
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

18

Robust Control for Single Unit Resource
Allocation Systems

Shengyong Wang, Song Foh Chew and Mark Lawley
University of Akron, Southern Illinois University Edwardsville, and Purdue University

USA

1. Introduction

Supervisory control for deadlock-free resource allocation has been an active area of

manufacturing systems research. Most work, however, assumes that allocated resources do

not fail. Little research has addressed allocating resources that may fail. Automated

manufacturing systems have many types of components that may fail unexpectedly. We

develop robust controllers for single unit resource allocation systems with unreliable

resources (Chew et al., 2008; Chew et al., 2011; Chew & Lawley, 2006; Lawley, 2002; Lawley

& Sulistyono, 2002; Wang et al., 2008; Wang et al., 2009). These controllers guarantee that

when unreliable resources fail, parts requiring failed resources do not block the production

of parts not requiring failed resources. Further, while resources are down, the system is

controlled so that when repair events occur, the system is in a safe and admissible state.

There is little manufacturing research literature on robust supervision. Reveliotis (1999)

considers the case where parts requiring a failed resource can be re-routed or removed from

the system through human intervention. Park & Lim (1999) address existence questions for

robust supervisors. Hsieh (2004) develops methods that determine the feasibility of

production given a set of resource failures modelled as the extraction of tokens from a Petri

net. In contrast, our work models the failure of the workstation server while assuming that

buffer space remains accessible after the failure event. We assume that when the server of a

workstation fails, we can continue allocating its buffer space up to capacity, but that none of

the waiting parts can be processed and thus cannot proceed along their routes until the

server is repaired. We further assume that server failure does not prevent finished parts

occupying the workstation’s buffer space from being moved away from the workstation and

proceeding along their routes. Finally, we assume that server failure does not damage or

destroy the part being processed and that failure can only occur when the server is working.

The last two assumptions are made for notational efficiency and presentation clarity. They

can be easily relaxed by adding appropriate events and state variables to our treatment.

Our objective is to control the system so that failure of an unreliable resource does not

prevent processing of parts not requiring the failed resource. When a resource fails, all parts

in the system requiring the failed resource for future processing are unable to complete until

the failed resource is repaired. Because these parts occupy buffer space, they can block

production of parts not requiring the failed resource. Thus, we want to assure that, when

unreliable resources fail, the buffer space allocation can evolve under normal operation so

www.intechopen.com

Challenges and Paradigms in Applied Robust Control

392

that parts not requiring failed resources can continue production. Operation must continue

to obey part routings and must assure that when a failed resource is repaired, the system is

not in an unsafe state. We refer to supervisors guaranteeing this as robust.

The remainder of the chapter comprises the following sections. Most briefly, Section 2

discusses the way we model our systems. An example system is presented in this section to

motivate properties that robust controllers must possess. In Section 3, we develop robust

controllers for systems with multiple unreliable resources where each part type requires at

most one unreliable resource. Specifically, Subsection 3.1 develops two robust controllers

using a neighbourhood policy, a modified version of banker’s algorithm, and a single step

look ahead policy. Subsection 3.2 uses a resource order policy to construct another robust

controller; Subsection 3.3 employs a notion of shared buffer capacity to develop a robust

controller. Relaxing the restriction, Section 4 builds robust controllers for systems for which

part types may require multiple unreliable resources. Finally, Section 5 concludes the

chapter and discusses future research directions.

2. Modelling of robust control

There are two subsections in this section. Specifically, we will discuss the way we model our

systems in Subsection 2.1. Subsection 2.2 will provide examples to motivate properties that

robust controllers must possess.

2.1 The discrete event system

We model our systems using the approach of Ramadge & Wonham (1987). This is necessary

to define the properties that we want our supervisors to enforce. The following model is

similar to that developed by Lawley & Sulistyono (2002), but differs in that now we have

more complex failure scenarios and thus some of the underlying formalism has to be

generalized. Figure 1 provides an example for the following development.

The system is defined as a 9tuple vector S = R,C,P,,Q,Q0,,,. In S, R is the set of system

resource types, with R=RRRU, RRRU=, where RR is the set of reliable resource types, not

subject to failure and RU is the set of unreliable resource types, subject to failure. Let C=Ci :

i=1|R| where Ci is the capacity of the buffer space associated with system resource type

riR.

The set P of part types is produced by the system with each part type PjP representing an

ordered set of processing stages, Pj=Pj1Pj|Pj|, where Pjk represents the kth processing stage

of Pj. Also, let RPjk=PjkPj|Pj| be the residual part stages. We will use pjk to represent a part

instance of Pjk. Let :PjR such that (Pjk) returns the resource type required by Pjk. Thus,

the route of Pj is Tj=(Pj1)(Pj|Pj|), and the residual route RTjk=(Pjk)(Pj|Pj|). Finally,

let i={Pjk:(Pjk)=riR}, the set of part type stages associated with resource riR.

We will suppose that our resource types are workstations with buffer space for staging and

storing parts and a processor or server for operating on parts. We will use the standard

assumption from queuing theory that the server is not idle so long as there are unfinished

parts in a workstation’s buffer space. The resource units that we are concerned with

allocating are instances of the workstation’s buffer space. The controllers that we design are

not intended to allocate the server among parts waiting at the workstation. We assume this

to be done by some local queuing discipline.

www.intechopen.com

Robust Control for Single Unit Resource Allocation Systems

393

Fig. 1. An example system with two unreliable resources

Workstation failure will imply the failure of the workstation’s server, not any of its buffer
space. We will assume that when the server of a workstation fails, we can continue to
allocate its buffer space up to capacity, but that none of the waiting parts can be processed
and thus cannot proceed along their respective routes until the server is repaired. We
further assume that server failure does not prevent finished parts occupying the
workstation’s buffer space from being moved away from the workstation and proceeding
along their respective routes. Finally, we assume that server failure does not damage or
destroy the part being processed and that failure can only occur when the server is
working.

We are now in a position to define the system states and events. Let Q represent the set of

system states, where Q  q = svi, yjk, xjk : i=1|R|, j=1|P| and k=1|Pj|, with svi being

the status of the server of workstation i (0 if failed, 1 if operational), yjk being the number of

unfinished units of Pjk (parts waiting or in-process) located in the buffer space of (Pjk), and

xjk being the number of finished units of Pjk located in the buffer space of (Pjk). Q0 is the set

of initial states with q0Q0 being the state in which no resources are allocated and all servers

are operational. The dimension of q is | |P
j 1 j|P| |R|2 . 

Let =cu, where c={jk : j=1|P| and k=1|Pj|+1} is the set of controllable events

with jk representing the allocation of (Pjk) to a part instance of Pjk; that is, jk is the event

that a part instance of a part type Pj advances into the buffer space of a workstation that will

perform its kth operation. Then, j,|Pj|+1 represents a finished part of type Pj leaving the

system. We assume that the supervisor controls the occurrences of these events through

resource allocation decisions.

R = {r1, r2, r3, r4, r5, r6, r7, r8, r9}
RR = {r1, r3, r4, r5, r6, r7, r8}
RU = {r2, r9}

C = C1,C2,C3,C4,C5,C6,C7,C8,C9
 = 1,1,1,2,1,1,1,1,1
P = {P1, P2, P3, P4}
P1 = {P11, P12, P13, P14, P15}

T1 =  r6, r3, r2, r1, r2
P2 = {P21, P22, P23, P24, P25, P26, P27, P28}

T2 =  r2, r3, r4, r6, r5, r1, r2, r3
P3 = {P31, P32, P33, P34, P35, P36}

T3 =  r8, r7, r5, r6, r9, r4
P4 = {P41, P42}

T4 =  r4, r5
c = {1i : i=1...6}{2i : i=1...9}

 {3i : i=1...7}{4i : i=1...3}

u1 = {1i : i=1...5}{2i : i=1...8}

 {3i : i=1...6}{4i : i=1,2}

u2 = {2,9,2,9}

{r2} = {1i : i=1...6}{2i : i=1...9}

 {1i : i=1...5}{2i : i=1...8}

{r9} = {3i : i=1...7}{3i : i=1...6}

{r2,r9} = {r2}  {r9}

r2

r7 r8

r1 r3

r4

r5

r6

r9

P1

P2

P3

P4

www.intechopen.com

Challenges and Paradigms in Applied Robust Control

394

We have u=u1u2 being the set of uncontrollable events where u1={jk : j=1|P| and

k=1|Pj|} represents the completion of service for Pjk. Then, u2={i,i : riRU} represents

the failure (i) and repair (i) of the server of unreliable resource riRU. Service completions,

failures and repairs are assumed to be beyond the controller’s influence.

Let :Q2 be a function that, for a given state, returns the set of enabled events. This

function is defined for a state, qQ, as follows:

1. For Pj1i, if Ci  0

jk i

jk jk
p Ω

(y x) ,


  then j1(q).

Events that release new parts into the system are enabled when space is available on the
first required workstation in the route.

2. For Pjki, if yjk0 and svi=1, then jk(q).
If a part is at service, then the corresponding service completion event is enabled.

3. For riRU, Pjki and jk(q)  i(q).
If the server is busy with a part, then the corresponding failure event is enabled.

4. For riRU, if svi = 0, then i(q) and jk(q) Pjki.
If the server is failed, the corresponding repair event is enabled and the corresponding
service completion events are disabled.

5. For Pjki, 1k|Pj|, if xj,k10 and Ci  0

jk i

jk jk
p Ω

(y x) ,


  then jk(q).

When a part finishes its current operation and buffer space becomes available at the
next required workstation in its route, the event corresponding to advancing the part is
enabled.

6. For Pj,|Pj|i, if xj,|Pj|0, then j,|Pj|+1(q).
If a part has finished all of its operations, the event corresponding to unloading it from
the system is enabled.

The state transition function is now defined as follows. The transition function, , is a partial

function from the cross product Q to the set Q of system states. Specifically, let :QQ

such that

(q,jk)=qexj,k1+eyjk, advancing a part pj,k1;

(q,jk)=qeyjk+exjk, service completion of a part pjk;

(q,i)=qesvi, failure of server i;

(q,i)=q+esvi, repair of server i;

where exj,k1, eyjk, exjk, and esvi are the standard unit vectors with components corresponding

to xj,k1, yjk, xjk and svi being 1, respectively. Note that, eyj,|Pj|+1 = exj0 = 0, the zero vector with

the same dimension, and that pj0 represents a raw part of Pj waiting to be released into the
system.

We assume that |RU|1. In this case, any subset of the unreliable resources can be

simultaneously in a failed state. Thus, if one of the  U|R |

i
 subsets of size i, i=1…|RU|, is

down, we want the remaining resources to continue producing parts not requiring any of

the failed resources without human intervention to remove or rearrange the parts requiring

failed resources. Further, when one of the failed resources is repaired, we want production

of parts requiring that resource to resume. A robust controller must possess certain

properties in order to accomplish the above-mentioned characteristics.

www.intechopen.com

Robust Control for Single Unit Resource Allocation Systems

395

2.2 Motivating examples for properties of robust supervisory control

This subsection motivates a set of desired properties for a robust controller based upon an
example production system. Figure 1 presents an example manufacturing system with two
unreliable resources. The stages, routes, and resource capacities are given, as is the complete
discrete event model. This model enumerates the resources, capacities, events, and so forth.
For now, we will constrain our discussion to the system states presented in Figures 2-4. We
recall that, by definition, a resource allocation state is safe if, starting from that state, there
exists a sequence of resource allocations/deallocations that completes all parts and takes the
system to the empty and idle state, the state in which no resources are allocated and no
servers are busy. Our underlying assumption is that if a resource allocation state is safe,
then, under correct supervision and starting from that state, it is possible to produce all part
types indefinitely.
We have several control objectives for the system of Figure 1. First, we desire that the
controller guarantee deadlock-free operation, i.e., that it keeps the system producing all part
types. Second, in the event that r2 fails, we want to continue producing part types not
requiring r2, {P3,P4}, without having to intervene by clearing the system of parts requiring r2.
Similarly, in the event that r9 fails, we want to continue producing part types not requiring
r9, {P1,P2,P4}, again without having to intervene by clearing the system of parts requiring r9.
Further, if both r2 and r9 are in the failed state, we want to continue producing part types not
requiring r2 or r9, {P4}, again without explicit intervention.
Consider for example the state given in Figure 2. This state is safe; however, if r2 fails while

processing part p27 in this state, the production of both P3 and P4 will be blocked by two p23s
at r4. Note that if we advance a p23 from r4 to r6, then production of P4 can proceed.
However, production of P3 will now be blocked. Thus, this state does not satisfy our
condition that after the failure of r2, we should be able to continue producing both P3 and P4.
As another example, consider the state of Figure 3. Again, we see that this state is safe.
However, if r9 fails while processing part p35 in this state, production of part types P1 and P2
will be blocked by p34 at r6, although the production of P4 is unaffected.

 r1 r2 r3

r4

r7

r5

r6

r9

P1

P2

P3

P4

r8

p14

p27

p23

p32

p23

Fig. 2. An undesirable system state since unreliable resource r2 may fail while processing
part p27

www.intechopen.com

Challenges and Paradigms in Applied Robust Control

396

Thus, these examples illustrate that parts requiring a failed resource can prevent the system

from producing parts not requiring the failed resource through propagation of blocking.

Our objective is to develop supervisory controllers that avoid this by guaranteeing that if an

unreliable resource fails, it is possible to redistribute the parts requiring that resource so that

part types not requiring that resource can continue to produce.

 r1 r2 r3

r4

r7

r5

r6

r9

P1

P2

P3

P4

r8

p34

p35

p23

p42

p15

Fig. 3. An undesirable system state since unreliable resource r9 may fail while processing
part p35

For the third objective, consider the state of Figure 4. Again, we see that the state is safe. If r2

fails, production of P3 is blocked by p11 at r6. Further, production of P4 is blocked by p33 at r5.

We note that by advancing p11 from r6 to its next required resource, r3, the blockages of P3

and P4 can now be resolved and thus the system can continue producing both P3 and P4, as

desired. However, when r2 is repaired, the system is no longer safe since resources r2 and r3

are now involved in deadlock. This illustrates that our controller must guarantee that any

redistribution of parts requiring the failed resource does not result in system deadlock when

the resource is repaired.

The above discussion lays a foundation for a robust supervisory controller. In summary, a

supervisory controller is said to be robust to resource failures of RU if the supervisory

controller satisfies Property 2.2.

Property 2.2:

2.2.1: The supervisory controller ensures continuing production of part types not
requiring failed resources, given that additional failures/repairs do not occur.

2.2.2: The supervisory controller allows only those states that serve as feasible initial
states if an additional resource failure occurs.

2.2.3: The supervisory controller allows only those states that serve as feasible initial
states if a failed resource is repaired and becomes operational.

We say that a state is a feasible initial state if, starting from that state, it is possible to produce
all part types not requiring failed resources. The formal development and definition of this
property using language theory is presented in Chew and Lawley (2006).

www.intechopen.com

Robust Control for Single Unit Resource Allocation Systems

397

Fig. 4. An undesirable system state since r2 may fail while processing part p27

3. Robust control for systems with multiple unreliable resources

This section endeavours to delve into robust control for single unit resource allocation
systems with unreliable resources.

3.1 Robust control using a neighbourhood policy

This subsection develops controllers that satisfy Property 2.2 above, while maintaining
polynomial complexity. Each controller is a conjunction of a modified deadlock avoidance
policy and a set of neighbourhood constraints. The deadlock avoidance policy guarantees
deadlock-free operation, while the neighbourhood constraints control the distribution of
parts that require unreliable resources. Subsection 3.1.1 develops the neighbourhood
constraints, NHC. Subsection 3.1.2 constructs a supervisor based on a modified Banker’s
Algorithm and NHC, while subsection 3.1.3 develops a supervisor based on single-step
look-head (SSL) and NHC. The complete proofs can be found in Chew and Lawley (2006).

3.1.1 A neighbourhood policy

In this subsection, we discuss neighbourhood constraints based on the notion of failure
dependency. Informally, a resource is failure-dependent if every part that enters its buffer
space requires some future processing on an unreliable workstation. Thus, all unreliable
resources are failure-dependent. Some reliable resources may also be failure-dependent if
they only process parts that require future processing on an unreliable resource. This is
defined more precisely later. For each failure-dependent resource, we generate a
neighbourhood. The neighbourhood of a failure-dependent resource is a virtual space of
finite capacity that is used to control the distribution of parts requiring that failure-
dependent resource. Again, this is formalized in the following, where we extend the
neighbourhood concepts presented by Lawley & Sulistyono (2002) for systems with
multiple unreliable resources. We first discuss and illustrate neighbourhood concepts, and
then illustrate how neighbourhood constraints are constructed for failure-dependent
resources.

r1 r2 r3

r4

r7

r5

r6

r9

P1

P2

P3

P4

r8

p27

p11

p41

p33

www.intechopen.com

Challenges and Paradigms in Applied Robust Control

398

Recall that RU is the set of unreliable resources in the system S, and that i={Pjk:(Pjk)=riR}

is the set of part type stages supported by resource ri. If riRU, then rvR is said to be failure-

dependent on ri if Pjkv, Pj,k+ci with c0. In other words, rv is failure-dependent on ri if

every part that enters the buffer of rv requires future processing on unreliable resource ri

(note that ri is failure-dependent on itself). For riRU, let i
FDR = {rv : rvR and Pjkv,

Pj,k+ci with c0} be the set of failure-dependent resources on ri, and let RFD

=
u

i

FD
i

r R
R


 and RNFD = R \ RFD.

For each failure-dependent resource of i
FDR , we construct a neighbourhood. The

neighbourhood of rv  i
FDR , viNH , is defined as the set of part type stages that require rv

now or later in their processing and have no intervening failure-dependent resources of

i
FDR . Formally, viNH = v  {Pjk: c0 with Pj,k+cv and d[0,c), (Pj,k+d)  i

FDR }. Thus,

if (Pj,k+c) = rv  i
FDR , (Pj,k1) = rw  i

FDR , with rvrw, and {(Pjk), (Pj,k+1)…(Pj,k+c1)} 

i
FDR = , then {Pjk,Pj,k+1 … Pj,k+c1,Pj,k+c}  viNH , and Pj,k1  viNH . Let iNH = { viNH :

rv i
FDR } be the neighbourhood set for riRU, and let NH={ iNH : riRU}.

For example, the system of Figure 1 has two unreliable resources, RU={r2,r9}. Note that

anytime r1 appears in a route, r2 appears later in the route, and thus, 2FDR = {r1,r2}. Also,

anytime r7 or r8 appear in a route, r9 appears later in the route, so, 9FDR = {r7,r8,r9}. Thus,
2NH = { 2

1NH , 2
2NH } and 9NH ={ 9

7NH , 9
8NH , 9

9NH }, where the neighbourhoods are as

follows: 2
1NH ={P14,P22,P23,P24,P25,P26}, 2

2NH = {P11,P12,P13,P15,P21,P27}, 9
7NH = {P32},

9
8NH = {P31}, 9

9NH = {P33,P34,P35}.

To understand this construction, consider 2
1NH and 2

2NH . Note that 1= {P14,P26} and

2={P13,P15,P21,P27}. Since v  viNH , {P14,P26}  2
1NH , and {P13,P15,P21,P27}  2

2NH . Now

consider T1 = {(P11),(P12),(P13),(P14),(P15)} = {r6,r3,r2,r1,r2}. Since {r6,r3}  2FDR = ,

{P11,P12}  2
2NH . Similarly, T2 = {(P21),(P22),(P23),(P24),(P25),(P26),(P27),(P28)} =

{r2,r3,r4,r6,r5,r1,r2,r3}. Since {r3,r4,r6,r5}  2FDR = , {P22,P23,P24,P25}  2
1NH . Thus, we get 2

1NH

= {P14,P22,P23,P24,P25,P26} and 2
2NH = {P11,P12,P13,P15,P21, P27}.

Although all parts supported by r6 later need an unreliable resource, r6 is shared by r2 and r9,

and thus it is not failure-dependent on either. This implies that failure-dependent sets are

disjoint, i.e., 2FDR  9FDR = . Furthermore, we observe that no part stage is in more than

one neighbourhood, i.e., 2
1NH  2

2NH  9
7NH  9

8NH  9
9NH = . These and other

important neighbourhood properties are established in Chew and Lawley (2006).

We restrict the number of parts allowed in a neighbourhood. Our intention is to guarantee

that every part in the neighbourhood of a failure-dependent resource has capacity reserved

at that resource. That is, we want to be able to advance every part requiring an unreliable

resource into its associated failure-dependent resource in the event of a resource failure so

that it will not block production of parts not requiring the failed resource. In the example,

for a permissible state, we want, for example, every part in 9
9NH = {P33,P34,P35} to have a

reserved unit of buffer at r9. As a consequence, we will reject a state if this constraint is

violated. For instance, a state is not admissible if, at this state, the sum of parts in 9
9NH  1;

recall that r9 has a single unit of capacity. To see this, at this inadmissible state, if r9 fails, at

least one part of 9
9NH must reside at r5 or r6. Although P1, P2, and P4 do not require failed r9

in their processing, this distribution of parts may in turn block production of some of these

part types. Our objective is to develop supervisory controllers capable of rejecting these

undesirable states.

www.intechopen.com

Robust Control for Single Unit Resource Allocation Systems

399

We now construct neighbourhood constraints to enforce the above intention. The constraint

for a neighbourhood, say viNH , is an inequality of the form viZ ≤ Cv where viZ

=
i
vjk

jkjk
NHP

)y(x .


 Recall that xjk is the number of finished instances, and yjk is the number

of unfinished instances, of Pjk located in the buffer of (Pjk); and that the right hand side Cv is

the capacity of rv. viNH is said to be capacitated if viZ = Cv and over-capacitated if viZ  Cv.

Define the set of all possible neighbourhood constraints with respect to riRU as:

1

iNHC = { viZ ≤ Cv : viNH  iNH }.

In the example, we have

21NHC = { 21Z 
2

jk 1

jkjk
NHP

)y(x


  C1, 2
2Z 

2
jk 2

jkjk
NHP

)y(x


  C2};

91NHC = { 9
7Z 

9
jk 7

jkjk
NHP

)y(x


  C7, 98Z 
9

jk 8

jkjk
NHP

)y(x


  C8,

 9
9Z 

9
jk 9

jkjk
NHP

)y(x


  C9}.

Constraints of
1

iNHC assure that no neighbourhood of iNH becomes over-capacitated.

As Lawley & Sulistyono (2002) discuss,
1

iNHC may induce deadlock among failure-

dependent resources of i
FDR , since if all neighbourhoods are capacitated, parts cannot

move from one neighbourhood to another without over-capacitating a neighbourhood. In

the example, a state may satisfy both 1= 21Z  C1=1 and 1= 2
2Z  C2=1. But, a part moves from

one of these associated neighbourhoods to another must over-capacitate the other

neighbourhood. To resolve this dilemma, we develop an additional set of constraints,

2
iNHC .

It is first necessary to compute the set of strongly connected neighbourhoods for
2

iNHC .

To do this, for each riRU, we construct a directed graph (iNH , iA) where iA =

{(igNH , i
hNH) : Pjk igNH with Pj,k+1 i

hNH }. Thus, in operation, there will be part flow

from igNH to i
hNH . We then compute the set of strong components of (iNH , iA) using

standard polynomial graph algorithms (Cormen et at., 2002). For example, we see that 2
1NH

and 2
2NH are strongly connected, since {P14,P26}  2

1NH and {P13,P27}  2
2NH . Therefore, in

operation, there is flow from 2
1NH to 2

2NH and from 2
2NH to 2

1NH . Let iSC be the set of

strongly connected components of (iNH , iA). Then, 2SC = { 2
1SC = { 2

1NH , 2
2NH }}, and

9SC = { 9
1SC ={ 9

7NH }, 9
2SC ={ 9

8NH }, 9
3SC ={ 9

9NH }}. Then,
2
iNHC is stated as follows:

2
iNHC = { igZ + h

iZ < Cg + Ch : { igNH , h
iNH } imSC  iSC , m=1… iSC| | }.

Hence, for every strongly connected component of (iNH , iA),
2
iNHC guarantees that at

most one neighbourhood can be capacitated at a time. In the example, we have the

following:

www.intechopen.com

Challenges and Paradigms in Applied Robust Control

400

22NHC = { 21Z + 2
2Z < C1+C2}, 9

2NHC = .

22NHC guarantees that 2
1NH and 2

2NH are not simultaneously capacitated.

To summarize, iNHC =
1

iNHC 
2
iNHC guarantees that no neighbourhood is over

capacitated, and that neighbourhoods with mutual flow dependencies are not

simultaneously capacitated. The complete set of neighbourhood constraints is defined as:

NHC = { iNHC : riRU}.

Note that in the worst case, we generate one constraint for each pair of resources and thus

the size of NHC is of O(|R|2).
Chew and Lawley (2006) establish several important properties of NHC. These properties
are required to establish robustness of the two supervisors that we develop later. We next
modify two deadlock avoidance policies that we use in conjunction with NHC to develop
robust supervisors.

3.1.2 Banker’s algorithm

In this subsection, we configure Banker’s Algorithm (BA) (Habermann, 1969) to work with

NHC. BA is perhaps the most widely known deadlock avoidance policy (DAP), and its

underlying concepts have influenced the thinking of numerous researchers. BA is a

suboptimal DAP in the sense that it achieves computational tractability by sacrificing some

safe states. BA avoids deadlock by allowing an allocation only if the requesting processes

can be ordered so that the terminal resource needs for the ith process, Pi, in the ordering can

be met by pooling available resources and those released by completed processes P1, P2 

Pi1. The ordering is essentially a sequence in which all processes in the system can complete

successfully. BA is of O(mnlog n) where m is the number of resource types and n is the

number of requests. Other manufacturing related work also uses BA (Ezpeleta et al., 2002;

Lawley et al., 1998; Reveliotis, 2000).

Our modifications are straightforward and are a generalization of those undertaken by
Lawley & Sulistyono (2002). Our objective is to search for an ordering of parts that advances
failure-dependent parts (those requiring unreliable resources) into the resource of their

current neighbourhood, and non-failure-dependent parts (those not requiring unreliable
resources) out of the system. Again, the ordering is such that the resources required by the
first part are all available, those required by the second part are all available after the first

part has finished and released the resources held by the part, and so forth. If the system can
be cleared in this way (all failure-dependent parts are advanced into failure-dependent
resources and all non-failure-dependent parts are advanced out of the system), then we can
guarantee that if any unreliable resource fails, the system can continue producing parts that

do not require this failed resource.

In the following, let =NFDFD be the set of part type stages instantiated in q whose parts

hold non-failure-dependent resources, where NFD is the set of non-failure-dependent part type

stages (those that do not require failure-dependent resources in the residual route) and FD

is the set of failure-dependent part type stages (those that do require failure-dependent

resources in the residual route). We now present our modified version of BA as Algorithm

A1 as follows.

www.intechopen.com

Robust Control for Single Unit Resource Allocation Systems

401

Step 1 of the algorithm configures the data structures required. For every part type stage
represented in the system, these capture the current resource holding and the future
processing need. These structures also capture the resource availability of resources in the
state being tested. Three additional comments regarding the algorithm are in order. First,
the need for every failure-dependent resource is explicitly set to zero, so this version looks
only at the availability of non-failure-dependent resources. Second, for non-failure-
dependent part type stages (those not requiring unreliable resources), the need for every
resource in the residual route (except the one held) is set to one. Finally, for failure-
dependent part type stages (those requiring unreliable resources), the need for every
resource in the residual route (except the one held) up to the one immediately preceding the
first encountered failure-dependent resource is set to one, all others are set to zero. Note that
these are the resources such a part will need to advance into the failure-dependent resource
of its current neighbourhood. Step 2 then executes the usual Banker’s logic.
Algorithm A1 is not correct by itself, since it does not handle allocation of failure-dependent
resources (for detailed examples the reader is referred to the work by Lawley & Sulistyono

www.intechopen.com

Challenges and Paradigms in Applied Robust Control

402

(2002)). However, A1 and NHC together form a robust controller, that is, if we allow the
system to visit only those states acceptable to both A1 and NHC, then the system operation
will satisfy the requirements of Property 2.2. The detailed proofs for this are given in Chew
and Lawley (2006). The supervisor is defined as follows:

Definition 3.1.1: Supervisor 1 = A1  NHC.

Supervisor 1 permits a system state that satisfies both A1 and NHC in runtime. Consider
Figure 5, which illustrates a state, say q, in which r4 holds p23 and p14; and r5 holds p33. It is
clear, at q, that there exists an admissible sequence by A1; that is, p33 can advance into
failure-dependent resource r9; p23 can advance into failure-dependent resource r1; and
finally, p41 can be advanced out of the system. In addition, q satisfies NHC since

2
1NHC = { 21Z  1  1, (there is one P23) 2

2Z  0  1};

9
1NHC = { 9

7Z  0  1, 98Z  0  1, 9
9Z  1  1 (there is one P33)};

22NHC = {1 + 0 < 1 + 1 = 2}; 92NHC = .

Therefore, q is an admissible state by 1. Supervisor 1 will prohibit, at q, advancing p23 into

r6 (where it becomes p24) because p24 and p33 will block, causing the resulting state to violate

A1 although not NHC. Loading a p11 into r6 at q is also precluded by 1 since the resulting

state violates
2
2NHC , although not A1. However, advancing p33 one step into r6 or loading a

p31 into r8 will result in an admissible state.

Fig. 5. An admissible system state by supervisor 1

Supervisor 1 is of polynomial complexity since both A1 and NHC require polynomial time

for runtime implementation. Chew and Lawley (2006) formally establish that 1 yields a

robust supervisor for systems where every part type requires in its route at most one

unreliable resource.

r1 r2 r3

r4

r7

r5

r6

r9

P1

P2

P3

P4

r8

p23

p41

p33

www.intechopen.com

Robust Control for Single Unit Resource Allocation Systems

403

3.1.3 A Single step look ahead policy

It is well known that certain system structures, such as a central buffer, input/output bins,
and non-unit buffer capacities, eliminate the possibility of deadlock-free unsafe states
(Lawley & Reveliotis, 2001). In these systems, every state is either deadlock or safe, and
therefore, a single-step look-ahead policy (SSL) is a correct and optimal deadlock avoidance
policy. Further, it is of polynomial complexity, and thus ideal for runtime applications in
real systems. In the following, we will modify the SSL presented by Lawley (1999) so that it
works with systems with multiple unreliable resources.
A resource allocation graph (RAG) is a digraph that encodes the resource requests and
allocations of parts (Lawley, 1999). For our purposes, let RAG=(R\RFD,E) where R\RFD is

the set of system non-failure-dependent resource types and E={(ru,rv): ru,rv R\RFD and ru

is holding a part pjk with (pj,k+1)=rv}. A subdigraph of RAG, say (R,E), is induced when R

 R\RFD and E ={(ru,rv):(ru,rv)E and ru,rv R}. A subdigraph, (R,E), forms a knot in RAG

if ruR, (ru)= R, where (ru) is the set of all nodes reachable from ru in RAG. In other
words, a set of nodes, R, forms a knot in RAG when, for every node in R, the set of nodes
reachable along arcs in RAG is exactly R. Further, we define a capacitated knot to be a knot
in which every resource in the knot is filled to capacity with parts requesting other
resources in the knot. It is commonly known that a capacitated knot in RAG is a necessary
and sufficient condition for deadlock in these types of sequential resource allocation
systems. We now provide an algorithm, Algorithm A2, below to detect a capacitated knot
in RAG = (R\RFD,E). This algorithm has the same polynomial complexity as that given by
Lawley (1999).
Algorithm A2:
Input: RAG=(R\RFD,E)
Output: DEADLOCK, NO DEADLOCK

Step 1: Compute the set of strongly connected components of RAG: C={C1…Cq}

Step 2: Construct digraph (C,Ec) such that C={C1…Cq} and Ec={(Ci,Cj):(ru,rv)E with ruCi

and rvCj for ij}

Step 3: For every strongly connected component CiC such that (Ci,Cj)Ec j=1…q

If Ci is a capacitated knot

Return DEADLOCK

End If

End For

Step 4: Return NO DEADLOCK
We note that, for our present work, this version of deadlock detection algorithm operates
only on non-failure-dependent resources and parts held by these resources. In A2, Step 1

computes the set of strongly connected components in RAG. As mentioned earlier, this is a
standard digraph operation. Step 2 constructs a digraph that defines the reachability
relationship between these components. Step 3 looks for a component with no outgoing arc.

If such a component is filled to capacity with parts requesting other resources in the
component, then it is a capacitated knot, and deadlock exists. If no such capacitated knot
exists then the RAG is deadlock-free.
Note that A2 is not correct by itself since it considers only the non-failure-dependent
resources. Failure-dependent resources can easily deadlock themselves. However, when A2
is taken in conjunction with NHC, it guarantees Property 2.2 and thus assures that the
system will continue to operate even when multiple unreliable resources are down.

www.intechopen.com

Challenges and Paradigms in Applied Robust Control

404

Definition 3.1.2: Supervisor 2 = A2  NHC.

Supervisor 2 accepts a system state that contains no deadlock and satisfies NHC. For
example, in Figure 1, suppose that every non-failure-dependent resource has non-unit

capacity; that is, Ci1, riR\RFD= {r3,r4,r5,r6}. Then, A2 permits any state in which no subset
of parts residing on {r3,r4,r5,r6} is deadlocked on {r3,r4,r5,r6}. If the state also satisfies NHC,
then Property 2.2 is guaranteed.

Note that 2 = A2  NHC is suited for real-time implementation since both A2 and NHC are

of polynomial complexity. Chew and Lawley (2006) formally establishes that 2 yields a
robust supervisor for systems where every part type requires in its route at most one
unreliable resource.

3.2 Robust control using a resource order policy

This subsection configures a deadlock avoidance policy, resource order policy (RO). We will

employ this configured resource order policy in conjunction with the neighbourhood

constraints of Subsection 3.1 to develop a robust controller. Consider, for configuration

purposes, Figure 1. Define RCO = R\ FD
iR as the set of non-failure-dependent resources.

Since FD
2R = {r1,r2} and FD

9R = {r7,r8,r9}, thus RCO = {r3,r4,r5,r6}. Let  : RCO   (the set of

natural numbers) be a one to one mapping of non-failure-dependent resources orders the

non-failure-dependent resources so that RO can be applied); PFD={Pj: (Pjk)RU for some k}

(PFD is the set of part types requiring unreliable resources; thus, in Figure 1, PFD = {P1,P2,P3});

and PNFD=P\PFD (PNFD is the set of part types not requiring any unreliable resources; hence,

in Figure 1, PNFD = {P4}). For each PjPFD, determine all maximal subsequences in the route

of Pj that do not contain failure-dependent resources. For instance, in Figure 1, P3PFD

where P3=P31, P32, P33, P34, P35, P36 with route r8,r7,r5,r6,r9,r4, the maximal subsequences in

r8,r7,r5,r6,r9,r4 that do not contain failure-dependent resources are r5,r6and r4.
To express this formally, for each PjPFD, break the route of Pj into subroutes as follows: for

Pj=Pj1 … Pj,k11,Pjk1,Pj,k1+1 … Pj,k21,Pjk2,Pj,k2+1 … Pj,khj1,Pjkhj
,Pj,khj+1 …, {Pjk1,Pjk2 … Pjkhj

} being

precisely the set of part type stages of Pj that is processed on failure-dependent resources

(that is, Pjk) : k=k1,k2 … khj}  R
FD and Pjk) : kk1,k2 … khj}  RFD =  let 1

jP =Pj1 …

Pj,k11, 2
jP = Pj,k1+1 … Pj,k21, 3

jP = Pj,k2+1 … Pj,k31,…,
jh

jP = Pj,k(hj1)+1 … Pj,(khj
1) and

jh 1jP  = Pj,(khj
+1) … Pj|Pj For each PjPNFD, rename Pj

0
jP . Finally, let P’ = { 0

jP :

PjPNFD k
jP  k =1…hj and Pj PFD}. Note that in P’, a part type PjPFD is replaced by a

set of part types { 1
jP , 2

jP …
jh

jP } each having a route that is a maximal segment of the

route of Pj not containing a failure-dependent resource.

In Figure 1, for example, P3 is replaced by 13P = P33,P34 with route r5,r6 and 23P =P36 with

route r4, and P4 is renamed 04P . Thus, the revised set of part types is

P’={ 04P }{ 11P , 12P , 22P , 13P , 23P }. Note that none of the routes of part types in P’ contains any

failure-dependent resources.

We now use P’ and RCO to construct a set of RO constraints as follows. For each i
jP =

Pj,k(i1)+1 … Pj,(ki1 P’ and for each Pjk  i
jP , consider the inclusive remaining route, (Pjk)

… (Pj,(ki1)), and its mapping, Pjk)) ... Pj,(ki1))). (Recall that to implement RO, the

resources must be ordered.  represents the ordering function.) If the mapping of the

inclusive remaining route is strictly increasing (decreasing), then Pjk is classified as ‘right’

(‘left’); if the mapping of the inclusive remaining route switches direction at some point,

www.intechopen.com

Robust Control for Single Unit Resource Allocation Systems

405

then Pjk is classified as ‘undirected.’ If Pjk is terminal, it is ignored. For rmRCO, let RU
m

represent the set of right and undirected part type stages associated with rm; and UL
m , the

set of left and undirected part type stages associated with rm. In the example, consider that

r1)=1, r2)=2, r3)=3 r4)=4, r5)=5, r6)=6, r7)=7, r8)=8 and r9)=9. We now have

that the inclusive remaining route of P33, r5,r6 supporting P33,P34  1
3P , is strictly

increasing for  thus P33 is classified as ‘right’ and hence RU
5 = {P33}. In the meantime,

since P25  1
2P is the terminal part type stage for 1

2P , P25 is ignored. Clearly, RU
5 = . On

the other hand, the inclusive remaining route of P11, r6,r3 supporting P11,P12  1
1P , is

strictly decreasing for  hence P11 is classified as ‘left.’ The inclusive remaining route of P24

is r6,r5 supporting P24,P25 1
2P , which is strictly decreasing for  hence P24 is classified

as ‘left.’ Therefore, UL
6 = {P11,P24}. Meanwhile, since P34  1

3P is the terminal part type

stage for 1
3P , P34 is ignored. It is obvious that UL

6 = . After all the part type stages are

classified in this way, a constraint is generated for each pair of non-failure-dependent

resources, yielding RO constraints. We now define RO constraints formally as follows.

Definition 3.2.1: RORCO is the set of constraints:

rm, rn  RCO such that rm) < rn),
jk RU

m

jkjk
P

y()x


 +
jk LU

n

jkjk
P

y()x


 < Cm + Cn

where Cm and Cn are the respective buffer capacities of rm and rn.

In the example, for r5, r6  RCO, we have (x33+y33) + (x11+y11+x24+y24) < 2, recalling that

C5=C6=1. This constraint assures that for every resource allocation state that the system is

allowed to visit, the number of ‘right’ and ‘undirected’ parts occupying buffer space at r5

plus the number of ‘left’ and ‘undirected’ parts occupying buffer space at r6 will be less than

the combined capacity of the two resources. Similar constraints are generated for the

resource pairs {r3,r4}, {r3,r5}, {r3,r6}, {r4,r5} and {r4,r6}.

We are now in the position to establish that the conjunction of RORCO and NHC, call it

supervisor 3, satisfies Property 2.2. Supervisor 3 is a control policy such that it disables

jk(q) if (q,jk) violates either RORCO or NHC. Formally, it is stated as follows.

Definition 3.2.2: Supervisor 3 = RORCO  NHC.

Chew et al. (2011) establish that 3 is a robust controller for systems where every part type
requires at most one unreliable resource.

P1

P2

P3

P4

r1 r2 r3

r4 r5

r6

r7 r8

Fig. 6. An example production system with three unreliable resources

R={r1,r2,r3,r4,r5,r6,r7,r8 }
P={P1,P2,P3,P4}
RU={r4,r6,r8}
P1={P11,P12,P13}

T1=r1,r2,r3
P2={P21,P22, P23,P24}

T2=r2,r5,r4,r3
P3={P31,P32,P33}

T3=r5,r7,r8
P4={P41,P42,P43}
T4={r5,r6,r3}

C=C1,C2,...,C8=2,2,2,2,2,2,2,2

www.intechopen.com

Challenges and Paradigms in Applied Robust Control

406

3.3 Robust control using shared resource capacity

The robust supervisory control policies presented in sections 3.1-3.2 assume that that parts

requiring failed resources can be advanced into FD buffer. We refer this type of control

policies as “absorbing” policies. This subsection relaxes this assumption because, in some

systems, providing FD buffer space might be too expensive or it might be desirable to load

the system more heavily with FD parts. A “distributing” type of control policy is developed

and presented in this subsection. This policy distributes parts requiring failed resources

throughout the buffer space of shared resources so that these distributed parts do not block

the production of part types that are not requiring failed resources.

Now, the development of the “distributing“ control policy, namely, RO4 policy is discussed
in details. First, based on the definitions of resource sets in the previous sections, we further

define three resource regions: (1) the region of continuous operation, RCO=RPFDRNFD, (2)
the region of failure dependency, RFD=RFD, and (3) the region of distribution,
ROD=RFD\RU = RFD\RU =RR\RNFD. In the example system in Figure 6, we have RCO=
{r1,r2,r3}; RFD= {r2,r4,r5,r6,r7,r8}; ROD= {r2,r5,r7}. RO4 policy is the conjunction of four modified
RO policies applied to different resource regions. We now define the RO constraints as
follows.
Definition 3.3.1: RORCO is the set of constraints:

, , .

jk g uv h

jk uv g h
P P

st st st g h

z z C C

where z x y r r RCO and g h

 
  

   

 

RORCO admits states that exhibit at most one capacitated resource in RCO.
Definition 3.3.2: RORFD is the set of constraints

, , , .

FD FD
jk g i uv h i

U
jk uv g h i

P P P P

st st st g h

z z C C for r R

where z x y r r RFD and g h

   

   

   

 

RORFD admits states for which at most one resource of RFD is capacitated with PiFD parts for

each riRU. Note that it does not place any constraint on the total number of RFD resources

capacitated.

Definition 3.3.3: RORFD2 is the set of constraints

, , , .

FD FD FD
jk g mn h uv j

jk mn uv g h j

P P P P P P

st st st g h j

z z z C C C

where z x y r r r RFD and g h j

     

    

    

  

RORFD2 admits states for which at most two resources of RFD are capacitated with FD parts,

but does not place any constraint on the total number of RFD resources capacitated.

Definition 3.3.4: ROROD is the set of constraints

, , .

FD FD
jk g uv h

jk uv g h

P P P P

st st st g h

z z C C

where z x y r r ROD and g h

   

  

   

 

www.intechopen.com

Robust Control for Single Unit Resource Allocation Systems

407

ROROD admits states for which at most one resource of ROD=RFD\RU is capacitated with FD

parts, although it places no constraint on the number of unreliable resources that are

capacitated.

As in the example system in Figure 6, the set of constrains are as follows.
RORCO r1r2: z11+z12+z21<4 r2r3: z12+z21+z13+z24+z43<4
 r1r3: z11+z13+z24+z43<4
RORFD r2r4: z21+z23<4 r5r7: z31+z32<4
 r2r5: z21+z22<4 r5r8: z31+z33<4
 r4r5: z23+z22<4 r7r8: z32+z33<4
 r5r6: z41+z42<4

RORFD2 r2r4r5: z21+z23+z22+z31+z41<6 r4r5r6: z23+z22+z31+z41+z42<6
 r2r4r6: z21+z23+z42<6 r4r5r7: z23+z22+z31+z41+z32<6
 r2r4r7: z21+z23+z32<6 r4r5r8: z23+z22+z31+z41+z33<6
 r2r4r8: z21+z23+z33<6 r4r6r7: z23+z42+z32<6
 r2r5r6: z21+z22+z31+z41+z42<6 r4r6r8: z23+z42+z33<6
 r2r5r7: z21+z22+z31+z41+z32<6 r4r7r8: z23+z32+z33<6
 r2r5r8: z21+z22+z31+z41+z33<6 r5r6r7: z22+z31+z41+z42+z32<6
 r2r6r7: z21+z42+z32<6 r5r6r8: z22+z31+z41+z42+z33<6
 r2r6r8: z21+z42+z33<6 r5r7r8: z22+z31+z41+z32+z33<6
 r2r7r8: z21+z32+z33<6 r6r7r8: z42+z32+z33<6
ROROD r2r5: z21+z22+z31+z41<4 r5r7: z22+z31+z41+z32<4
 r2r7: z21+z32<4

We are now in the position to establish that RO4 policy (the conjunction of RORCO, RORFD,

RORFD2, and ROROD), call it supervisor 4, satisfies Property 2.2. Supervisor 4 is a control

policy such that it admits the enabled controllable event α if and only if δ(q,α) satisfies RORCO

 RORFD  RORFD2  ROROD. Formally, it is stated as follows.

Definition 3.3.5: Supervisor 4 = RORCO  RORFD  RORFD2  ROROD.

The intuition behind this control policy is that it ensures that if a shared resource (i.e., a PFD

resource) is filled with FD parts, at least one can be advanced out of the shared resources

and, thus, out of RCO, which can then operate under RORCO. Furthermore, clearing RCO

of this part will not create problems in the FD resources. To summarize, RORFD allows states

with at most one FD resource filled with parts that are FD on the same unreliable resource.

RORFD2 allows states for which at most two FD resources are capacitated with FD parts.

ROROD admits states for which at most one resource of ROD is capacitated with FD parts.

Wang et al. (2008) establish that 4 is a robust controller for systems where every part type

requires at most one unreliable resource.

4. Robust control for product routings with multiple unreliable resources

In Section 3, we develop robust controllers for the single unit resource allocation systems

with multiple unreliable resources. These guarantee that if any subset of resources fails,

parts in the system requiring failed resources do not block production of parts not requiring

failed resources. To establish supervisor correctness, we assume that each part type requires

at most one unreliable resource in its route. We now relax this assumption using a central

buffer and present robust controllers that guarantee robust operation without assumptions

www.intechopen.com

Challenges and Paradigms in Applied Robust Control

408

on route structure. To this end, we will construct new robust controllers in conjunction with

the robust controllers, 1 and 2, developed in Subsection 3.1. The following three

subsections will demonstrate the way we use a central buffer to extend 1 and 2 for systems

where parts may require multiple unreliable resources.

4.1 Route partitioning algorithm

We now show how to use a central buffer to extend 1 and 2 for systems where parts may

require multiple unreliable resources. We partition routes with multiple unreliable resources

into subroutes, each of which contains one unreliable resource. A part in the last stage of a

subroute can move to the first resource of the succeeding subroute or into the central buffer.

With this partition, the system resembles one with at most one unreliable resource per route,

allowing us to apply 1 and 2.

The route partitioning algorithm (RPA) performs this operation. It starts with the last stage

and builds the subroute backwards. A subroute is extended until two unique unreliable

resources are detected. Then, a new subroute is begun. We demonstrate below on P1 of

Figure 7.

Route Partitioning Algorithm (RPA)

Algorithm Notation: j, q, u are indices and counters;  is the empty list;  is a temporary set.

for j=1…|P|

 let u=|Pj|, q=1, SPj1=, =

 while u0

 (a) if (Pju)RU\, ={(Pju)}

 (b) if ||2, SPjq=push(Pju,SPjq), u=u1
(Note: The function ‘push’ takes two parameters, an object and an ordered list of objects, and
inserts the object into the head of the list.)

 (c) else =, q=q+1, SPjq=
 end while

 NSj = q (Number of Segments for Pj)

For j=1, u=|P1|=8, q=1, SP11=, =. Then, (P18)=r1RU\ ={r2,r4,r5,r7}, execute (b):

SP11=P18, u = 7.

Next, (P17)=r7RU\={r2,r4,r5,r7}, execute first if: ={r7}={r7}. Since ||<2, execute (b)

SP11= P17,P18, u=6.

Next, (P16)=r6RU\={r2,r4,r5}, execute (b): SP11= P16,P17,P18 and u=5.

Next, (P15)=r5RU\={r2,r4,r5}, execute (a): ={r5}={r5,r7}. Since ||=2, execute (c):

=, q=2, SP12=. This completes the first subroute SP11=P16,P17,P18.
Next, u=5, (P15)=r5RU\={r2,r4,r5,r7}, execute (a): ={r5}={r5}. Since ||<2, execute (b):

SP12=P15, u = 4.

Next, (P14)=r4RU\={r2,r4,r7}, execute (a): ={r4}={r4,r5}. Since ||=2, execute (c):

=, q=3, SP13=. This completes the second subroute SP12=P15.
Continuing as shown, RPA partitions P1 into four subpart types (the remaining two are

SP13=P13,P14 and SP14= P11, P12) with subroutes TS11=r6,r7,r8, TS12=r5, TS13=r3,r4, and

TS14=r1,r2. Note that each subroute requires at most one unreliable resource, although the

frequency of that resource is not limited. RPA does not affect part types whose routes

require at most one unreliable resource.

www.intechopen.com

Robust Control for Single Unit Resource Allocation Systems

409

The maximum number of iterations of the RPA while loop is bounded by the number of part

type stages, and thus RPA is no worse than O(CRL=PjP|Pj|), which is polynomial in
cumulative route length (CRL).

4.2 Central buffer constraints

The central buffer (CB) will be used to clear workstation buffer space of failure-dependent
parts that have finished a subroute. If such parts have completely finished their original
routes, they exit the system. Otherwise, they must have available space in the CB. This will
ensure that they do not block the production of other part types.
For example, suppose the system of Figure 7 is in a state as follows: r7 is failed with p17
waiting for processing; r5 is holding a completed p15; and r4 is holding a completed p14.
Because of the blocking effect of p14 and p15, it is not possible to produce all other part types.
However, if we relocate p14 and p15 to the CB, the system can continue producing P2, P3, and
P4. CB constraints are necessary to achieve this. For P1, we state the linear inequality:

(x11+y11)+(x12+x12+y12)+(x13+y13)+(x14+x14+y14)+(x15+x15+y15)  B1, where xjk and yjk are the

number of finished and unfinished pjk’s at (Pjk), xjk is the number of finished pjk’s relocated
to the CB, and Bj the CB space reserved for Pj.

Fig. 7. Example with four unreliable resources

With this constraint, finished parts p12, p14, and p15, for subpart types SP14, SP13, and SP12,
respectively, can be moved to the CB. Thus, in the example, we can transfer the finished p14
and p15 to the CB, allowing P2, P3, and P4 to continue production. In the meantime, we

decrement x14 and x15 by 1, and increment x14 and x15 by 1. As an aside, we decrement x14

by 1 and increment y15 by 1 when p14 advances from the CB into the buffer of r5.

We now state the CB constraint, CBC. Let P*={Pj:PjP  |TjRU|  1} be the set of part types
that require multiple unreliable resources, and B the total capacity of the CB. For a part type

PjP*, let

jk j j1 jk j

jk jkj jk
P P \SP P LP

yZ ()x x
 

    

R={r1,r2,r3,r4,r5,r6,r7} P={P1,P2,P3,P4}
RU={r2,r4,r5,r7}

P1={P11,P12,...,P18} T1=r1,r2,r3,r4,r5,r6,r7,r1
P2={P21,P22,...P25} T2=r1,r3,r4,r6,r1
P3={P31,P32,...,P3,11} T3=r1,r5,r3,r2,r3,r5,r3,r5,r6,r7,r1
P4={P41,P42,P43,P44} T4={r1,r6,r3,r1}

C=C1,C2,...,C7=1,1,1,1,1,1,1

P1

P3

P2

P4

r1

r2

r3

r4r5

r6

r7

Central Buffer

www.intechopen.com

Challenges and Paradigms in Applied Robust Control

410

where LPj is the set of “last” part type stages in the subparts of Pj (except SPj1, the final stage
of Pj). For example, LP1={P12,P14,P15} and LP3 = {P32,P34,P36,P38}. In general,

_
j j j j j2NS NS NS NSj j j j

j j,| | j,| | | | j,| | ... | |SP SP SP SP SP, , , ,1
{ , ,..., }LP P P P   .

Zj keeps track of the total number of instances of part type stages of PjP* that are in the
system. CBC is defined as:

j

j jjj
* P P

* () BZ P P B(i) B , ii


  

CBC ensures that every part in the system requiring multiple unreliable resources has
capacity reserved on the CB. CBC has no more than CRL*|P| constraints and thus checking
CBC computation is no worse than O(CRL*|P|), which is polynomial in stable measures of
system size.
The level of Bj for PjP* can be fixed, in which case Bj does not change; or state-based, where
we periodically reallocate CB across all PjP*. Although we cannot preempt CB space from
parts that have it reserved, we can reallocate CB space that is not reserved. One simple
approach is to let Bj=Zj as long as (ii) holds. This represents a first-come-first-serve rule.
Alternatively, we can solve the following assignment problem:

 min
|P*|B

ij ij
j 1i 1

C X

 (1)

 st. Bj =
B

ij
i 1

X

 , j=1...|P*| (2)

 Zj 
B

ij
1

X
i
 , j=1...|P*| (3)

|P*|B

ij
j 1i 1

X B


 (4)

ijX {0,1} 

, i=1...B, j=1...|P*| (5)

Here, Xij is 1 if the ith unit of CB is assigned to PjP*, 0 otherwise. The objective (1)
minimizes assignment cost; (2) counts the assignment to each PjP*; (3) assures no
preemption from parts in the system; and (4) assures the CB is not over allocated. Cij is the
cost of assigning CB space to PjP*. This cost could reflect production priorities or failure
probabilities. This problem can be solved in polynomial time using the Hungarian
Algorithm (Papadimitriou, 1982). The solution frequency is a topic for future research.

4.3 Robust controllers with CBC

We now define two supervisory controllers. The first is the conjunction of 1 and CBC; and

the second is the conjunction of 2 and CBC. Recall that 1 and 2 are the controllers of
Subsection 3.1. Formally, the extended supervisors are stated as follows.

www.intechopen.com

Robust Control for Single Unit Resource Allocation Systems

411

Definition 4.3.1: Supervisor 5 = 1  CBC.

Definition 4.3.2: Supervisor 6 = 2  CBC.
The following theorems establish that these supervisors ensure robust operation.

Theorem 4.3.1: 5 is robust to failure of RU.
Proof: The structure of the proof is as follows. We assume the system to be in an admissible
state with parts requiring multiple unreliable resources, with some failed. We show that
these parts can advance into the CB or into the buffer space of failure-dependent resources,

where they do not block production of parts not requiring failed resources. Let PjP*. The
subpart types of Pj constructed by RPA are {SPj,NSj,SPj,(NSj-1),…,SPj1}. Assume that in the

current state, q, unreliable resources in the subroutes of Pj have failed and that q satisfies 5.

In the following, we want to show that under 5 parts of type Pj do not block other part
types from producing. We ignore parts of type Pj in the final subroute since it is covered by

1. That is, 1 guarantees that parts in the final subroute can be advanced into the buffer
space of the last resource and completed and removed from the system if the resource is
operational or stored there, out of the way of part types not requiring failed resources, if it is
not.

Let qj={pjk | Pjk  SPjq, q = NSj, (NSj1),…,2} be the set of parts of Pj in the state q. Let

qj={pjk | Pjk  LPj} be the set of parts of Pj in the final stage of a subroute. By the definition

of LPj, qj  qj. Now, 1 guarantees that all parts in qj\qj can be advanced, perhaps

through several processing steps, into the buffer spaces of resources required by stages of

LPj. That is, 1 guarantees a sequence of part movements such that the system reaches a new

state, say t, where tj=tj. In state t, all instances of Pj are at the end of a subroute.

The left hand side of CBC does not change in moving from state q to state t. To see this, note

that CBC is only affected by parts in P*. Since we allow no new parts to be admitted and no

part of P* is required to move from one subroute to another (only to the end of the current

subroute), the left-hand-side of CBC does not change magnitude. Thus, the part

advancement under 1 does not violate CBC.Now, CBC guarantees that every part of tj has

capacity reserved on the CB, and any finished part of this set can be moved to the CB.

Further, any unfinished part of tj can be finished and moved to the CB if its resource is

operational. If the associated resource is not operational, the part can be stored at its failed

resource where it will not block the production of part types not requiring failed resources.

Thus, all operational resources can be cleared of parts of type Pj. Under 1, the resulting

state is a feasible initial state if resource repairs or additional failures occur.

Theorem 4.3.2: 6 is robust to failure of RU.
Proof: The proof follows the same construction as Theorem 4.3.1. The main difference is in

how BA and SSLA operate. Thus, 5 and 6 guarantee robust operation for systems where
parts can require multiple unreliable resources. Note that if every resource is unreliable,
both theorems continue to hold.

5. Conclusion and future research

Supervisory control for manufacturing systems resource allocation has been an active area of
research. Significant amount of theories and algorithms have been developed to allocate
resources effectively and efficiently, and to guarantee important system properties, such as
system liveness, traceability, deadlock-free operations. However, a major assumption these
research works are based on is that resources never fail. While resource failures in automated

www.intechopen.com

Challenges and Paradigms in Applied Robust Control

412

manufacturing systems are inevitable, we investigate such system behaviours and control
dynamics. First, we developed the notion of robust supervisory control for automated
manufacturing systems with unreliable resources. Our objective is to allocate system buffer
space so that when an unreliable resource fails the system can continue to produce all part
types not requiring the failed resource. We established properties that such a controller must
satisfy, namely, that it ensure safety for the system given no resource failure; that it constrain
the system to feasible initial states in case of resource failure; that it ensure safety for the
system while the unreliable resource is failed; and that during resource repair it constrain the
system to states that will be feasible initial states when the repair is completed.
We then developed a variety of control policies that satisfy these robust properties.

Taxonomy for Future Research Directions

System Structure S1 at most one unreliable resource for each part type
 S2 random number of unreliable resources for each part type

Central Buffer Capacity C1 without central buffer
 C2 with central buffer

Flexible Routing FR1
every part type stage can be performed by exactly one
resource

 FR2
every part type stage can be performed by exactly two
resources

 …

 FRj
every part type stage can be performed by exactly j
resources

Robustness Level RB1 no resource failures
 RB2 at most one resource failure at any time
 RB3 at most two resource failures at any time
 …
 RBi at most i resource failures at any time

Unreliable Resource
Condition

RC1 unreliable resources fail at any time

 RC2 unreliable resource failure characteristics can be estimated

Application Areas AA1 Manufacturing Systems

 AA2 Business Processes and Workflow Management

 AA3 E-Commerce

 AA4 Supply Chain Management

 AA5 Internet Resource Mangement

 AA6 Transporation Systems

 AA7 Healthcare Systems

Table 1. Taxonomy for future research directions

Specifically, supervisory controllers 1-4 are for systems with multiple unreliable resources

where each part type requires at most one unreliable resource. Supervisory controllers 5-6

control systems for which part types may require multiple unreliable resources. Another

classification of the controllers is based on the underlying control mechanism: controllers 1-

3 ‘absorb’ all parts requiring failed resources into the buffer space of failure-dependent

www.intechopen.com

Robust Control for Single Unit Resource Allocation Systems

413

resources, controller 4 distribute’ parts requiring failed resources among the buffer space of

shared resources, and controllers 5-6 utilize central buffer to achieve robust operations.

These robust controllers assure different levels of robust system operation and impose very

different operating dynamics on the system, thus affecting system performance in different

ways. An extensive simulation study has been conducted and a set of implementation

guidelines for choosing the best robust controller based on manufacturing system

characteristics and performance objectives are developed in Wang et al. (2009).

A taxonomy is developed and presented in Table 1 to help guide future research in the area
of robust supervisory control. By combining the different system structures, the
presence/absence of central buffer, flexible routing capability, system robust level
requirements, and unreliable resource failure characteristics, a significant amount of future
research and development need to be done to address a variety of system control and
performance requirements. And, although automated manufacturing systems are the
context in which we develop the robust supervisory control research. We expect to expand
our research to other application areas due to the similarity in resource allocation
requirement and complexity in workflow management. The robust controllers we
developed so far only address a small subset of the research taxonomy. For example,

controller 1 falls in the category in the taxonomy of (S1, C1, FR1, RB2, RC1, AA1).
Especially, it would be interesting and challenging to develop supervisory control policies
for systems with flexible routing and for systems where the failure characteristics of
resources are dynamically evolving and can be estimated through sensor monitoring and
degradation modelling.

6. References

Chew, S. & Lawley, M. (2006). Robust Supervisory Control for Production Systems with
Multiple Resource Failures. IEEE Transactions on Automation Science and Engineering,
Vol.3, No.3, (July 2006), pp. 309-323, ISSN 1545-5955

Chew, S.; Wang, S. & Lawley, M. (2008). Robust Supervisory Control for Product Routings
with Multiple Unreliable Resources. IEEE Transactions on Automation Science and
Engineering, Vol.6, No.1, (January 2009), pp. 195-200, ISSN 1545-5955

Chew, S.; Wang, S. & Lawley, M. (2011). Resource Failure and Blockage Control for
Production Systems. International Journal of Computer Integrated Manufacturing,
Vol.24, No.3, (March 2011), pp. 229-241, ISSN 0951-192X

Cormen, T.; Leiserson, C. & Rivest, R. (2002). Introduction to Algorithms (Second Edition),
McGraw-Hill, ISBN 0072970545, New York, USA

Ezpeleta, J.; Tricas, F.; Garcia-Valles, F. & Colom, J. (2002). A Banker's Solution for Deadlock
Avoidance in FMS with Flexible Routing and Multiresource States. IEEE
Transactions on Robotics and Automation, Vol.18, No.4, (August 2002), pp. 621–625,
ISSN 1042-296X

Habermann, A. (1969). Prevention of System Deadlocks. Communications of the ACM, Vol.12,
No.7, (July 1969), pp. 373–377, ISSN 0001-0782

Hsieh, F. (2004). Fault-tolerant Deadlock Avoidance Algorithm for Assembly Processes.
IEEE Transactions on Systems, Man and Cybernetics, Part A, Vol.34, No.1, (January
2004), pp. 65-79, ISSN 1083-4427

www.intechopen.com

Challenges and Paradigms in Applied Robust Control

414

Lawley, M. (1999). Deadlock Avoidance for Production Systems with Flexible Routing. IEEE
Transactions on Robotics and Automation, Vol.15, No.3, (June 1999), pp. 497-510, ISSN
1042-296X

Lawley, M. (2002). Control of Deadlock and Blocking for Production Systems with
Unreliable Resources. International Journal of Production Research, Vol.40, No.17,
(November 2002), pp. 4563-4582, ISSN 0020-7543

Lawley, M. & Reveliotis, S. (2001). Deadlock Avoidance for Sequential Resource Allocation
Systems: Hard and Easy Cases. International Journal of Flexible Manufacturing
Systems, Vol.13, No.4, (October 2001), pp. 385-404, ISSN 0920-6299

Lawley, M.; Reveliotis, S. & Ferreira, P. (1998). Application and Evaluation of Banker’s
Algorithm for Deadlock-free Buffer Space Allocation in Flexible Manufacturing
Systems. International Journal of Flexible Manufacturing Systems, Vol.10, No.1,
(February 1998), pp. 73–100, ISSN 0920-6299

Lawley, M. & Sulistyono, W. (2002). Robust Supervisory Control Policies for Manufacturing
Systems with Unreliable Resources. IEEE Transactions on Robotics and Automation,
Vol.18, No.3, (June 2002), pp. 346-359, ISSN 1042-296X

Papadimitriou, C. (1982). Combinatorial Optimization: Algorithms and Complexity, Prentice-
Hall, ISBN 0486402584, New Jersey, USA

Park, S. & Lim, J. (1999). Fault-tolerant Robust Supervisor for Discrete Event Systems with
Model Uncertainty and Its Application to a Workcell. IEEE Transactions on Robotics
and Automation, Vol.15, No.2, (April 1999), pp. 386–391, ISSN 1042-296X

Ramadge, P. & Wonham, W. (1987). Supervisory Control of a Class of Discrete Event
Processes. SIAM Journal on Control and Optimization, Vol.25, No.1, (March 1985), pp.

206230, ISSN 0363-0129
Reveliotis, S. (1999). Accommodating FMS Operational Contingencies through Routing

Flexibility. IEEE Transactions on Robotics and Automation, Vol.15, No.1, (February
1999), pp. 3–19, ISSN 1042-296X

Reveliotis, S. (2000). Conflict Resolution in AGV Systems. IIE Transactions, Vol.32, No.7, (July
2000), pp. 647-659, ISSN 0740-817X

Wang, S.; Chew, S. & Lawley, M. (2008). Using Shared-Resource Capacity for Robust
Control of Failure-Prone Manufacturing Systems. IEEE Transactions on Systems, Man
and Cybernetics, Part A, Vol.38, No.3, (May 2008), pp. 605-627, ISSN 1083-4427

Wang, S.; Chew, S. & Lawley, M. (2009). Guidelines for Implementing Robust Supervisors in
Flexible Manufacturing Systems. International Journal of Production Research, Vol.47,
No.23, (December 2009), pp. 6499-6524, ISSN 0020-7543

www.intechopen.com

Challenges and Paradigms in Applied Robust Control

Edited by Prof. Andrzej Bartoszewicz

ISBN 978-953-307-338-5

Hard cover, 460 pages

Publisher InTech

Published online 16, November, 2011

Published in print edition November, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The main objective of this book is to present important challenges and paradigms in the field of applied robust

control design and implementation. Book contains a broad range of well worked out, recent application studies

which include but are not limited to H-infinity, sliding mode, robust PID and fault tolerant based control

systems. The contributions enrich the current state of the art, and encourage new applications of robust

control techniques in various engineering and non-engineering systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Shengyong Wang, Song Foh Chew and Mark Lawley (2011). Robust Control for Single Unit Resource

Allocation Systems, Challenges and Paradigms in Applied Robust Control, Prof. Andrzej Bartoszewicz (Ed.),

ISBN: 978-953-307-338-5, InTech, Available from: http://www.intechopen.com/books/challenges-and-

paradigms-in-applied-robust-control/robust-control-for-single-unit-resource-allocation-systems

© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

