High levels of MMP-2, MMP-9, MT1-MMP and 
TIMP-2 mRNA correlate with poor survival in ovarian carcinoma. Clinical and 
Experimental Metastasis, 17, 10, pp. 799-808. 

Denekamp J. (1999). The tumour microcirculation as a target in cancer therapy: A clearer 
perspective. European Journal of Clinical Investigation, 29, 9, pp. 733-736. 

Desgrosellier J. S. & Cheresh D. A. (2010). Integrins in cancer: Biological implications and 
therapeutic opportunities. Nature Reviews Cancer, 10, 1, pp. 9-22. 

Dolmans D. E. J. G. J., Fukumura D. & Jain R. K. (2003). Photodynamic therapy for cancer. 
Nature Reviews Cancer, 3, 5, pp. 380-387. 

Dougherty T. J., Gomer  C. J., Henderson B. W., Jori G., Kessel D., Korbelik M., Moan J. & 
Peng Q. (1998). Photodynamic therapy. Journal of the National Cancer Institute, 90, 12, 
pp. 889-905. 

Drake T. A., Morissey J. H. & Edgington T. S. (1989). Selective cellular expression of tissue 
factor in human tissues. Implications for disorders of hemostasis and thrombosis. 
American Journal of Pathology, 134, 5, pp. 1087-1097. 

Egeblad M. & Werb Z. (2002). New functions for the matrix metalloproteinases in cancer 
progression. Nature Reviews Cancer, 2, 3, pp. 161-174. 

www.intechopen.com



 
Advances in Cancer Therapy 

 

116 

Ellis L. M., Liu W., Ahmad S. A., Fan F., Jung Y. D., Shaheen R. M. & Reinmuth N. (2001). 
Overview of angiogenesis: Biologic implications for antiangiogenic Therapy. 
Seminars in Oncology, 28, 5 SUPPL. 16, pp. 94-104. 

Ellis L. M. (2006). The role of neuropilins in cancer. Molecular Cancer Therapeutics, 5, 5, pp. 
1099-1107. 

Favier B., Alam A., Barron P., Bonnin J., Laboudie P., Fons P., Mandron M., Herault J. P., 
Neufeld G., Savi P., Herbert J. M. & Bono F. (2006). Neuropilin-2 interacts with 
VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and 
migration. Blood, 108, 4, pp. 1243-1250. 

Ferrara N. & Davis-Smyth T. (1997). The biology of vascular endothelial growth factor. 
Endocrine Reviews, 18, 1, pp. 4-25. 

Ferrara N. (2002). VEGF and the quest for tumour angiogenesis factors. Nature Reviews 
Cancer, 2, 10, pp. 795-803. 

Ferrara N. (2004). Vascular endothelial growth factor: Basic science and clinical progress. 
Endocrine Reviews, 25, 4, pp. 581-611. 

Fingar V. H., Wieman T. J., Wiehle S. A. & Cerrito P. B. (1992). The role of microvascular 
damage in photodynamic therapy: The effect of treatment on vessel constriction, 
permeability, and leukocyte adhesion. Cancer Research, 52, 18, pp. 4914-4921. 

Fingar V. H. (1996). Vascular effects of photodynamic therapy. Journal of Clinical Laser 
Medicine and Surgery 14, 5, pp. 323-328. 

Fingar V. H., Wieman T. J. & Haydon P. S. (1997). The Effects of Thrombocytopenia on 
Vessel Stasis and Macromolecular Leakage after Photodynamic Therapy Using 
Photofrin. Photochemistry and Photobiology, 66, 4, pp. 513-517. 

Fiore E., Fusco C., Romero P. & Stamenkovic I. (2002). Matrix metalloproteinase 9 (MMP-
9/gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell 
resistance to natural killer cell-mediated cytotoxicity. Oncogene, 21, 34, pp. 5213-
5223. 

Folkman J. (1971). Tumor angiogenesis: therapeutic implications. New England Journal of 
FMedicine, 285, 21, pp. 1182-1186. 

Fritsch C., Goerz G. & Ruzicka T. (1998). Photodynamic therapy in dermatology. Archives of 
Dermatology, 134, 2, pp. 207-214. 

Frochot C., Di Stasio B., Vanderesse R., Belgy M. J., Dodeller M., Guillemin F., Viriot M. L. & 
Barberi-Heyob M. (2007). Interest of RGD-containing linear or cyclic peptide 
targeted tetraphenylchlorin as novel photosensitizers for selective photodynamic 
activity. Bioorganic Chemistry, 35, 3, pp. 205-220. 

Fuh G., Garcia K. C. & De Vos A. M. (2000). The interaction of neuropilin-1 in vascular 
endothelial growth factor and its receptor Flt-1. Journal of Biological Chemistry, 275, 
35, pp. 26690-26695. 

Fukumura D. & Jain R. K. (2007). Tumor microenvironment abnormalities: Causes, 
consequences, and strategies to normalize. Journal of Cellular Biochemistry, 101, 4, pp. 
937-949. 

Gilson D., Ash D., Driver I., Feather J. W. & Brown S. (1988). Therapeutic ratio of 
photodynamic therapy in the treatment of superficial tumours of skin and 
subcutaneous tissues in man. British Journal of Cancer, 58, 5, pp. 665-667. 

www.intechopen.com



 
Vascular-Targeted Photodynamic Therapy (VTP) 

 

117 

Grosskreutz C. L., Anand-Apte B., Duplaa C., Quinn T. P., Terman B. I., Zetter B. & 
D'Amore P. A. (1999). Vascular endothelial growth factor-induced migration of 
vascular smooth muscle cells in vitro. Microvascular Research, 58, 2, pp. 128-136. 

Gu C., Limberg B. J., Brian Whitaker G., Perman B., Leahy D. J., Rosenbaum J. S., Ginty D. D. 
& Kolodkin A. L. (2002). Characterization of neuropilin-1 structural features that 
confer binding to semaphorin 3A and vascular endothelial growth factor 165. 
Journal of Biological Chemistry, 277, 20, pp. 18069-18076. 

Guillemin F., Cosserat-Gerrardin I., Notter D. & Vigneron C. (2001). Diagnosis and 
treatment of bladder tumors by photodynamic therapy. Diagnostic et traitement des 
tumeurs de vessie par thÃ©rapie photodynamique, 49, 10, pp. 815-823. 

Haddada H., Cordier L. & Perricaudet M. (1995). Gene therapy using adenovirus vectors. 
Current Topics in Microbiology and Immunology, 199, III, pp. 297-306. 

Haubner R., Wester H. J., Weber W. A., Mang C., Ziegler S. I., Goodman S. L., Senekowitsch-
Schmidtke R., Kessler H. & Schwaiger M. (2001). Noninvasive imaging of alpha (v) 
beta (3) integrin expression using 18F-labeled RGD-containing glycopeptide and 
positron emission tomography. Cancer Research, 61, 5, pp. 1781-1785. 

Hu Z. &. Garen A (2000). Intratumoral injection of adenoviral vectors encoding tumor-
targeted immunoconjugates for cancer immunotherapy. Proceedings of the National 
Academy of Sciences of the United States of America, 97, 16, pp. 9221-9225. 

Hu Z., Sun Y. & Garen A. (1999). Targeting tumor vasculature endothelial cells and tumor 
cells for immunotherapy of human melanoma in a mouse xenograft model. 
Proceedings of the National Academy of Sciences of the United States of America, 96, 14, 
pp. 8161-8166. 

Hu Z. & Garen A. (2001). Targeting tissue factor on tumor vascular endothelial cells and 
tumor cells for immunotherapy in mouse models of prostatic cancer. Proceedings of 
the National Academy of Sciences of the United States of America, 98, 21, pp. 12180-
12185. 

Hu Z., Rao B., Chen S. & Duanmu J. (2010). Targeting tissue factor on tumour cells and 
angiogenic vascular endothelial cells by factor VII-targeted verteporfin 
photodynamic therapy for breast cancer in vitro and in vivo in mice. BMC Cancer, 
10, pp.  

Ishida A., Murray J., Saito Y., Kanthou C., Benzakour O., Shibuya M. & Wijelath E. S. (2001). 
Expression of vascular endothelial growth factor receptors in smooth muscle cells. 
Journal of Cellular Physiology, 188, 3, pp. 359-368. 

Ishigami S. I., Arii S., Furutani M., Niwano M., Harada T., Mizumoto M., Mori A., Onodera 
H. & Imamura M. (1998). Predictive value of vascular endothelial growth factor 
(VEGF) in metastasis and prognosis of human colorectal cancer. British Journal of 
Cancer, 78, 10, pp. 1379-1384. 

Jichlinski P. & Leisinger H. J. (2001). Photodynamic therapy in superficial bladder cancer: 
Past, present and future. Urological Research, 29, 6, pp. 396-405. 

Karrer S., Szeimies R. M., Hohenleutner U. & Landthaler M. (2001). Role of lasers and 
photodynamic therapy in the treatment of cutaneous malignancy. American Journal 
of Clinical Dermatology, 2, 4, pp. 229-237. 

Katoh O., Tauchi H., Kawaishi K., Kimura A. & Satow Y. (1995). Expression of the vascular 
endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and 

www.intechopen.com



 
Advances in Cancer Therapy 

 

118 

inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. 
Cancer Research, 55, 23, pp. 5687-5692. 

Kertes P. J. (2006). Verteporfin therapy of subfoveal minimally classic choroidal 
neovascularization in age-related macular degeneration: 2-Year results of a 
randomized, clinical trial - Commentary. Evidence-Based Ophthalmology, 7, 1, pp. 42-
44. 

Keyt B. A.,x Nguyen Y., Berleau L. T., Duarte C. M., Park J., Chen H. & Ferrara N. (1996). 
Identification of vascular endothelial growth factor determinants for binding KDR 
and FLT-1 receptors: Generation of receptor-selective VEGF variants by site-
directed mutagenesis. Journal of Biological Chemistry, 271, 10, pp. 5638-5646. 

Kolodkin A. L., Levengood D. V., Rowe E. G., Tai Y. T., Giger R. J. & Ginty D. D. (1997). 
Neuropilin is a semaphorin III receptor. Cell, 90, 4, pp. 753-762. 

Konan Y.N., Gurny R., Allémann E. (2002). State of the art in the delivery of photosensitizers 
for photodynamic therapy. J Photochem Photobiol B, 66, 2, pp. 89-106 

Konerding M. A., Fait E. & Gaumann A. (2001). 3D microvascular architecture of pre-
cancerous lesions and invasive carcinomas of the colon. British Journal of Cancer, 84, 
10, pp. 1354-1362. 

Kremer C., Breier G., Risau W. & Plate K. H. (1997). Up-regulation of flk-1/vascular 
endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. 
Cancer Research, 57, 17, pp. 3852-3859. 

Krikun G., Hu Z., Osteen K., Bruner-Tran K. L., Schatz F., Taylor H. S., Toti P., Arcuri F.,. 
Konigsberg W, Garen A., Booth C. J. & Lockwood C. J. (2010). The 
immunoconjugate "icon" targets aberrantly expressed endothelial tissue factor 
causing regression of endometriosis. American Journal of Pathology, 176, 2, pp. 1050-
1056. 

Kurohane, K., Tominaga, A., Sato, K., North, J.R., Namba, Y. & Oku, N. (2001). 
Photodynamic therapy targeted to tumor-induced angiogenic vessels. Cancer Letters 
167, 1, pp. 49-56 

Leinonen T., Pirinen R., Bohm J., Johansson R., Ropponen K. & Kosma V. M. (2006). 
Expression of matrix metalloproteinases 7 and 9 in non-small cell lung cancer: 
Relation to clinicopathological factors, beta-catenin and prognosis. Lung Cancer, 51, 
3, pp. 313-321. 

Leung D. W., Cachianes G.,x. Kuang G., Goeddel D. V. & Ferrara N. (1989). Vascular 
endothelial growth factor is a secreted angiogenic mitogen. Science, 246, 4935, pp. 
1306-1309. 

McDonald D. M. & Choyke P. L. (2003). Imaging of angiogenesis: From microscope to clinic. 
Nature Medicine, 9, 6, pp. 713-725. 

Metz J. M. &. Friedberg J. S (2001). Endobronchial photodynamic therapy for the treatment 
of lung cancer. Chest Surgery Clinics of North America, 11, 4, pp. 829-839. 

Miao H. Q., Lee P., Lin H., Soker S. & Klagsbrun M. (2000). Neuropilin-1 expression by 
tumor cells promotes tumor angiogenesis and progression. FASEB Journal, 14, 15, 
pp. 2532-2539. 

Moriwaki S. I., Misawa J., Yoshinari Y., Yamada I., Takigawa M. & Tokura Y. (2001). 
Analysis of photosensitivity in Japanese cancer-bearing patients receiving 
photodynamic therapy with porfimer sodium (Photofrin). Photodermatology 
Photoimmunology and Photomedicine, 17, 5, pp. 241-243. 

www.intechopen.com



 
Vascular-Targeted Photodynamic Therapy (VTP) 

 

119 

Mulder A. B., Blom N. R., Smit J. W., Ruiters M. H. J., Van Der Meer J., Ruud Halie M. & 
Bom V. J. J. (1995). Basal tissue factor expression in endothelial cell cultures is 
caused by contaminating smooth muscle cells. Reduction by using chymotrypsin 
instead of collagenase. Thrombosis Research, 80, 5, pp. 399-411. 

Nemerson Y. (1988). Tissue factor and hemostasis. Blood, 71, 1, pp. 1-8. 
Neufeld G., Cohen T., Shraga N., Lange T., Kessler O &. Herzog Y. (2002). The neuropilins: 

Multifunctional semaphorin and VEGF receptors that modulate axon guidance and 
angiogenesis. Trends in Cardiovascular Medicine, 12, 1, pp. 13-19. 

Osterud B. (1997). Tissue factor: A complex biological role. Thrombosis and Haemostasis, 78, 1, 
pp. 755-758. 

Pedersen B., Holscher T., Sato Y., Pawlinski R. & Mackman N. (2005). A balance between 
tissue factor and tissue factor pathway inhibitor is required for embryonic 
development and hemostasis in adult mice. Blood, 105, 7, pp. 2777-2782. 

Pepper M. S., Ferrara N., Orci L. & Montesano R. (1992). Potent synergism between vascular 
endothelial growth factor and basic fibroblast growth factor in the induction of 
angiogenesis in vitro. Biochemical and Biophysical Research Communications, 189, 2, 
pp. 824-831. 

Pepper M. S., Wasi S., Ferrara N., Orci L. & Montesano R. (1994). In vitro angiogenic and 
proteolytic properties of bovine lymphatic endothelial cells. Experimental Cell 
Research, 210, 2, pp. 298-305. 

Pernot M., Vanderesse R., Frochot C., Guillemin F. & Barberi-Heyob M. (2011). Stability of 
peptides and therapeutic success. Expert Opinion on Drug Metabolism and Toxicology 
in press. 

Perret G. Y., Starzec A., Hauet N., Vergote J., Le Pecheur M., Vassy R., Leger G., Verbeke K. 
A., Bormans G., Nicolas P., Verbruggen A. M. & Moretti J. L. (2004). In vitro 
evaluation and biodistribution of a 99mTc-labeled anti-VEGF peptide targeting 
neuropilin-1. Nuclear Medicine and Biology, 31, 5, pp. 575-581. 

Pham W., Choi Y., Weissleder R. & Tung C. H. (2004). Developing a peptide-based near-
infrared molecular probe for protease sensing. Bioconjugate Chemistry, 15, 6, pp. 
1403-1407. 

Plate K. H., Breier G., Weich H. A. & Risau W. (1992). Vascular endothelial growth factor is a 
potential tumour angiogenssis factor in human gliomas in vivo. Nature, 359, 6398, 
pp. 845-848. 

Plouet J., Schilling J. & Gospodarowicz D. (1989). Isolation and characterization of a newly 
identified endothelial cell mitogen produced by AtT-20 cells. EMBO Journal, 8, 12, 
pp. 3801-3806. 

Radu A., Wagnieres G., Van den Bergh H. & Monnier P. (2000). Photodynamic therapy of 
early squamous cell cancers of the esophagus. Gastrointestinal Endoscopy Clinics of 
North America, 10, 3, pp. 439-460. 

Rao L. V. M. & Pendurthi U. R. (1998). Tissue factor on cells. Blood Coagulation and 
Fibrinolysis, 9, SUPPL. 1, pp. S27-S35. 

Renno R. Z., Terada Y., Haddadin M. J., Michaud N. A., Gragoudas E. S. & Miller J. W. 
(2004). Selective photodynamic therapy by targeted verteporfin delivery to 
experimental choroidal neovascularization mediated by a homing peptide to 
vascular endothelial growth factor receptor-2. Archives of Ophthalmology, 122, 7, pp. 
1002-1011. 

www.intechopen.com



 
Advances in Cancer Therapy 

 

120 

Rollin S., Lemieux C., Maliba R., Favier J., Villeneuve L. R., Allen B. G., Soker S., Bazan, Y. 
Merhi N. G. & Sirois M. G. (2004). VEGF-mediated endothelial P-selectin 
translocation: Role of VEGF receptors and endogenous PAF synthesis. Blood, 103, 
10, pp. 3789-3797. 

Savary J. F.,. Monnier P, Fontolliet C., Mizeret J., Wagnieres G., Braichotte D. & Van Den 
Bergh H. (1997). Photodynamic therapy for early squamous cell carcinomas of the 
esophagus, bronchi, and mouth with m-tetra(hydroxyphenyl) chlorin. Archives of 
Otolaryngology - Head and Neck Surgery, 123, 2, pp. 162-168. 

Sharman W. M., Allen C. M. & Van Lier J. E. (1999). Photodynamic therapeutics: Basic 
principles and clinical applications. Drug Discovery Today, 4, 11, pp. 507-517. 

Sharman W. M., Van Lier J. E. & Allen C. M. (2004). Targeted photodynamic therapy via 
receptor mediated delivery systems. Advanced Drug Delivery Reviews, 56, 1, pp. 53-
76. 

Sharwani A., Jerjes W., Hopper C., Lewis M. P., El-Maaytah M., Khalil H. S. M., MacRobert 
A. J., Upile T. & Salih V. (2006). Photodynamic therapy down-regulates the 
invasion promoting factors in human oral cancer. Archives of Oral Biology, 51, 12, pp. 
1104-1111. 

Shiomi T. & Okada Y. (2003). MT1-MMP and MMP-7 in invasion and metastasis of human 
cancers. Cancer and Metastasis Reviews, 22, 2-3, pp. 145-152. 

Shoji M., Hancock W. W., Abe K., Micko C., Casper K. A., Baine R. M., Wilcox J. N., Danave 
I., Dillehay D. L., Matthews E., Contrino J., Morrissey J. H., Gordon S., Edgington T. 
S., Kudryk B., Kreutzer D. L. & Rickles F. R. (1998). Activation of coagulation and 
angiogenesis in cancer: Immunohistochemical localization in situ of clotting 
proteins and vascular endothelial growth factor in human cancer. American Journal 
of Pathology, 152, 2, pp. 399-411. 

Shoji M., Sun A., Kisiel W., Lu Y. J., Shim H., McCarey B. E., Nichols C., Parker E. T., Pohl J., 
Mosley C. A., Alizadeh A. R., Liotta D. C. & Snyder J. P. (2008). Targeting tissue 
factor-expressing tumor angiogenesis and tumors with EF24 conjugated to factor 
VIIa. Journal of Drug Targeting, 16, 3, pp. 185-197. 

Siemann D. W., Chaplin D. J. & Horsman M. R. (2004). Vascular-targeting therapies for 
treatment of malignant disease. Cancer, 100, 12, pp. 2491-2499. 

Siemann D. W., Bibby M. C., Dark G. G., Dicker A. P., Eskens F. A. L. M., Horsman M. R., 
Marme D. & LoRusso P. M. (2005). Differentiation and definition of vascular-
targeted therapies. Clinical Cancer Research, 11, 2 I, pp. 416-420. 

Soker S., Takashima S., Miao H. Q., Neufeld G. & Klagsbrun M. (1998). Neuropilin-1 is 
expressed by endothelial and tumor cells as an isoform- specific receptor for 
vascular endothelial growth factor. Cell, 92, 6, pp. 735-745. 

Soker S., Miao H. Q., Nomi M., Takashima S. & Klagsbrun M. (2002). VEGF165 mediates 
formation of complexes containing VEGFR-2 and neuropilin-1 that enhance 
VEGF165-receptor binding. Journal of Cellular Biochemistry, 85, 2, pp. 357-368. 

Solban N., Ortel B., Pogue B. & Hasan T. (2005). Targeted optical imaging and 
photodynamic therapy. Ernst Schering Research Foundation workshop, 49, pp. 229-258. 

Spek C. A. (2004). Tissue factor: From 'just one of the coagulation factors' to a major player 
in physiology. Blood Coagulation and Fibrinolysis, 15, SUPPL. 1, pp. S3-S10. 

Star W. M., Marijnissen H. P. A. & Van den Berg-Blok A. E. (1986). Destruction of rat 
mammary tumor and normal tissue microcirculation by hematoporphyrin 

www.intechopen.com



 
Vascular-Targeted Photodynamic Therapy (VTP) 

 

121 

derivative photoradiation observed in vivo in sandwich observation chambers. 
Cancer Research, 46, 5, pp. 2532-2540. 

Staton C. A., Kumar I., Reed M. W. R. & Brown N. J. (2007). Neuropilins in physiological 
and pathological angiogenesis. Journal of Pathology, 212, 3, pp. 237-248. 

Tang Y., Borgstrom P., Maynard J., Koziol J., Hu Z., Garen A. & Deisseroth A. (2007). 
Mapping of angiogenic markers for targeting of vectors to tumor vascular 
endothelial cells. Cancer Gene Therapy, 14, 4, pp. 346-353. 

Tezel T. H., Bodek E., Sonmez K., Kaliappan S., Kaplan H. J., Hu Z. & Garen A. (2007). 
Targeting tissue factor for immunotherapy of choroidal neovascularization by 
intravitreal delivery of factor VII-Fc chimeric antibody. Ocular Immunology and 
Inflammation, 15, 1, pp. 3-10. 

Thomas N., Tirand L., Chatelut E., Plenat F., Frochot C., Dodeller M., Guillemin F. & 
Barberi-Heyob M. (2008). Tissue distribution and pharmacokinetics of an 
ATWLPPR-conjugated chlorin-type photosensitizer targeting neuropilin-1 in 
glioma-bearing nude mice. Photochemical and Photobiological Sciences, 7, 4, pp. 433-
441. 

Thomas N., Bechet D. P.Tirand, Vanderesse R., Frochot C., Guillemin F. & Barberi-Heyob M. 
(2009). Peptide-conjugated chlorin-type photosensitizer binds neuropilin-1 in vitro 
and in vivo. Journal of Photochemistry and Photobiology B: Biology, 96, 2, pp. 101-108. 

Thorpe P. E. (2004). Vascular Targeting Agents As Cancer Therapeutics. Clinical Cancer 
Research, 10, 2, pp. 415-427. 

Tirand L., Frochot C., Vanderesse R., Thomas N., Trinquet E., Pinel S., Viriot M. L., 
Guillemin F. & Barberi-Heyob M. (2006). A peptide competing with VEGF165 
binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and 
potentiates its photodynamic activity in human endothelial cells. Journal of 
Controlled Release, 111, 1-2, pp. 153-164. 

Tirand L., Thomas N., Dodeller M., Dumas D., Frochot C., Maunit B., Guillemin F. & 
Barberi-Heyob M. (2007). Metabolic profile of a peptide-conjugated chlorin-type 
photosensitizer targeting neuropilin-1: An in vivo and in vitro study. Drug 
Metabolism and Disposition, 35, 5, pp. 806-813. 

Tozer G. M., Kanthou C. & Baguley B. C. (2005). Disrupting tumour blood vessels. Nature 
Reviews Cancer, 5, 6, pp. 423-435. 

van Kempen L. C. L., de Visser K. E. & Coussens L. M. (2006). Inflammation, proteases and 
cancer. European Journal of Cancer, 42, 6, pp. 728-734. 

Veikkola T., Karkkainen M., Claesson-Welsh L. & Alitalo K. (2000). Regulation of 
angiogenesis via vascular endothelial growth factor receptors. Cancer Research, 60, 
2, pp. 203-212. 

Verma S.,. Watt G. M, Mai Z. & Hasan T. (2007). Strategies for enhanced photodynamic 
therapy effects. Photochemistry and Photobiology, 83, 5, pp. 996-1005. 

Versteeg H. H., Spek C. A., Peppelenbosch M. P. & Richel D. J. (2004). Tissue factor and 
cancer metastasis: The role of intracellular and extracellular signaling pathways. 
Molecular Medicine, 10, 1-6, pp. 6-11. 

Vihinen P., Ala-Aho R. & Kahari V. M. (2005). Matrix metalloproteinases as therapeutic 
targets in cancer. Current Cancer Drug Targets, 5, 3, pp. 203-220. 

www.intechopen.com



 
Advances in Cancer Therapy 

 

122 

Woodhams J. H., MacRobert A. J., Novelli M. & Bown S. G. (2006). Photodynamic therapy 
with WST09 (Tookad): Quantitative studies in normal colon and transplanted 
tumours. International Journal of Cancer, 118, 2, pp. 477-482. 

Xu X., Wangv, Chen Z., Sternlicht M. D., Hidalgo M. & Steffensen B. (2005). Matrix 
metalloproteinase-2 contributes to cancer cell migration on collagen. Cancer 
Research, 65, 1, pp. 130-136. 

Yoneda T., Sasaki A., Dunstan C., Williams P. J., Bauss F., De Clerck Y. A. & Mundy G. R. 
(1997). Inhibition of osteolytic bone metastasis of breast cancer by combined 
treatment with the bisphosphonate ibandronate and tissue inhibitor of the matrix 
metalloproteinase-2. Journal of Clinical Investigation, 99, 10, pp. 2509-2517. 

Zheng G., Chen J., Stefflova K., Jarvi M., Li H. & Wilson B. C. (2007). Photodynamic 
molecular beacon as an activatable photosensitizer based on protease-controlled 
singlet oxygen quenching and activation. Proceedings of the National Academy of 
Sciences of the United States of America, 104, 21, pp. 8989-8994. 

Zucker S., Mirza H., Conner C. E., Lorenz A. F., Drews M. H., Bahou W. F. & Jesty J. (1998). 
Vascular endothelial growth factor induces tissue factor and matrix 
metalloproteinase production in endothelial cells: Conversion of prothrombin to 
thrombin results in progelatinase A activation and cell proliferation. International 
Journal of Cancer, 75, 5, pp. 780-786. 

www.intechopen.com



Advances in Cancer Therapy

Edited by Prof. Hala Gali-Muhtasib

ISBN 978-953-307-703-1

Hard cover, 568 pages

Publisher InTech

Published online 21, November, 2011

Published in print edition November, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The book "Advances in Cancer Therapy" is a new addition to the Intech collection of books and aims at

providing scientists and clinicians with a comprehensive overview of the state of current knowledge and latest

research findings in the area of cancer therapy. For this purpose research articles, clinical investigations and

review papers that are thought to improve the readers' understanding of cancer therapy developments and/or

to keep them up to date with the most recent advances in this field have been included in this book. With

cancer being one of the most serious diseases of our times, I am confident that this book will meet the

patients', physicians' and researchers' needs.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ezatul Ezleen Kamarulzaman, Hamanou Benachour, Muriel Barberi-Heyob, Ce ́line Frochot, Habibah A Wahab,

Franc ̧ois Guillemin and Re ́gis Vanderesse (2011). Vascular-Targeted Photodynamic Therapy (VTP), Advances

in Cancer Therapy, Prof. Hala Gali-Muhtasib (Ed.), ISBN: 978-953-307-703-1, InTech, Available from:

http://www.intechopen.com/books/advances-in-cancer-therapy/vascular-targeted-photodynamic-therapy-vtp-



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


