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1. Introduction 

Supervisory control for deadlock-free resource allocation has been an active area of 

manufacturing systems research. Most work, however, assumes that allocated resources do 

not fail. Little research has addressed allocating resources that may fail. Automated 

manufacturing systems have many types of components that may fail unexpectedly. We 

develop robust controllers for single unit resource allocation systems with unreliable 

resources (Chew et al., 2008; Chew et al., 2011; Chew & Lawley, 2006; Lawley, 2002; Lawley 

& Sulistyono, 2002; Wang et al., 2008; Wang et al., 2009). These controllers guarantee that 

when unreliable resources fail, parts requiring failed resources do not block the production 

of parts not requiring failed resources. Further, while resources are down, the system is 

controlled so that when repair events occur, the system is in a safe and admissible state. 

There is little manufacturing research literature on robust supervision. Reveliotis (1999) 

considers the case where parts requiring a failed resource can be re-routed or removed from 

the system through human intervention. Park & Lim (1999) address existence questions for 

robust supervisors. Hsieh (2004) develops methods that determine the feasibility of 

production given a set of resource failures modelled as the extraction of tokens from a Petri 

net. In contrast, our work models the failure of the workstation server while assuming that 

buffer space remains accessible after the failure event. We assume that when the server of a 

workstation fails, we can continue allocating its buffer space up to capacity, but that none of 

the waiting parts can be processed and thus cannot proceed along their routes until the 

server is repaired. We further assume that server failure does not prevent finished parts 

occupying the workstation’s buffer space from being moved away from the workstation and 

proceeding along their routes. Finally, we assume that server failure does not damage or 

destroy the part being processed and that failure can only occur when the server is working. 

The last two assumptions are made for notational efficiency and presentation clarity. They 

can be easily relaxed by adding appropriate events and state variables to our treatment. 

Our objective is to control the system so that failure of an unreliable resource does not 

prevent processing of parts not requiring the failed resource. When a resource fails, all parts 

in the system requiring the failed resource for future processing are unable to complete until 

the failed resource is repaired. Because these parts occupy buffer space, they can block 

production of parts not requiring the failed resource. Thus, we want to assure that, when 

unreliable resources fail, the buffer space allocation can evolve under normal operation so 
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that parts not requiring failed resources can continue production. Operation must continue 

to obey part routings and must assure that when a failed resource is repaired, the system is 

not in an unsafe state. We refer to supervisors guaranteeing this as robust. 

The remainder of the chapter comprises the following sections. Most briefly, Section 2 

discusses the way we model our systems. An example system is presented in this section to 

motivate properties that robust controllers must possess. In Section 3, we develop robust 

controllers for systems with multiple unreliable resources where each part type requires at 

most one unreliable resource. Specifically, Subsection 3.1 develops two robust controllers 

using a neighbourhood policy, a modified version of banker’s algorithm, and a single step 

look ahead policy. Subsection 3.2 uses a resource order policy to construct another robust 

controller; Subsection 3.3 employs a notion of shared buffer capacity to develop a robust 

controller. Relaxing the restriction, Section 4 builds robust controllers for systems for which 

part types may require multiple unreliable resources. Finally, Section 5 concludes the 

chapter and discusses future research directions. 

2. Modelling of robust control 

There are two subsections in this section. Specifically, we will discuss the way we model our 

systems in Subsection 2.1. Subsection 2.2 will provide examples to motivate properties that 

robust controllers must possess. 

2.1 The discrete event system 

We model our systems using the approach of Ramadge & Wonham (1987). This is necessary 

to define the properties that we want our supervisors to enforce. The following model is 

similar to that developed by Lawley & Sulistyono (2002), but differs in that now we have 

more complex failure scenarios and thus some of the underlying formalism has to be 

generalized. Figure 1 provides an example for the following development. 

The system is defined as a 9tuple vector S = R,C,P,,Q,Q0,,,. In S, R is the set of system 

resource types, with R=RRRU, RRRU=, where RR is the set of reliable resource types, not 

subject to failure and RU is the set of unreliable resource types, subject to failure. Let C=Ci : 

i=1|R| where Ci is the capacity of the buffer space associated with system resource type 

riR. 

The set P of part types is produced by the system with each part type PjP representing an 

ordered set of processing stages, Pj=Pj1Pj|Pj|, where Pjk represents the kth processing stage 

of Pj. Also, let RPjk=PjkPj|Pj| be the residual part stages. We will use pjk to represent a part 

instance of Pjk. Let :PjR such that (Pjk) returns the resource type required by Pjk. Thus, 

the route of Pj is Tj=(Pj1)(Pj|Pj|), and the residual route RTjk=(Pjk)(Pj|Pj|). Finally, 

let i={Pjk:(Pjk)=riR}, the set of part type stages associated with resource riR. 

We will suppose that our resource types are workstations with buffer space for staging and 

storing parts and a processor or server for operating on parts. We will use the standard 

assumption from queuing theory that the server is not idle so long as there are unfinished 

parts in a workstation’s buffer space. The resource units that we are concerned with 

allocating are instances of the workstation’s buffer space. The controllers that we design are 

not intended to allocate the server among parts waiting at the workstation. We assume this 

to be done by some local queuing discipline. 
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Fig. 1. An example system with two unreliable resources 

Workstation failure will imply the failure of the workstation’s server, not any of its buffer 
space. We will assume that when the server of a workstation fails, we can continue to 
allocate its buffer space up to capacity, but that none of the waiting parts can be processed 
and thus cannot proceed along their respective routes until the server is repaired. We 
further assume that server failure does not prevent finished parts occupying the 
workstation’s buffer space from being moved away from the workstation and proceeding 
along their respective routes. Finally, we assume that server failure does not damage or 
destroy the part being processed and that failure can only occur when the server is 
working. 

We are now in a position to define the system states and events. Let Q represent the set of 

system states, where Q  q = svi, yjk, xjk : i=1|R|, j=1|P| and k=1|Pj|, with svi being 

the status of the server of workstation i (0 if failed, 1 if operational), yjk being the number of 

unfinished units of Pjk (parts waiting or in-process) located in the buffer space of (Pjk), and 

xjk being the number of finished units of Pjk located in the buffer space of (Pjk). Q0 is the set 

of initial states with q0Q0 being the state in which no resources are allocated and all servers 

are operational. The dimension of q is | |P
j 1 j|P| |R|2 .   

Let =cu, where c={jk : j=1|P| and k=1|Pj|+1} is the set of controllable events 

with jk representing the allocation of (Pjk) to a part instance of Pjk; that is, jk is the event 

that a part instance of a part type Pj advances into the buffer space of a workstation that will 

perform its kth operation. Then, j,|Pj|+1 represents a finished part of type Pj leaving the 

system. We assume that the supervisor controls the occurrences of these events through 

resource allocation decisions. 

R = {r1, r2, r3, r4, r5, r6, r7, r8, r9} 
RR = {r1, r3, r4, r5, r6, r7, r8} 
RU = {r2, r9} 

C = C1,C2,C3,C4,C5,C6,C7,C8,C9 
 = 1,1,1,2,1,1,1,1,1 
P = {P1, P2, P3, P4} 
P1 = {P11, P12, P13, P14, P15} 

T1 =  r6,   r3,   r2,    r1,   r2 
P2 = {P21, P22, P23, P24, P25, P26, P27, P28} 

T2 =  r2,   r3,    r4,   r6,   r5,   r1,   r2,   r3 
P3 = {P31, P32, P33, P34, P35, P36} 

T3 =  r8,   r7,    r5,   r6,   r9,   r4 
P4 = {P41, P42} 

T4 =  r4,   r5 
c = {1i : i=1...6}{2i : i=1...9} 

  {3i : i=1...7}{4i : i=1...3} 

u1 = {1i : i=1...5}{2i : i=1...8} 

  {3i : i=1...6}{4i : i=1,2} 

u2 = {2,9,2,9} 

{r2} = {1i : i=1...6}{2i : i=1...9} 

  {1i : i=1...5}{2i : i=1...8} 

{r9} = {3i : i=1...7}{3i : i=1...6} 

{r2,r9} = {r2}  {r9} 

r2

r7 r8 

r1 r3 

r4

r5 

r6

r9 

P1

P2

P3

P4
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We have u=u1u2 being the set of uncontrollable events where u1={jk : j=1|P| and 

k=1|Pj|} represents the completion of service for Pjk. Then, u2={i,i : riRU} represents 

the failure (i) and repair (i) of the server of unreliable resource riRU. Service completions, 

failures and repairs are assumed to be beyond the controller’s influence. 

Let :Q2 be a function that, for a given state, returns the set of enabled events. This 

function is defined for a state, qQ, as follows: 

1. For Pj1i, if Ci    0

jk i

jk jk
p Ω

(y x ) ,


  then j1(q). 

Events that release new parts into the system are enabled when space is available on the 
first required workstation in the route. 

2. For Pjki, if yjk0 and svi=1, then jk(q). 
If a part is at service, then the corresponding service completion event is enabled. 

3. For riRU, Pjki and jk(q)  i(q). 
If the server is busy with a part, then the corresponding failure event is enabled. 

4. For riRU, if svi = 0, then i(q) and jk(q) Pjki. 
If the server is failed, the corresponding repair event is enabled and the corresponding 
service completion events are disabled. 

5. For Pjki, 1k|Pj|, if xj,k10 and Ci  0

jk i

jk jk
p Ω

(y x ) ,


  then jk(q). 

When a part finishes its current operation and buffer space becomes available at the 
next required workstation in its route, the event corresponding to advancing the part is 
enabled. 

6. For Pj,|Pj|i, if xj,|Pj|0, then j,|Pj|+1(q). 
If a part has finished all of its operations, the event corresponding to unloading it from 
the system is enabled. 

The state transition function is now defined as follows. The transition function, , is a partial 

function from the cross product Q to the set Q of system states. Specifically, let :QQ 

such that 

(q,jk)=qexj,k1+eyjk, advancing a part pj,k1; 

(q,jk)=qeyjk+exjk, service completion of a part pjk; 

(q,i)=qesvi, failure of server i; 

(q,i)=q+esvi, repair of server i; 

where exj,k1, eyjk, exjk, and esvi are the standard unit vectors with components corresponding 

to xj,k1, yjk, xjk and svi being 1, respectively. Note that, eyj,|Pj|+1 = exj0 = 0, the zero vector with 

the same dimension, and that pj0 represents a raw part of Pj waiting to be released into the 
system. 

We assume that |RU|1. In this case, any subset of the unreliable resources can be 

simultaneously in a failed state. Thus, if one of the  U|R |

i
 subsets of size i, i=1…|RU|, is 

down, we want the remaining resources to continue producing parts not requiring any of 

the failed resources without human intervention to remove or rearrange the parts requiring 

failed resources. Further, when one of the failed resources is repaired, we want production 

of parts requiring that resource to resume. A robust controller must possess certain 

properties in order to accomplish the above-mentioned characteristics. 
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2.2 Motivating examples for properties of robust supervisory control 

This subsection motivates a set of desired properties for a robust controller based upon an 
example production system. Figure 1 presents an example manufacturing system with two 
unreliable resources. The stages, routes, and resource capacities are given, as is the complete 
discrete event model. This model enumerates the resources, capacities, events, and so forth. 
For now, we will constrain our discussion to the system states presented in Figures 2-4. We 
recall that, by definition, a resource allocation state is safe if, starting from that state, there 
exists a sequence of resource allocations/deallocations that completes all parts and takes the 
system to the empty and idle state, the state in which no resources are allocated and no 
servers are busy. Our underlying assumption is that if a resource allocation state is safe, 
then, under correct supervision and starting from that state, it is possible to produce all part 
types indefinitely.  
We have several control objectives for the system of Figure 1. First, we desire that the 
controller guarantee deadlock-free operation, i.e., that it keeps the system producing all part 
types. Second, in the event that r2 fails, we want to continue producing part types not 
requiring r2, {P3,P4}, without having to intervene by clearing the system of parts requiring r2. 
Similarly, in the event that r9 fails, we want to continue producing part types not requiring 
r9, {P1,P2,P4}, again without having to intervene by clearing the system of parts requiring r9. 
Further, if both r2 and r9 are in the failed state, we want to continue producing part types not 
requiring r2 or r9, {P4}, again without explicit intervention. 
Consider for example the state given in Figure 2. This state is safe; however, if r2 fails while 

processing part p27 in this state, the production of both P3 and P4 will be blocked by two p23s 
at r4. Note that if we advance a p23 from r4 to r6, then production of P4 can proceed. 
However, production of P3 will now be blocked. Thus, this state does not satisfy our 
condition that after the failure of r2, we should be able to continue producing both P3 and P4. 
As another example, consider the state of Figure 3. Again, we see that this state is safe. 
However, if r9 fails while processing part p35 in this state, production of part types P1 and P2 
will be blocked by p34 at r6, although the production of P4 is unaffected. 
 

 r1 r2 r3 

r4 

r7 

r5 

r6 

r9 

P1 

P2 

P3 

P4 

r8 

p14 

p27 

p23 

p32 

p23 

 

Fig. 2. An undesirable system state since unreliable resource r2 may fail while processing 
part p27 
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Thus, these examples illustrate that parts requiring a failed resource can prevent the system 

from producing parts not requiring the failed resource through propagation of blocking. 

Our objective is to develop supervisory controllers that avoid this by guaranteeing that if an 

unreliable resource fails, it is possible to redistribute the parts requiring that resource so that 

part types not requiring that resource can continue to produce. 

 

 r1 r2 r3

r4 

r7 

r5

r6

r9

P1 

P2

P3

P4

r8

p34

p35

p23 

p42 

p15 

 

Fig. 3. An undesirable system state since unreliable resource r9 may fail while processing 
part p35 

For the third objective, consider the state of Figure 4. Again, we see that the state is safe. If r2 

fails, production of P3 is blocked by p11 at r6. Further, production of P4 is blocked by p33 at r5. 

We note that by advancing p11 from r6 to its next required resource, r3, the blockages of P3 

and P4 can now be resolved and thus the system can continue producing both P3 and P4, as 

desired. However, when r2 is repaired, the system is no longer safe since resources r2 and r3 

are now involved in deadlock. This illustrates that our controller must guarantee that any 

redistribution of parts requiring the failed resource does not result in system deadlock when 

the resource is repaired. 

The above discussion lays a foundation for a robust supervisory controller. In summary, a 

supervisory controller is said to be robust to resource failures of RU if the supervisory 

controller satisfies Property 2.2. 

Property 2.2: 

2.2.1: The supervisory controller ensures continuing production of part types not 
requiring failed resources, given that additional failures/repairs do not occur. 

2.2.2: The supervisory controller allows only those states that serve as feasible initial 
states if an additional resource failure occurs. 

2.2.3: The supervisory controller allows only those states that serve as feasible initial 
states if a failed resource is repaired and becomes operational. 

We say that a state is a feasible initial state if, starting from that state, it is possible to produce 
all part types not requiring failed resources. The formal development and definition of this 
property using language theory is presented in Chew and Lawley (2006). 
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Fig. 4. An undesirable system state since r2 may fail while processing part p27 

3. Robust control for systems with multiple unreliable resources 

This section endeavours to delve into robust control for single unit resource allocation 
systems with unreliable resources. 

3.1 Robust control using a neighbourhood policy 

This subsection develops controllers that satisfy Property 2.2 above, while maintaining 
polynomial complexity. Each controller is a conjunction of a modified deadlock avoidance 
policy and a set of neighbourhood constraints. The deadlock avoidance policy guarantees 
deadlock-free operation, while the neighbourhood constraints control the distribution of 
parts that require unreliable resources. Subsection 3.1.1 develops the neighbourhood 
constraints, NHC. Subsection 3.1.2 constructs a supervisor based on a modified Banker’s 
Algorithm and NHC, while subsection 3.1.3 develops a supervisor based on single-step 
look-head (SSL) and NHC. The complete proofs can be found in Chew and Lawley (2006).   

3.1.1 A neighbourhood policy 

In this subsection, we discuss neighbourhood constraints based on the notion of failure 
dependency. Informally, a resource is failure-dependent if every part that enters its buffer 
space requires some future processing on an unreliable workstation. Thus, all unreliable 
resources are failure-dependent. Some reliable resources may also be failure-dependent if 
they only process parts that require future processing on an unreliable resource. This is 
defined more precisely later. For each failure-dependent resource, we generate a 
neighbourhood. The neighbourhood of a failure-dependent resource is a virtual space of 
finite capacity that is used to control the distribution of parts requiring that failure-
dependent resource. Again, this is formalized in the following, where we extend the 
neighbourhood concepts presented by Lawley & Sulistyono (2002) for systems with 
multiple unreliable resources. We first discuss and illustrate neighbourhood concepts, and 
then illustrate how neighbourhood constraints are constructed for failure-dependent 
resources. 

r1 r2 r3

r4

r7 

r5 

r6

r9

P1 

P2

P3

P4

r8

p27

p11 

p41

p33 
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Recall that RU is the set of unreliable resources in the system S, and that i={Pjk:(Pjk)=riR} 

is the set of part type stages supported by resource ri. If riRU, then rvR is said to be failure-

dependent on ri if Pjkv, Pj,k+ci with c0. In other words, rv is failure-dependent on ri if 

every part that enters the buffer of rv requires future processing on unreliable resource ri 

(note that ri is failure-dependent on itself). For riRU, let i
FDR = {rv : rvR and Pjkv, 

Pj,k+ci with c0} be the set of failure-dependent resources on ri, and let RFD  

=
u

i

FD
i

r R
R


 and RNFD = R \ RFD. 

For each failure-dependent resource of i
FDR , we construct a neighbourhood. The 

neighbourhood of rv  i
FDR , viNH , is defined as the set of part type stages that require rv 

now or later in their processing and have no intervening failure-dependent resources of 

i
FDR . Formally, viNH = v  {Pjk: c0 with Pj,k+cv and d[0,c), (Pj,k+d)  i

FDR }. Thus, 

if (Pj,k+c) = rv  i
FDR , (Pj,k1) = rw  i

FDR , with rvrw, and {(Pjk), (Pj,k+1)…(Pj,k+c1)}  

i
FDR = , then {Pjk,Pj,k+1 … Pj,k+c1,Pj,k+c}  viNH , and Pj,k1  viNH . Let iNH = { viNH : 

rv i
FDR } be the neighbourhood set for riRU, and let NH={ iNH : riRU}. 

For example, the system of Figure 1 has two unreliable resources, RU={r2,r9}. Note that 

anytime r1 appears in a route, r2 appears later in the route, and thus, 2FDR = {r1,r2}. Also, 

anytime r7 or r8 appear in a route, r9 appears later in the route, so, 9FDR = {r7,r8,r9}. Thus, 
2NH = { 2

1NH , 2
2NH } and 9NH ={ 9

7NH , 9
8NH , 9

9NH }, where the neighbourhoods are as 

follows: 2
1NH ={P14,P22,P23,P24,P25,P26}, 2

2NH = {P11,P12,P13,P15,P21,P27}, 9
7NH = {P32},  

9
8NH = {P31}, 9

9NH = {P33,P34,P35}. 

To understand this construction, consider 2
1NH  and 2

2NH . Note that 1= {P14,P26} and 

2={P13,P15,P21,P27}. Since v  viNH , {P14,P26}  2
1NH , and {P13,P15,P21,P27}  2

2NH . Now 

consider T1 = {(P11),(P12),(P13),(P14),(P15)} = {r6,r3,r2,r1,r2}. Since {r6,r3}  2FDR  = , 

{P11,P12}  2
2NH . Similarly, T2 = {(P21),(P22),(P23),(P24),(P25),(P26),(P27),(P28)} = 

{r2,r3,r4,r6,r5,r1,r2,r3}. Since {r3,r4,r6,r5}  2FDR = , {P22,P23,P24,P25}  2
1NH . Thus, we get 2

1NH  

= {P14,P22,P23,P24,P25,P26} and 2
2NH  = {P11,P12,P13,P15,P21, P27}. 

Although all parts supported by r6 later need an unreliable resource, r6 is shared by r2 and r9, 

and thus it is not failure-dependent on either. This implies that failure-dependent sets are 

disjoint, i.e., 2FDR  9FDR = . Furthermore, we observe that no part stage is in more than 

one neighbourhood, i.e., 2
1NH  2

2NH  9
7NH  9

8NH  9
9NH = . These and other 

important neighbourhood properties are established in Chew and Lawley (2006). 

We restrict the number of parts allowed in a neighbourhood. Our intention is to guarantee 

that every part in the neighbourhood of a failure-dependent resource has capacity reserved 

at that resource. That is, we want to be able to advance every part requiring an unreliable 

resource into its associated failure-dependent resource in the event of a resource failure so 

that it will not block production of parts not requiring the failed resource. In the example, 

for a permissible state, we want, for example, every part in 9
9NH = {P33,P34,P35} to have a 

reserved unit of buffer at r9. As a consequence, we will reject a state if this constraint is 

violated. For instance, a state is not admissible if, at this state, the sum of parts in 9
9NH  1; 

recall that r9 has a single unit of capacity. To see this, at this inadmissible state, if r9 fails, at 

least one part of 9
9NH  must reside at r5 or r6. Although P1, P2, and P4 do not require failed r9 

in their processing, this distribution of parts may in turn block production of some of these 

part types. Our objective is to develop supervisory controllers capable of rejecting these 

undesirable states. 
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We now construct neighbourhood constraints to enforce the above intention. The constraint 

for a neighbourhood, say viNH , is an inequality of the form viZ  ≤ Cv where viZ  

=
i
vjk

jkjk
NHP

)y(x .


  Recall that xjk is the number of finished instances, and yjk is the number 

of unfinished instances, of Pjk located in the buffer of (Pjk); and that the right hand side Cv is 

the capacity of rv. viNH  is said to be capacitated if viZ = Cv and over-capacitated if viZ  Cv. 

Define the set of all possible neighbourhood constraints with respect to riRU as: 

1

iNHC = { viZ ≤ Cv : viNH  iNH }. 

In the example, we have 

21NHC  = { 21Z 
2

jk 1

jkjk
NHP

)y(x


  C1, 2
2Z 

2
jk 2

jkjk
NHP

)y(x


  C2}; 

91NHC = { 9
7Z 

9
jk 7

jkjk
NHP

)y(x


  C7, 98Z   
9

jk 8

jkjk
NHP

)y(x


  C8,  

 9
9Z   

9
jk 9

jkjk
NHP

)y(x


  C9}. 

Constraints of 
1

iNHC assure that no neighbourhood of iNH  becomes over-capacitated. 

As Lawley & Sulistyono (2002) discuss, 
1

iNHC  may induce deadlock among failure-

dependent resources of i
FDR , since if all neighbourhoods are capacitated, parts cannot 

move from one neighbourhood to another without over-capacitating a neighbourhood. In 

the example, a state may satisfy both 1= 21Z  C1=1 and 1= 2
2Z  C2=1. But, a part moves from 

one of these associated neighbourhoods to another must over-capacitate the other 

neighbourhood. To resolve this dilemma, we develop an additional set of constraints, 

2
iNHC . 

It is first necessary to compute the set of strongly connected neighbourhoods for 
2

iNHC . 

To do this, for each riRU, we construct a directed graph ( iNH , iA ) where iA = 

{( igNH , i
hNH ) : Pjk igNH  with Pj,k+1 i

hNH }. Thus, in operation, there will be part flow 

from igNH to i
hNH . We then compute the set of strong components of ( iNH , iA ) using 

standard polynomial graph algorithms (Cormen et at., 2002). For example, we see that 2
1NH  

and 2
2NH  are strongly connected, since {P14,P26}  2

1NH  and {P13,P27}  2
2NH . Therefore, in 

operation, there is flow from 2
1NH  to 2

2NH  and from 2
2NH to 2

1NH . Let iSC  be the set of 

strongly connected components of ( iNH , iA ). Then, 2SC = { 2
1SC = { 2

1NH , 2
2NH }}, and 

9SC = { 9
1SC ={ 9

7NH }, 9
2SC ={ 9

8NH }, 9
3SC ={ 9

9NH }}. Then, 
2
iNHC is stated as follows: 

2
iNHC = { igZ  + h

iZ  < Cg + Ch : { igNH , h
iNH } imSC  iSC , m=1… iSC| | }. 

Hence, for every strongly connected component of ( iNH , iA ), 
2
iNHC guarantees that at 

most one neighbourhood can be capacitated at a time. In the example, we have the 

following: 
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22NHC = { 21Z + 2
2Z < C1+C2}, 9

2NHC = . 

22NHC guarantees that 2
1NH  and 2

2NH  are not simultaneously capacitated. 

To summarize, iNHC =
1

iNHC 
2
iNHC guarantees that no neighbourhood is over 

capacitated, and that neighbourhoods with mutual flow dependencies are not 

simultaneously capacitated. The complete set of neighbourhood constraints is defined as: 

NHC = { iNHC : riRU}. 

Note that in the worst case, we generate one constraint for each pair of resources and thus 

the size of NHC is of O(|R|2). 
Chew and Lawley (2006) establish several important properties of NHC. These properties 
are required to establish robustness of the two supervisors that we develop later. We next 
modify two deadlock avoidance policies that we use in conjunction with NHC to develop 
robust supervisors. 

3.1.2 Banker’s algorithm 

In this subsection, we configure Banker’s Algorithm (BA) (Habermann, 1969) to work with 

NHC. BA is perhaps the most widely known deadlock avoidance policy (DAP), and its 

underlying concepts have influenced the thinking of numerous researchers. BA is a 

suboptimal DAP in the sense that it achieves computational tractability by sacrificing some 

safe states. BA avoids deadlock by allowing an allocation only if the requesting processes 

can be ordered so that the terminal resource needs for the ith process, Pi, in the ordering can 

be met by pooling available resources and those released by completed processes P1, P2  

Pi1. The ordering is essentially a sequence in which all processes in the system can complete 

successfully. BA is of O(mnlog n) where m is the number of resource types and n is the 

number of requests. Other manufacturing related work also uses BA (Ezpeleta et al., 2002; 

Lawley et al., 1998; Reveliotis, 2000). 

Our modifications are straightforward and are a generalization of those undertaken by 
Lawley & Sulistyono (2002). Our objective is to search for an ordering of parts that advances 
failure-dependent parts (those requiring unreliable resources) into the resource of their 

current neighbourhood, and non-failure-dependent parts (those not requiring unreliable 
resources) out of the system. Again, the ordering is such that the resources required by the 
first part are all available, those required by the second part are all available after the first 

part has finished and released the resources held by the part, and so forth. If the system can 
be cleared in this way (all failure-dependent parts are advanced into failure-dependent 
resources and all non-failure-dependent parts are advanced out of the system), then we can 
guarantee that if any unreliable resource fails, the system can continue producing parts that 

do not require this failed resource. 

In the following, let =NFDFD be the set of part type stages instantiated in q whose parts 

hold non-failure-dependent resources, where NFD is the set of non-failure-dependent part type 

stages (those that do not require failure-dependent resources in the residual route) and FD 

is the set of failure-dependent part type stages (those that do require failure-dependent 

resources in the residual route). We now present our modified version of BA as Algorithm 

A1 as follows. 
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Step 1 of the algorithm configures the data structures required. For every part type stage 
represented in the system, these capture the current resource holding and the future 
processing need. These structures also capture the resource availability of resources in the 
state being tested. Three additional comments regarding the algorithm are in order. First, 
the need for every failure-dependent resource is explicitly set to zero, so this version looks 
only at the availability of non-failure-dependent resources. Second, for non-failure-
dependent part type stages (those not requiring unreliable resources), the need for every 
resource in the residual route (except the one held) is set to one. Finally, for failure-
dependent part type stages (those requiring unreliable resources), the need for every 
resource in the residual route (except the one held) up to the one immediately preceding the 
first encountered failure-dependent resource is set to one, all others are set to zero. Note that 
these are the resources such a part will need to advance into the failure-dependent resource 
of its current neighbourhood. Step 2 then executes the usual Banker’s logic. 
Algorithm A1 is not correct by itself, since it does not handle allocation of failure-dependent 
resources (for detailed examples the reader is referred to the work by Lawley & Sulistyono 
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(2002)). However, A1 and NHC together form a robust controller, that is, if we allow the 
system to visit only those states acceptable to both A1 and NHC, then the system operation 
will satisfy the requirements of Property 2.2. The detailed proofs for this are given in Chew 
and Lawley (2006). The supervisor is defined as follows: 

Definition 3.1.1: Supervisor 1 = A1  NHC. 

Supervisor 1 permits a system state that satisfies both A1 and NHC in runtime. Consider 
Figure 5, which illustrates a state, say q, in which r4 holds p23 and p14; and r5 holds p33. It is 
clear, at q, that there exists an admissible sequence by A1; that is, p33 can advance into 
failure-dependent resource r9; p23 can advance into failure-dependent resource r1; and 
finally, p41 can be advanced out of the system. In addition, q satisfies NHC since 

2
1NHC = { 21Z  1  1, (there is one P23)   2

2Z   0  1}; 

9
1NHC = { 9

7Z   0  1,  98Z    0  1,   9
9Z    1  1 (there is one P33)}; 

22NHC = {1 + 0 < 1 + 1 = 2}; 92NHC = . 

Therefore, q is an admissible state by 1. Supervisor 1 will prohibit, at q, advancing p23 into 

r6 (where it becomes p24) because p24 and p33 will block, causing the resulting state to violate 

A1 although not NHC. Loading a p11 into r6 at q is also precluded by 1 since the resulting 

state violates
2
2NHC , although not A1. However, advancing p33 one step into r6 or loading a 

p31 into r8 will result in an admissible state. 
 

 

Fig. 5. An admissible system state by supervisor 1 

Supervisor 1 is of polynomial complexity since both A1 and NHC require polynomial time 

for runtime implementation. Chew and Lawley (2006) formally establish that 1 yields a 

robust supervisor for systems where every part type requires in its route at most one 

unreliable resource. 

r1 r2 r3

r4 

r7 

r5 

r6 

r9 

P1 

P2

P3

P4

r8 

p23 
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3.1.3 A Single step look ahead policy 

It is well known that certain system structures, such as a central buffer, input/output bins, 
and non-unit buffer capacities, eliminate the possibility of deadlock-free unsafe states 
(Lawley & Reveliotis, 2001). In these systems, every state is either deadlock or safe, and 
therefore, a single-step look-ahead policy (SSL) is a correct and optimal deadlock avoidance 
policy. Further, it is of polynomial complexity, and thus ideal for runtime applications in 
real systems. In the following, we will modify the SSL presented by Lawley (1999) so that it 
works with systems with multiple unreliable resources. 
A resource allocation graph (RAG) is a digraph that encodes the resource requests and 
allocations of parts (Lawley, 1999). For our purposes, let RAG=(R\RFD,E) where R\RFD is 

the set of system non-failure-dependent resource types and E={(ru,rv): ru,rv R\RFD and ru 

is holding a part pjk with (pj,k+1)=rv}. A subdigraph of RAG, say (R,E), is induced when R 

 R\RFD and E ={(ru,rv):(ru,rv)E and ru,rv R}. A subdigraph, (R,E), forms a knot in RAG 

if ruR, (ru)= R, where (ru) is the set of all nodes reachable from ru in RAG. In other 
words, a set of nodes, R, forms a knot in RAG when, for every node in R, the set of nodes 
reachable along arcs in RAG is exactly R. Further, we define a capacitated knot to be a knot 
in which every resource in the knot is filled to capacity with parts requesting other 
resources in the knot. It is commonly known that a capacitated knot in RAG is a necessary 
and sufficient condition for deadlock in these types of sequential resource allocation 
systems. We now provide an algorithm, Algorithm A2, below to detect a capacitated knot 
in RAG = (R\RFD,E). This algorithm has the same polynomial complexity as that given by 
Lawley (1999). 
Algorithm A2: 
Input: RAG=(R\RFD,E) 
Output: DEADLOCK, NO DEADLOCK 

Step 1: Compute the set of strongly connected components of RAG: C={C1…Cq} 

Step 2: Construct digraph (C,Ec) such that C={C1…Cq} and Ec={(Ci,Cj):(ru,rv)E with ruCi 

and rvCj for ij} 

Step 3: For every strongly connected component CiC such that (Ci,Cj)Ec j=1…q 

If Ci is a capacitated knot 

Return DEADLOCK 

End If 

End For 

Step 4: Return NO DEADLOCK 
We note that, for our present work, this version of deadlock detection algorithm operates 
only on non-failure-dependent resources and parts held by these resources. In A2, Step 1 

computes the set of strongly connected components in RAG. As mentioned earlier, this is a 
standard digraph operation. Step 2 constructs a digraph that defines the reachability 
relationship between these components. Step 3 looks for a component with no outgoing arc. 

If such a component is filled to capacity with parts requesting other resources in the 
component, then it is a capacitated knot, and deadlock exists. If no such capacitated knot 
exists then the RAG is deadlock-free. 
Note that A2 is not correct by itself since it considers only the non-failure-dependent 
resources. Failure-dependent resources can easily deadlock themselves. However, when A2 
is taken in conjunction with NHC, it guarantees Property 2.2 and thus assures that the 
system will continue to operate even when multiple unreliable resources are down. 
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Definition 3.1.2: Supervisor 2 = A2  NHC. 

Supervisor 2 accepts a system state that contains no deadlock and satisfies NHC. For 
example, in Figure 1, suppose that every non-failure-dependent resource has non-unit 

capacity; that is, Ci1, riR\RFD= {r3,r4,r5,r6}. Then, A2 permits any state in which no subset 
of parts residing on {r3,r4,r5,r6} is deadlocked on {r3,r4,r5,r6}. If the state also satisfies NHC, 
then Property 2.2 is guaranteed. 

Note that 2 = A2  NHC is suited for real-time implementation since both A2 and NHC are 

of polynomial complexity. Chew and Lawley (2006) formally establishes that 2 yields a 
robust supervisor for systems where every part type requires in its route at most one 
unreliable resource. 

3.2 Robust control using a resource order policy 

This subsection configures a deadlock avoidance policy, resource order policy (RO). We will 

employ this configured resource order policy in conjunction with the neighbourhood 

constraints of Subsection 3.1 to develop a robust controller. Consider, for configuration 

purposes, Figure 1. Define RCO = R\ FD
iR as the set of non-failure-dependent resources. 

Since FD
2R = {r1,r2} and FD

9R = {r7,r8,r9}, thus RCO = {r3,r4,r5,r6}. Let  : RCO   (the set of 

natural numbers) be a one to one mapping of non-failure-dependent resources orders the 

non-failure-dependent resources so that RO can be applied); PFD={Pj: (Pjk)RU for some k} 

(PFD is the set of part types requiring unreliable resources; thus, in Figure 1, PFD = {P1,P2,P3}); 

and PNFD=P\PFD (PNFD is the set of part types not requiring any unreliable resources; hence, 

in Figure 1, PNFD = {P4}). For each PjPFD, determine all maximal subsequences in the route 

of Pj that do not contain failure-dependent resources. For instance, in Figure 1, P3PFD 

where P3=P31, P32, P33, P34, P35, P36 with route r8,r7,r5,r6,r9,r4, the maximal subsequences in 

r8,r7,r5,r6,r9,r4 that do not contain failure-dependent resources are r5,r6and r4. 
To express this formally, for each PjPFD, break the route of Pj into subroutes as follows: for 

Pj=Pj1 … Pj,k11,Pjk1,Pj,k1+1 … Pj,k21,Pjk2,Pj,k2+1 … Pj,khj1,Pjkhj
,Pj,khj+1 …, {Pjk1,Pjk2 … Pjkhj

} being 

precisely the set of part type stages of Pj that is processed on failure-dependent resources 

(that is, Pjk) : k=k1,k2 … khj}  R
FD and Pjk) : kk1,k2 … khj}  RFD =  let 1

jP =Pj1 … 

Pj,k11, 2
jP = Pj,k1+1 … Pj,k21, 3

jP = Pj,k2+1 … Pj,k31,…, 
jh

jP = Pj,k(hj1)+1 … Pj,(khj
1) and 

jh 1jP  = Pj,(khj
+1) … Pj|Pj For each PjPNFD, rename Pj 

0
jP . Finally, let P’ = { 0

jP : 

PjPNFD k
jP  k =1…hj and Pj PFD}. Note that in P’, a part type PjPFD is replaced by a 

set of part types { 1
jP , 2

jP  … 
jh

jP } each having a route that is a maximal segment of the 

route of Pj not containing a failure-dependent resource. 

In Figure 1, for example, P3 is replaced by 13P  = P33,P34 with route r5,r6 and 23P =P36 with 

route r4, and P4 is renamed 04P . Thus, the revised set of part types is 

P’={ 04P }{ 11P , 12P , 22P , 13P , 23P }. Note that none of the routes of part types in P’ contains any 

failure-dependent resources. 

We now use P’ and RCO to construct a set of RO constraints as follows. For each i
jP  = 

Pj,k(i1)+1 … Pj,(ki1 P’ and for each Pjk  i
jP , consider the inclusive remaining route, (Pjk) 

… (Pj,(ki1)), and its mapping, Pjk)) ... Pj,(ki1))). (Recall that to implement RO, the 

resources must be ordered.  represents the ordering function.) If the mapping of the 

inclusive remaining route is strictly increasing (decreasing), then Pjk is classified as ‘right’ 

(‘left’); if the mapping of the inclusive remaining route switches direction at some point, 
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then Pjk is classified as ‘undirected.’ If Pjk is terminal, it is ignored. For rmRCO, let RU
m  

represent the set of right and undirected part type stages associated with rm; and UL
m , the 

set of left and undirected part type stages associated with rm. In the example, consider that 

r1)=1, r2)=2, r3)=3 r4)=4, r5)=5, r6)=6, r7)=7, r8)=8 and r9)=9. We now have 

that the inclusive remaining route of P33, r5,r6 supporting P33,P34  1
3P , is strictly 

increasing for  thus P33 is classified as ‘right’ and hence RU
5  = {P33}. In the meantime, 

since P25  1
2P  is the terminal part type stage for 1

2P , P25 is ignored. Clearly, RU
5  = . On 

the other hand, the inclusive remaining route of P11, r6,r3 supporting P11,P12  1
1P , is 

strictly decreasing for  hence P11 is classified as ‘left.’ The inclusive remaining route of P24 

is r6,r5 supporting P24,P25 1
2P , which is strictly decreasing for  hence P24 is classified 

as ‘left.’ Therefore, UL
6  = {P11,P24}. Meanwhile, since P34  1

3P  is the terminal part type 

stage for 1
3P , P34 is ignored. It is obvious that UL

6  = . After all the part type stages are 

classified in this way, a constraint is generated for each pair of non-failure-dependent 

resources, yielding RO constraints. We now define RO constraints formally as follows. 

Definition 3.2.1: RORCO is the set of constraints: 

rm, rn  RCO such that rm) < rn), 
jk RU

m

jkjk
P

y( )x


 +
jk LU

n

jkjk
P

y( )x


 <  Cm  +  Cn 

where Cm and Cn are the respective buffer capacities of rm and rn. 

In the example, for r5, r6  RCO, we have (x33+y33) + (x11+y11+x24+y24) < 2, recalling that 

C5=C6=1. This constraint assures that for every resource allocation state that the system is 

allowed to visit, the number of ‘right’ and ‘undirected’ parts occupying buffer space at r5 

plus the number of ‘left’ and ‘undirected’ parts occupying buffer space at r6 will be less than 

the combined capacity of the two resources. Similar constraints are generated for the 

resource pairs {r3,r4}, {r3,r5}, {r3,r6}, {r4,r5} and {r4,r6}. 

We are now in the position to establish that the conjunction of RORCO and NHC, call it 

supervisor 3, satisfies Property 2.2. Supervisor 3 is a control policy such that it disables 

jk(q) if (q,jk) violates either RORCO or NHC. Formally, it is stated as follows. 

Definition 3.2.2: Supervisor 3 = RORCO  NHC. 

Chew et al. (2011) establish that 3 is a robust controller for systems where every part type 
requires at most one unreliable resource. 
 
 

P1 

P2

P3

P4 

r1 r2 r3

r4 r5

r6

r7 r8

 

Fig. 6. An example production system with three unreliable resources 

R={r1,r2,r3,r4,r5,r6,r7,r8 } 
P={P1,P2,P3,P4} 
RU={r4,r6,r8}  
P1={P11,P12,P13} 

T1=r1,r2,r3 
P2={P21,P22, P23,P24}  

T2=r2,r5,r4,r3 
P3={P31,P32,P33} 

T3=r5,r7,r8 
P4={P41,P42,P43}  
T4={r5,r6,r3} 

C=C1,C2,...,C8=2,2,2,2,2,2,2,2 
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3.3 Robust control using shared resource capacity  

The robust supervisory control policies presented in sections 3.1-3.2 assume that that parts 

requiring failed resources can be advanced into FD buffer. We refer this type of control 

policies as “absorbing” policies. This subsection relaxes this assumption because, in some 

systems, providing FD buffer space might be too expensive or it might be desirable to load 

the system more heavily with FD parts. A “distributing” type of control policy is developed 

and presented in this subsection. This policy distributes parts requiring failed resources 

throughout the buffer space of shared resources so that these distributed parts do not block 

the production of part types that are not requiring failed resources.  

Now, the development of the “distributing“ control policy, namely, RO4 policy is discussed 
in details. First, based on the definitions of resource sets in the previous sections, we further 

define three resource regions:  (1) the region of continuous operation, RCO=RPFDRNFD, (2) 
the region of failure dependency, RFD=RFD, and (3) the region of distribution, 
ROD=RFD\RU = RFD\RU =RR\RNFD. In the example system in Figure 6, we have RCO= 
{r1,r2,r3}; RFD= {r2,r4,r5,r6,r7,r8}; ROD= {r2,r5,r7}. RO4 policy is the conjunction of four modified 
RO policies applied to different resource regions. We now define the RO constraints as 
follows. 
Definition 3.3.1: RORCO is the set of constraints: 

, , .

jk g uv h

jk uv g h
P P

st st st g h

z z C C

where z x y r r RCO and g h

 
  

   

 
 

RORCO admits states that exhibit at most one capacitated resource in RCO. 
Definition 3.3.2: RORFD is the set of constraints 

, , , .

FD FD
jk g i uv h i

U
jk uv g h i

P P P P

st st st g h

z z C C for r R

where z x y r r RFD and g h

   

   

   

 
 

RORFD admits states for which at most one resource of RFD is capacitated with PiFD parts for 

each riRU. Note that it does not place any constraint on the total number of RFD resources 

capacitated.    

Definition 3.3.3: RORFD2 is the set of constraints 

, , , .

FD FD FD
jk g mn h uv j

jk mn uv g h j

P P P P P P

st st st g h j

z z z C C C

where z x y r r r RFD and g h j

     

    

    

  
 

RORFD2 admits states for which at most two resources of RFD are capacitated with FD parts, 

but does not place any constraint on the total number of RFD resources capacitated. 

Definition 3.3.4: ROROD is the set of constraints 

, , .

FD FD
jk g uv h

jk uv g h

P P P P

st st st g h

z z C C

where z x y r r ROD and g h

   

  

   

 
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ROROD admits states for which at most one resource of ROD=RFD\RU is capacitated with FD 

parts, although it places no constraint on the number of unreliable resources that are 

capacitated.   

As in the example system in Figure 6, the set of constrains are as follows.  
RORCO  r1r2: z11+z12+z21<4   r2r3:  z12+z21+z13+z24+z43<4 
  r1r3:  z11+z13+z24+z43<4 
RORFD  r2r4: z21+z23<4   r5r7: z31+z32<4 
  r2r5: z21+z22<4   r5r8: z31+z33<4 
  r4r5: z23+z22<4  r7r8: z32+z33<4 
  r5r6: z41+z42<4 

RORFD2  r2r4r5:  z21+z23+z22+z31+z41<6  r4r5r6:  z23+z22+z31+z41+z42<6 
  r2r4r6:  z21+z23+z42<6  r4r5r7:  z23+z22+z31+z41+z32<6 
  r2r4r7:  z21+z23+z32<6  r4r5r8:  z23+z22+z31+z41+z33<6 
  r2r4r8:  z21+z23+z33<6  r4r6r7:  z23+z42+z32<6 
  r2r5r6:  z21+z22+z31+z41+z42<6 r4r6r8:  z23+z42+z33<6 
  r2r5r7:  z21+z22+z31+z41+z32<6 r4r7r8:  z23+z32+z33<6 
  r2r5r8:  z21+z22+z31+z41+z33<6 r5r6r7:  z22+z31+z41+z42+z32<6 
  r2r6r7:  z21+z42+z32<6  r5r6r8:  z22+z31+z41+z42+z33<6 
  r2r6r8:  z21+z42+z33<6  r5r7r8:  z22+z31+z41+z32+z33<6 
  r2r7r8:  z21+z32+z33<6  r6r7r8:  z42+z32+z33<6 
ROROD  r2r5: z21+z22+z31+z41<4  r5r7: z22+z31+z41+z32<4 
  r2r7: z21+z32<4 

We are now in the position to establish that RO4 policy (the conjunction of RORCO, RORFD, 

RORFD2, and ROROD), call it supervisor 4, satisfies Property 2.2. Supervisor 4 is a control 

policy such that it admits the enabled controllable event α if and only if δ(q,α) satisfies RORCO 

 RORFD  RORFD2  ROROD. Formally, it is stated as follows. 

Definition 3.3.5: Supervisor 4 = RORCO  RORFD  RORFD2  ROROD. 

The intuition behind this control policy is that it ensures that if a shared resource (i.e., a PFD 

resource) is filled with FD parts, at least one can be advanced out of the shared resources 

and, thus, out of RCO, which can then operate under RORCO. Furthermore, clearing RCO 

of this part will not create problems in the FD resources. To summarize, RORFD allows states 

with at most one FD resource filled with parts that are FD on the same unreliable resource. 

RORFD2 allows states for which at most two FD resources are capacitated with FD parts. 

ROROD admits states for which at most one resource of ROD is capacitated with FD parts. 

Wang et al. (2008) establish that 4 is a robust controller for systems where every part type 

requires at most one unreliable resource. 

4. Robust control for product routings with multiple unreliable resources 

In Section 3, we develop robust controllers for the single unit resource allocation systems 

with multiple unreliable resources. These guarantee that if any subset of resources fails, 

parts in the system requiring failed resources do not block production of parts not requiring 

failed resources. To establish supervisor correctness, we assume that each part type requires 

at most one unreliable resource in its route. We now relax this assumption using a central 

buffer and present robust controllers that guarantee robust operation without assumptions 
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on route structure. To this end, we will construct new robust controllers in conjunction with 

the robust controllers, 1 and 2, developed in Subsection 3.1. The following three 

subsections will demonstrate the way we use a central buffer to extend 1 and 2 for systems 

where parts may require multiple unreliable resources. 

4.1 Route partitioning algorithm 

We now show how to use a central buffer to extend 1 and 2 for systems where parts may 

require multiple unreliable resources. We partition routes with multiple unreliable resources 

into subroutes, each of which contains one unreliable resource. A part in the last stage of a 

subroute can move to the first resource of the succeeding subroute or into the central buffer. 

With this partition, the system resembles one with at most one unreliable resource per route, 

allowing us to apply 1 and 2. 

The route partitioning algorithm (RPA) performs this operation. It starts with the last stage 

and builds the subroute backwards. A subroute is extended until two unique unreliable 

resources are detected. Then, a new subroute is begun. We demonstrate below on P1 of 

Figure 7. 

Route Partitioning Algorithm (RPA) 

Algorithm Notation: j, q, u are indices and counters;  is the empty list;  is a temporary set. 

for j=1…|P| 

 let u=|Pj|, q=1, SPj1=, = 

 while u0 

  (a) if (Pju)RU\, ={(Pju)} 

  (b) if ||2, SPjq=push(Pju,SPjq), u=u1  
(Note: The function ‘push’ takes two parameters, an object and an ordered list of objects, and 
inserts the object into the head of the list.) 

  (c) else =, q=q+1, SPjq= 
 end while 

 NSj = q (Number of Segments for Pj) 

For j=1, u=|P1|=8, q=1, SP11=, =. Then, (P18)=r1RU\ ={r2,r4,r5,r7}, execute (b): 

SP11=P18, u = 7. 

Next, (P17)=r7RU\={r2,r4,r5,r7}, execute first if: ={r7}={r7}. Since ||<2, execute (b) 

SP11= P17,P18, u=6. 

Next, (P16)=r6RU\={r2,r4,r5}, execute (b): SP11= P16,P17,P18 and u=5. 

Next, (P15)=r5RU\={r2,r4,r5}, execute (a): ={r5}={r5,r7}. Since ||=2, execute (c): 

=, q=2, SP12=. This completes the first subroute SP11=P16,P17,P18. 
Next, u=5, (P15)=r5RU\={r2,r4,r5,r7}, execute (a): ={r5}={r5}. Since ||<2, execute (b): 

SP12=P15, u = 4. 

Next, (P14)=r4RU\={r2,r4,r7}, execute (a): ={r4}={r4,r5}. Since ||=2, execute (c): 

=, q=3, SP13=. This completes the second subroute SP12=P15. 
Continuing as shown, RPA partitions P1 into four subpart types (the remaining two are 

SP13=P13,P14 and SP14= P11, P12) with subroutes TS11=r6,r7,r8, TS12=r5, TS13=r3,r4, and 

TS14=r1,r2. Note that each subroute requires at most one unreliable resource, although the 

frequency of that resource is not limited. RPA does not affect part types whose routes 

require at most one unreliable resource.  
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The maximum number of iterations of the RPA while loop is bounded by the number of part 

type stages, and thus RPA is no worse than O(CRL=PjP|Pj|), which is polynomial in 
cumulative route length (CRL). 

4.2 Central buffer constraints 

The central buffer (CB) will be used to clear workstation buffer space of failure-dependent 
parts that have finished a subroute. If such parts have completely finished their original 
routes, they exit the system. Otherwise, they must have available space in the CB. This will 
ensure that they do not block the production of other part types. 
For example, suppose the system of Figure 7 is in a state as follows: r7 is failed with p17 
waiting for processing; r5 is holding a completed p15; and r4 is holding a completed p14. 
Because of the blocking effect of p14 and p15, it is not possible to produce all other part types. 
However, if we relocate p14 and p15 to the CB, the system can continue producing P2, P3, and 
P4. CB constraints are necessary to achieve this. For P1, we state the linear inequality: 

(x11+y11)+(x12+x12+y12)+(x13+y13)+(x14+x14+y14)+(x15+x15+y15)  B1, where xjk and yjk are the 

number of finished and unfinished pjk’s at (Pjk), xjk is the number of finished pjk’s relocated 
to the CB, and Bj the CB space reserved for Pj. 

 

Fig. 7. Example with four unreliable resources 

With this constraint, finished parts p12, p14, and p15, for subpart types SP14, SP13, and SP12, 
respectively, can be moved to the CB. Thus, in the example, we can transfer the finished p14 
and p15 to the CB, allowing P2, P3, and P4 to continue production. In the meantime, we 

decrement x14 and x15 by 1, and increment x14 and x15 by 1. As an aside, we decrement x14 

by 1 and increment y15 by 1 when p14 advances from the CB into the buffer of r5. 

We now state the CB constraint, CBC. Let P*={Pj:PjP  |TjRU|  1} be the set of part types 
that require multiple unreliable resources, and B the total capacity of the CB. For a part type 

PjP*, let 

jk j j1 jk j

jk jkj jk
P P \SP P LP

yZ ( )x x
 

      

R={r1,r2,r3,r4,r5,r6,r7} P={P1,P2,P3,P4} 
RU={r2,r4,r5,r7}  

P1={P11,P12,...,P18} T1=r1,r2,r3,r4,r5,r6,r7,r1 
P2={P21,P22,...P25} T2=r1,r3,r4,r6,r1 
P3={P31,P32,...,P3,11} T3=r1,r5,r3,r2,r3,r5,r3,r5,r6,r7,r1 
P4={P41,P42,P43,P44} T4={r1,r6,r3,r1} 

C=C1,C2,...,C7=1,1,1,1,1,1,1 

P1 

P3 

P2 

P4 

r1 

r2 

r3

r4r5

r6
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Central Buffer
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where LPj is the set of “last” part type stages in the subparts of Pj (except SPj1, the final stage 
of Pj). For example, LP1={P12,P14,P15} and LP3 = {P32,P34,P36,P38}. In general, 

_
j j j j j2NS NS NS NSj j j j

j j,| | j,| | | | j,| | ... | |SP SP SP SP SP, , , ,1
{ , ,..., }LP P P P   . 

Zj keeps track of the total number of instances of part type stages of PjP* that are in the 
system. CBC is defined as: 

j

j jjj
* P P

* ( ) BZ P P B(i) B ,            ii 


    

CBC ensures that every part in the system requiring multiple unreliable resources has 
capacity reserved on the CB. CBC has no more than CRL*|P| constraints and thus checking 
CBC computation is no worse than O(CRL*|P|), which is polynomial in stable measures of 
system size. 
The level of Bj for PjP* can be fixed, in which case Bj does not change; or state-based, where 
we periodically reallocate CB across all PjP*. Although we cannot preempt CB space from 
parts that have it reserved, we can reallocate CB space that is not reserved. One simple 
approach is to let Bj=Zj as long as (ii) holds. This represents a first-come-first-serve rule. 
Alternatively, we can solve the following assignment problem: 

 min  
|P*|B

ij ij
j 1i 1

C X

  (1) 

 st.     Bj =
B

ij
i 1

X

 ,     j=1...|P*| (2) 

 Zj  
B

ij
1

X
i
 ,     j=1...|P*| (3) 

 
|P*|B

ij
j 1i 1

X B


  (4) 

 
ijX {0,1}  

, i=1...B, j=1...|P*| (5) 

Here, Xij is 1 if the ith unit of CB is assigned to PjP*, 0 otherwise. The objective (1) 
minimizes assignment cost; (2) counts the assignment to each PjP*; (3) assures no 
preemption from parts in the system; and (4) assures the CB is not over allocated. Cij is the 
cost of assigning CB space to PjP*. This cost could reflect production priorities or failure 
probabilities. This problem can be solved in polynomial time using the Hungarian 
Algorithm (Papadimitriou, 1982). The solution frequency is a topic for future research. 

4.3 Robust controllers with CBC 

We now define two supervisory controllers. The first is the conjunction of 1 and CBC; and 

the second is the conjunction of 2 and CBC. Recall that 1 and 2 are the controllers of 
Subsection 3.1. Formally, the extended supervisors are stated as follows. 
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Definition 4.3.1:  Supervisor 5 = 1  CBC. 

Definition 4.3.2:  Supervisor 6 = 2  CBC. 
The following theorems establish that these supervisors ensure robust operation. 

Theorem 4.3.1: 5 is robust to failure of RU. 
Proof: The structure of the proof is as follows. We assume the system to be in an admissible 
state with parts requiring multiple unreliable resources, with some failed. We show that 
these parts can advance into the CB or into the buffer space of failure-dependent resources, 

where they do not block production of parts not requiring failed resources. Let PjP*. The 
subpart types of Pj constructed by RPA are {SPj,NSj,SPj,(NSj-1),…,SPj1}. Assume that in the 

current state, q, unreliable resources in the subroutes of Pj have failed and that q satisfies 5. 

In the following, we want to show that under 5 parts of type Pj do not block other part 
types from producing. We ignore parts of type Pj in the final subroute since it is covered by 

1. That is, 1 guarantees that parts in the final subroute can be advanced into the buffer 
space of the last resource and completed and removed from the system if the resource is 
operational or stored there, out of the way of part types not requiring failed resources, if it is 
not. 

Let qj={pjk | Pjk  SPjq, q = NSj, (NSj1),…,2} be the set of parts of Pj in the state q. Let 

qj={pjk | Pjk  LPj} be the set of parts of Pj in the final stage of a subroute. By the definition 

of LPj, qj  qj. Now, 1 guarantees that all parts in qj\qj can be advanced, perhaps 

through several processing steps, into the buffer spaces of resources required by stages of 

LPj. That is, 1 guarantees a sequence of part movements such that the system reaches a new 

state, say t, where tj=tj. In state t, all instances of Pj are at the end of a subroute. 

The left hand side of CBC does not change in moving from state q to state t. To see this, note 

that CBC is only affected by parts in P*. Since we allow no new parts to be admitted and no 

part of P* is required to move from one subroute to another (only to the end of the current 

subroute), the left-hand-side of CBC does not change magnitude. Thus, the part 

advancement under 1 does not violate CBC.Now, CBC guarantees that every part of tj has 

capacity reserved on the CB, and any finished part of this set can be moved to the CB. 

Further, any unfinished part of tj can be finished and moved to the CB if its resource is 

operational. If the associated resource is not operational, the part can be stored at its failed 

resource where it will not block the production of part types not requiring failed resources. 

Thus, all operational resources can be cleared of parts of type Pj. Under 1, the resulting 

state is a feasible initial state if resource repairs or additional failures occur.  

Theorem 4.3.2: 6 is robust to failure of RU. 
Proof: The proof follows the same construction as Theorem 4.3.1. The main difference is in 

how BA and SSLA operate. Thus, 5 and 6 guarantee robust operation for systems where 
parts can require multiple unreliable resources. Note that if every resource is unreliable, 
both theorems continue to hold. 

5. Conclusion and future research 

Supervisory control for manufacturing systems resource allocation has been an active area of 
research. Significant amount of theories and algorithms have been developed to allocate 
resources effectively and efficiently, and to guarantee important system properties, such as 
system liveness, traceability, deadlock-free operations. However, a major assumption these 
research works are based on is that resources never fail. While resource failures in automated 
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manufacturing systems are inevitable, we investigate such system behaviours and control 
dynamics. First, we developed the notion of robust supervisory control for automated 
manufacturing systems with unreliable resources. Our objective is to allocate system buffer 
space so that when an unreliable resource fails the system can continue to produce all part 
types not requiring the failed resource. We established properties that such a controller must 
satisfy, namely, that it ensure safety for the system given no resource failure; that it constrain 
the system to feasible initial states in case of resource failure; that it ensure safety for the 
system while the unreliable resource is failed; and that during resource repair it constrain the 
system to states that will be feasible initial states when the repair is completed.  
We then developed a variety of control policies that satisfy these robust properties.  
 

Taxonomy for Future Research Directions 

System Structure S1 at most one unreliable resource for each part type 
  S2 random number of unreliable resources for each part type 

Central Buffer Capacity C1 without central buffer 
  C2 with central buffer 

Flexible Routing FR1 
every part type stage can be performed by exactly one 
resource 

  FR2 
every part type stage can be performed by exactly two 
resources 

  …   

  FRj 
every part type stage can be performed by exactly j 
resources 

Robustness Level RB1 no resource failures 
  RB2 at most one resource failure at any time 
  RB3 at most two resource failures at any time 
  …   
  RBi at most i resource failures at any time 

Unreliable Resource 
Condition 

RC1 unreliable resources fail at any time 

  RC2 unreliable resource failure characteristics can be estimated 

Application Areas AA1 Manufacturing Systems 

  AA2 Business Processes and Workflow Management 

  AA3 E-Commerce 

  AA4 Supply Chain Management 

  AA5 Internet Resource Mangement 

  AA6 Transporation Systems 

  AA7 Healthcare Systems 

Table 1. Taxonomy for future research directions 

Specifically, supervisory controllers 1-4 are for systems with multiple unreliable resources 

where each part type requires at most one unreliable resource. Supervisory controllers 5-6 

control systems for which part types may require multiple unreliable resources. Another 

classification of the controllers is based on the underlying control mechanism: controllers 1-

3 ‘absorb’ all parts requiring failed resources into the buffer space of failure-dependent 
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resources, controller 4 distribute’ parts requiring failed resources among the buffer space of 

shared resources, and controllers 5-6 utilize central buffer to achieve robust operations. 

These robust controllers assure different levels of robust system operation and impose very 

different operating dynamics on the system, thus affecting system performance in different 

ways. An extensive simulation study has been conducted and a set of implementation 

guidelines for choosing the best robust controller based on manufacturing system 

characteristics and performance objectives are developed in Wang et al. (2009). 

A taxonomy is developed and presented in Table 1 to help guide future research in the area 
of robust supervisory control. By combining the different system structures, the 
presence/absence of central buffer, flexible routing capability, system robust level 
requirements, and unreliable resource failure characteristics, a significant amount of future 
research and development need to be done to address a variety of system control and 
performance requirements. And, although automated manufacturing systems are the 
context in which we develop the robust supervisory control research. We expect to expand 
our research to other application areas due to the similarity in resource allocation 
requirement and complexity in workflow management. The robust controllers we 
developed so far only address a small subset of the research taxonomy. For example, 

controller 1 falls in the category in the taxonomy of (S1, C1, FR1, RB2, RC1, AA1). 
Especially, it would be interesting and challenging to develop supervisory control policies 
for systems with flexible routing and for systems where the failure characteristics of 
resources are dynamically evolving and can be estimated through sensor monitoring and 
degradation modelling.  
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