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1. Introduction 

Distillation is one of the most important unit operations in the chemical industry. Among 

various distillation operations, control of high-purity column poses difficult control due to a 

number of characteristics of these systems, including strong directionality, ill-conditioning 

and strongly nonlinear behavior. At the same time, the potential benefits that can be 

obtained through tight and economic control of the product compositions are very large. 

This is due to different reasons including the large energy consumption required by the 

columns and the market requirements which are becoming stricter and stricter. Because of 

these obvious features of high-purity distillation, this type of column has been studied 

extensively. 
Control systems for chemical processes are typically designed using an approximate, linear, 
time-invariant model of the plant. The actual plant may differ from the nominal model due 
to many sources of uncertainty, such as nonlinearity, the selection of low-order models to 
represent a plant with inherently high-order dynamics, inaccurate identification of model 
parameters due to poor measurements or incomplete knowledge, and uncertainty in the 
manipulative variables. Considering the differences between the actual plant and nominal 
model, it is necessary to insure that the control system will be stable and meet some 
predetermined performance criteria when applied to the actual plant. The identification and 
control of distillation columns have been subjects of frequent study due to the ill-
conditioned nature of the distillation process. An ill-conditioned plant is very close to 
singular, and unless care is taken, very small errors can make the model useless. In 
distillation, this means that a model may have features that are in conflict with physical 
knowledge (Luyben, 1987; Jacobsen & Skogestad, 1994; Böling & Häggblom, 1996). In 
addition, ill-conditioned dynamics of high-purity distillation columns leads to high 
sensitivity to uncertainties in the manipulated variables (Skogestad & Morari, 1988). This 
effect causes even small errors in the manipulated variables show significant deterioration 
of the product quality, a fact which explains why open-loop control of high-purity 
distillation columns is hardly ever satisfactory. The model of a high-purity distillation 
process has a steady-state gain matrix with a high condition number. The gain matrix is 
almost singular and its determinant may be affected by quite small model errors, and if 
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determinant of the gain matrix of the model and that of the plant have different signs, no 
controller with integral action exists that can stabilize both the model and plant (Grosdidier 
et al., 1985). 
Many control design techniques have been applied to the high-purity distillation columns 
(e.g. Georgiou et al., 1988; Skogestad and Lundström, 1990; Sriniwas et al., 1995; Christen et 
al., 1997; Shin et al., 2000; Razzaghi & Shahraki, 2005, 2007; Biswas et al., 2009). Some 
possible improvements for linear multivariable predictive control of high-purity distillation 
columns are proposed by Trentacapilli et al. (1997) and a simple way of inserting a local 
model that contains part of the process nonlinearity into the controller is described also. In 
addition, a reliable model of the column is generally considered as a prerequisite for the 
design of efficient two-product control by multivariable methods. Another important aspect 
of distillation control design is the choice of a good configuration. In fact, poor control 
performance can result from the improper choice of manipulated/controlled variable 
pairing (Hurowitz et al., 2003). Some authors have been considered control configuration 
selection (Shinskey, 1984; Skogestad and Morari, 1987a; Finco et al., 1989; Stichlmair, 1995; 
Heath et al., 2000; Hurowitz et al., 2003; Luyben, 2005; Hori & Skogestad, 2007; Razzaghi & 
Shahraki, 2009), but there is no general agreement among these authors in choosing the best 
control configuration, however, a complete review in this field is performed by Skogestad et 
al. (1990). The main works for selection of manipulated/controlled variable pairings have 
focused upon using controllability measures, such as relative gain array (Bristol, 1966) and 
structured singular value Ǎ (Doyle, 1982). The relative gain array (RGA) provides a steady-
state measure of coupling in multivariable systems and can be used to evaluate the steady-
state coupling of configurations. RGA is still the most commonly used tool for control 
structure selection for single-loop controllers. Shinskey (1984) used the relative gain array to 
choose configuration which is applied widely in industry. Several authors such as Skogestad 
et al. (1990) and Kariwala et al. (2006) have demonstrated practical applications of the RGA 
that it depends on the plant model only, that it is scaling independent and that all possible 
configurations can be evaluated base on the a single matrix. The structured singular value 
(SSV) approach provides necessary and sufficient conditions for robust stability and 
performance for the situation in which uncertainty occurs simultaneously and 
independently in various parts of the overall control system (e.g. input and output 
uncertainty) but the perturbation matrix is still norm-bounded. One of the most difficult 
steps in analysing the robust stability and performance of any control system is the 
specification of an estimate of the uncertainty associated with the nominal process model. 
This is a critical step because an overestimation of the model inaccuracy will lead to 
extensively poor control performance and an underestimation may lead to instability 
(McDonald et al., 1988). Several papers discuss ways in which model inaccuracy can be 
described and methods that can be used for assessing robust stability. The most common 
multivariable approaches that use singular values (Doyle and Stein, 1981; Arkun et al., 1984) 
and structured singular values assume that the actual plant can be described by a norm-
bounded perturbation matrix in the frequency domain. In chemical process control, 
nonlinearity is one of the most significant sources of model inaccuracy. We usually have 
some knowledge about the structure of model inaccuracy due to nonlinearity, however, and 
this knowledge should be exploited in our robustness studies. In formulating the SSV 
problem, use of physically-based uncertainty description is important. Simplified models 
that predict gain and time constant changes as the process is perturbed over the expected 
operating regime can be used to characterise the uncertainty (McDonald et al., 1988). 
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The objective in this chapter is to show that acceptable closed-loop performance can be 
achieved for an ill-conditioned high-purity distillation column by use of the structured 
singular value Ǎ. The distillation column model used in this case study is a high-purity 
column, referred to as “column at operating point A” by Skogestad and Morari (1988). Table 
1 summarizes the steady-state data of the model in detail. The following simplifying 
assumptions are also made for the column: (1) binary separation, (2) constant relative 
volatility, and (3) constant molar flows. To include the effect of neglected flow dynamics, we 
will add uncertainty when designing and analysing controller. 
 

Column data 

   Relative volatility  = 1.5 

   Number of theoretical trays  NT = 40 

   Feed tray (1 = reboiler)  NF = 21 

   Feed composition  zF = 0.50 

Operating data

   Distillate composition  yD = 0.99 

   Bottom composition  xB = 0.01 

   Distillate to feed ratio  D/F = 0.500 

   Reflux to feed ratio  L/F = 2.706 

Table 1. Steady-state data for distillation column. 

2. Process description 

A simple two time-constant dynamic model presented by Skogestad and Morari (1988) is 
chosen as the basis for the controller design. The model is derived assuming the flow and 
composition dynamics to be decoupled, and then the two separate models for the 
composition and flow dynamics are simply combined. The nominal model of the column is 
given by 
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gL(s) expresses the liquid flow dynamics: 

 
1
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[1 (2.46 / ) ]

L n
g s

n s



 (2) 

where n is the number of trays in the column (NT – 1). Fig. 1 shows a schematic of a binary 
distillation column that uses reflux and vapor boilup as manipulated inputs for the control 
of top and bottom compositions, respectively. This is denoted as the LV-configuration 
(structure). This structure is commonly used in industry for one-point composition control. 
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However, severe interactions often make two-point control difficult with this configuration. 
Although the closed-loop system may be extremely sensitive to input uncertainty when the 
LV-configuration is used, while it is shown that it is possible to obtain good control behavior 
(i.e. good performance) with the LV-configuration when model uncertainty and possible 
changes in the operating point are included (Skogestad and Lundström, 1990). The 
simultaneous control of overhead and bottoms composition in a binary distillation column 
using reflux and steam flow as the manipulated variables often proves to be particularly 
difficult because of the coupling inherent in the process. The result of this coupling, which 
cause the two control loops to interact, leads to a deterioration in the control performance of 
both composition control loops compared to their performance if the objective were control 
of only one composition. Since high-purity distillation columns can be very sensitive to 
uncertainties in the manipulated variables, it is important for successful implementation 
that a controller guarantees its performance in the presence of uncertainties. This particular 
design task is frequently solved by modeling a multiplicative uncertainty for a nominal 
plant model and subsequently calculating the controller using Ǎ-synthesis (Doyle, 1982). 
 

V

D, yD

L

B, xB

F, zF

LC

LC 

PC

 

Fig. 1. Schematic of a binary distillation column using the LV-configuration. L and V: 
manipulated inputs; xB and yD: controlled outputs. 

2.1 General control problem formulation 

Fig. 2 shows general control problem formulation, where G is the generalized plant and C is 
the generalized controller. The controller design problem is divided into the analysis and 
synthesis phases. The controller C is synthesized such that some measure, in fact a norm, of 
the transfer function from w to z is minimized, e.g. the H∞-norm. Then the controller design 
problem is to find a controller C (that generates a signal u considering the information from 
v to mitigate the effects of w on z) minimizing the closed-loop norm from w to z. For the 
analysis phase, the scheme in Fig. 2 is to be modified to group the generalized plant G and 
the resulting synthesized controller C in order to test the closed-loop performance achieved 
with C. To get meaningful controller synthesis problems, weights on the exogenous inputs w 
and outputs z are incorporated. The weighting matrices are usually frequency dependent 
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and typically selected such that the weighted signals are of magnitude one, i.e. the norm 
from w to z should be less than one. 
 

C

G
w z

vu

 

Fig. 2. General control problem formulation with no model uncertainty. 

Once the stabilizing controller C is synthesized, it rests to analyze the closed-loop 
performance that it provides. In this phase, the controller for the configuration in Fig. 2 is 
incorporated into the generalized plant G to form the system N, as it is shown in Fig. 3. The 
expression for N is given by 

 1
11 12 22 21( ) ( , )lN G G C G G F G C   I  (3) 

where Fl (G, C) denotes the lower Linear Fractional Transformation (LFT) of G and C. In 
order to obtain a good design for C, a precise knowledge of the plant is required. The 
dynamics of interest are modeled but this model may be inaccurate and may not reflect the 
changes suffered by the plant with time. To deal with this problem, the concept of model 
uncertainty comes out. The plant G is assumed to be unknown but belonging to a class of 
models, P, built around a nominal model Go. The set of models P is characterized by a 
matrix Δ, which can be either a full matrix or a block diagonal matrix that includes all 
possible perturbations representing uncertainty to the system. The general control 
configuration in Fig. 2 may be extended to include model uncertainty as it is shown in Fig. 4. 
 

Nw z
 

Fig. 3. General block diagram for analysis with no model uncertainty. 

 

C 

Gw2 z2

vu

Δ 

w1 z1

 

Fig. 4. General control problem formulation including model uncertainty. 

The block diagram in Fig. 4 is used to synthesize the controller C. To transform it for 
analysis, the lower loop around G is closed by the controller C and it is incorporated into the 
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generalized plant G to form the system N as it is shown in Fig. 5. The same lower LFT is 
obtained as in Eq. (3) where no uncertainty was considered. 
 

z2


w1 z1

Nw2
 

Fig. 5. General block diagram for analysis including model uncertainty. 

To evaluate the relation between w  [w1 w2]T and z  [z1 z2]T for a given controller C in the 

uncertain system, the upper loop around N is closed with the perturbation matrix . This 

results in the following upper LFT: 

 1
22 21 11 12( , ) ( )uF N N N N N    I . (4) 

To represent any control problem with uncertainty by the general control configuration in 

Fig. 4, it is necessary to represent each source of uncertainty by a single perturbation block 

i , normalized such that ( ) 1i   . The individual uncertainties i  are combined into one 

large block diagonal matrix Δ, 

 1 2diag{ , , , }m     , (5) 

satisfying 

 ( ) 1   . (6) 

Structured uncertainty representation considers the individual uncertainty present on each 
input channel and combines them into one large diagonal block. This representation avoids 
the norm-physical coupling at the input of the plant that appears with the full perturbation 

matrix  in an unstructured uncertainty description. Consequently, the resulting set of 
plants is not so large as with an unstructured uncertainty description and the resulting 
robustness analysis is not so conservative (Balas et al., 1993). 

2.2 Robust performance and robust stability 

For obtaining good set point tracking, it is obvious that some performance specifications 
must be satisfied in spite of unmeasured disturbances and model-plant mismatch, i.e. 
uncertainty. The performance specification should be satisfied for the worst-case 
combination of disturbances and model-plant mismatch (robust performance). In order to 
achieve robust performance, some specifications have to be satisfied. The following 
terminologies are used: 
1. Nominal Stability—The closed-loop system has Nominal Stability (NS) if the controller C 

internally stabilizes the nominal model Go, i.e. the four transfer matrices N11, N12, N21 
and N22 in the closed-loop transfer matrix N are stable. 

2. Nominal Performance—The closed-loop system has Nominal Performance (NP) if the 

performance objectives are satisfied for the nominal model Go, i.e. 22 1N

 . 
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3. Robust Stability—The closed-loop system has Robust Stability (RS) if the controller C 

internally stabilizes every plant GP, i.e. in Fig. 5, ( , )uF N   is stable and 1


  . 

4. Robust Performance—The closed-loop feedback system has Robust Performance (RP) if 

the performance objectives are satisfied for GP, i.e. in Fig. 5, || Fu (N, Δ)||∞  1 and || Δ 

||∞  1. 

The structured singular value is used as a robust performance index. To use this index one 
must define performance using the H∞ framework. The H∞-norm of a transfer function G(s) 
is the peak value of the maximum singular value over all frequencies 

 ( ) sup ( ( ))G s G j   . (7) 

Uncertainties are modeled by the perturbations and uncertainty weights included in G. 

These weights are chosen such that || Δ ||∞  1 generates the family of all possible plants to 

be considered (Fig. 4). Δ may contain both real and complex perturbations, but in this case 

study only complex perturbations are used. The performance is specified by weights in G 

which normalized 2w  and 2z  such that a closed-loop H∞-norm from 2w  to 2z  of less than 

one (for worst-case Δ) means that the control objectives are achieved. Fig. 6 is used for 

robustness analysis where N is a function of G and C, and P  (|| ΔP ||∞  1) is a fictitious 

“performance perturbation” connecting 2z  to 2w . 
 

Δ
ΔP

N11  N12

N21  N22
 

Fig. 6. General block diagram for robustness analysis. 

Provided that the closed-loop system is nominally stable, the condition for robust 
performance (RP) is 

 RPRP sup ( ( )) 1N j    
, (8) 

where diag{ , }.P     Ǎ is computed frequency-by-frequency through upper and lower 

bounds. Here we only consider the upper bound which is derived by the computation of 

non-negative scaling matrices Dl and Dr defined within a set D that commutes with the 

structure : 

 
1( ) inf ( )l r

D
N D ND  





D

, (9) 
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where  D D D   D . A detailed discussion on the specification of such a set D of 

scaling matrices can be found in Packard and Doyle (1993). 

2.3 Design procedure 

The design procedure of a control system usually involves a mathematical model of the 

dynamic process, the plant model or nominal model. Consequently, many aspects of the real 

plant behavior cannot be captured in an accurate way with the plant model leading to 

uncertainties. Such plant-model mismatching should be characterized by means of 

disturbances signals and/or plant parameter variations, often characterized by probabilistic 

models, or unmodelled dynamics, commonly characterized in the frequency domain. 

The modern approach to characterizing closed-loop performance objectives is to measure 

the size of certain closed-loop transfer function matrices using various matrix norms. 

Matrix norms provide a measure of how large output signals can get for certain classes of 

input signals. Optimizing these types of performance objectives, over the set of stabilizing 

controllers is the main thrust of recent optimal control theory, such as L1, H2, H∞ and 

optimal control (Balas et al., 1993). Usually, high performance specifications are given in 

terms of the plant model. For this reason, model uncertainties characterization should be 

incorporated to the design procedure in order to provide a reliable control system capable 

to deal with the real process and to assure the fulfillment of the performance 

requirements. The term robustness is used to denote the ability of a control system to cope 

with the uncertain scheme. It is well known that there is an intrinsic conflict between 

performance and robustness in the standard feedback framework (Doyle and Stein, 1981; 

Chen, 1995). The system response to commands is an open-loop property while 

robustness properties are associated with the feedback. Therefore, one must make a trade-

off between achievable performance and robustness. In this way, a high performance 

controller designed for a nominal model may have very little robustness against the 

model uncertainties and the external disturbances. For this reason, worst-case robust 

control design techniques such as Ǎ-synthesis, have gained popularity in the last thirty 

years. 

3. Modeling of the uncertain system 

Analyzing the effect of uncertain models on achievable closed-loop performance and 

designing controller to provide optimal worst-case performance in the face of the plant 

uncertainty are the main features that must be considered in robust control of an uncertain 

system. Skogestad et al. (1988) recommended a general guideline for modeling of uncertain 

systems. According to this, three types of uncertainty can be identified: 

1. Uncertainty of the manipulated variables which is referred to input uncertainty. 
2. Uncertainty because of the process nonlinearity, and 
3. Unmodelled high-frequency dynamics and uncertainty of the measured variables 

which is referred to output uncertainty. 
Fig. 7(a) shows a block diagram of a distillation column with related inputs (u, d) and 

outputs (y, ym). In Fig. 7(b), we have added two additional blocks to Fig. 7(a). One is the 

controller C, which computes the appropriate input u based on the information about the 

process ym. The other block, Δ, represents the model uncertainty. Ĝ and G are models only, 

and the actual plant is different depending on Δ. Based on the measurements ym, the 
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objective of the controller C is to generate inputs u that keep the outputs y as close as 

possible to their set points in spite of disturbances d and model uncertainty Δ. The controller 

C is often non-square, as there are usually more measurements than manipulated variables. 

For the design of the controller C, information about the expected model uncertainty should 

be taken into account. Usually, there are two main ways for adding uncertainty to a 

constructed model: additive and multiplicative uncertainty. Fig. 7(c) represents additive 

uncertainty. In this case, the perturbed plant gain Gp will be G + Δ where Δ is unstructured 

uncertainty. Fig. 7(d) represents multiplicative uncertainty where the perturbed plant is 

equal to G (I + Δ). 

 

G 
y
ymu 

d 

(a) 

True plant, Gp

(c) 

u y
 

C 

Δ

+
++ 

 –
G u y 

 

G C 

Δ
+ 

+ + 

 –
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(b) 

Δ 

d

u

y 

ym

Ĝ 

 C 

 

Fig. 7. (a) Schematic representation of distillation column; (b) general structure for studying 
any linear control problem; (c) additive unstructured uncertainty, Gp = G + Δ; (d) 
multiplicative unstructured uncertainty, Gp = G (I + Δ). 

Here we will consider only input and output uncertainties: 

Input uncertainty—Input uncertainty always occurs in practice and generally limits the 

achievable closed-loop performance (Skogestad et al., 1988). Ill-conditioned plants can be 

very sensitive to errors in the manipulated variables. The bounds for the relative errors of 

the column inputs u are modeled in the frequency domain by a multiplicative uncertainty 

with two frequency-dependent error bounds uw . These two bounds are combined in the 

diagonal matrix u uW w I . In this case 

  ( ) ( ) ( ) ( )u uu j j W j u j     I    with   ( ) 1u j


  . (10) 

The value of the bound uW  is almost very small for low frequencies (we know the model 

very well there) and increases substantially as we go to high frequencies where parasitic 

parameters come into play and unmodelled structural flexibility is common. If all flow 

measurements are carefully calibrated, an error bound of 10% for the low frequency range is 

reasonable (Christen et al., 1997). This error bound is not common among the researchers 

(e.g. Skogestad and Lundström, 1990, used an error bound of 20% at steady state). Higher 

errors must be assumed in the higher frequency range. Because of uncertain or neglected 

high-frequency dynamics or time delays, the input error exceeds 100%. The following 

weight is used as input uncertainty weight 
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( ) 0.1
1

u

s
w s

s





. (11) 

The weight is shown graphically as a function of frequency in Fig. 8. 
 

 

Fig. 8. Input uncertainty weight wu ( jω) as a function of frequency. 

Output uncertainty—Due to the nonlinear vapor/liquid equilibrium, the gains of the 

individual transfer functions between the two manipulated inputs and controlled outputs 

may change in opposite directions (gain directionality). This behavior can be described with 

independent multiplicative uncertainties for the two outputs of the model and a diagonal 

weighting matrix y yW w I . In mathematical form we can write 

 ( ) ( ) ( ) ( )y yy j j W j y j       I    with   ( ) 1y j


  . (12) 

For the low-frequency range, an uncertainty of 10% is assumed for the description of 
uncertainties in the measured outputs. The uncertainty weight is 

 
1 180

( ) 0.1
1 2.5

y

s
w s

s





, (13) 

which has large gains in the high-frequency range that takes the effect of unmodelled 
dynamics into account. 
Performance—The performance weight used in this study is the same in Skogestad and 

Morari (1988). The weight is defined as 

 
1 10

( ) 0.5
10

P

s
w s

s


 . (14) 

3.1 Controller 

Skogestad and Lundström (1990) proposed two different approaches to tune controllers. The 

first approach is to fix the performance specification and minimize ǍRP by adjusting the 
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controller tunings. The performance requirement is satisfied if ǍRP is less than one, and 

lower ǍRP values represent a better design. The second approach is to fix the uncertainty and 

find what performance can be achieved. In this approach, we adjust the time constant in the 

performance weight to make the optimal ǍRP values equal to one. The latter approach has 

two disadvantages: (1) it introduces an outer loop in the  calculations, and (2) it may be 

impossible to achieve ǍRP equal to one by adjusting the time constant in the performance 

weight. Here the first approach is used for tuning the controller because of the mentioned 

disadvantages of the second approach. 

A diagonal PID controller based on internal model control (IMC) (Rivera et al., 1986) is used 
to investigate the process. Optimal setting for single-loop PID controller is found by 
minimizing ǍRP. Furthermore, a Ǎ-optimal controller is designed since it gives a good 
indication of the best possible performance of a linear controller. 

3.2 Analysis of controller 

Comparison of controller is based mainly on computing  for robust performance. The main 
advantage of using the μ-analysis is that it provides a well-defined basis for comparison. μ-
analysis is a worst-case analysis. It minimizes the H∞-norm with respect to the structured 
uncertainty matrix Δ. A worst-case analysis is particularly useful for ill-conditioned systems 
in the cross-over frequency range (Gjøsæter and Foss, 1997). This is due to the fact that such 
systems may provide large difference between nominal and robust performance. 
The value of ǍRP is indicative of the worst-case response. If ǍRP > 1, then the “worst-case” 
does not satisfy our performance objective, and if ǍRP < 1 then the “worst-case” is better 
than required by our performance objective. Similarly, if ǍNP < 1 then the performance 
objective is satisfied for the nominal case. However, this may not mean very much if the 
system is sensitive to uncertainty and ǍRP is significantly larger than one. It is shown that 
this is the case, for example, if an inverse-based controller is used for the distillation column 
(Skogestad and Morari, 1988). Controller was obtained by minimizing supω ǍRP for the 
model using the input and output uncertainties and performance weight. The plots for RP 
for the Ǎ-optimal controller are of particular interest since they indicate the best achievable 
performance for the plant. Ǎ provides a much easier way of comparing and analyzing the 
effect of various combinations of controllers, uncertainty and disturbances than the 
traditional simulation approach. One of the main advantages with the Ǎ-analysis as opposed 
to simulations is that one does not have to search for the worst-case, i.e. Ǎ finds it 
automatically (Skogestad and Lundström, 1990). 

3.3 Synthesis of controller 

The structured singular value provides a systematic way to test for both robust stability and 
robust performance with a given controller C. In addition to this analysis tool, the structured 
singular value can be used to synthesize the controller C. The robust performance condition 
implies robust stability, since 

 sup ( ) sup ( )N G    . (15) 

Therefore, a controller designed to guarantee robust performance will also guarantee robust 
stability. Provided that the interconnection matrix N is a function of the controller C, the Ǎ-
optimal controller can be found by 
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  minimize sup ( )N   (16) 

At the present time, there is no direct method to find the controller C by minimizing (16), 
however, combination of Ǎ-analysis and H∞-synthesis which is called Ǎ-synthesis or DK-
iteration (Zhou et al., 1996) is a special method that attempts to minimize the upper bound 
of Ǎ. Thus, the objective function (16) is transformed into 

 1

,
min inf sup ( )

l r
l r

C D D
D ND





 
 
 D

 (17) 

The DK-iteration approach involves to alternatively minimize 

 
1sup ( )l rD ND


 (18) 

for either C or lD  and rD  while holding the other constant. For fixed lD  and rD , the 

controller is solved via H optimization; for fixed C, a convex optimization problem is 

solved at each frequency. The magnitude of each element of ( )lD j  and ( )rD j  is fitted 

with a stable and minimum phase transfer function and wrapped back into the nominal 

interconnection structure. The procedure is carried out until 1sup ( ) 1l rD ND
  . Although 

convergence in each step is assured, joint convergence is not guaranteed. However, DK-

iteration works well in most cases (Balas et al., 1993; Packard and Doyle, 1993). The optimal 

solutions in each step are of supreme importance to success with the DK-iteration. 

Moreover, when C is fixed, the fitting procedure plays an important role in the overall 

approach. Low order transfer function fits are preferable since the order of the H problem 

in the following step is reduced yielding controllers of low order dimension. Nevertheless, 

the method is characterized by giving controllers of very high order that must be reduced 

applying model reduction techniques (Glover, 1984). 

3.4 Simulation 

Simulations are carried out with the nonlinear model of the column and using single-loop 
controller, which generally is insensitive to steady-state input errors (Skogestad and Morari, 
1988). In addition, input and output uncertainties are included to get a realistic evaluation of 
the controller. Simulations are for both cases with and without uncertainty. 

4. Model analysis 

4.1 RGA-analysis of the model 

Let  denote element-by-element multiplication. The RGA of the matrix G (Bristol, 1966) is 
defined as 

 1( ) ( )TG G G   . (19) 

For 2×2 systems 

  
11 12 11 11

11
21 22 11 11 12 21 11 22

1 1
RGA and

1 1 g g g g

   


   
   

         
, (20) 
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where gijs are open-loop gain from the jth input to the ith output of the process. The RGA 

has been considered as an important MIMO system information for feedback control. 

Controllers with large RGA elements should generally be avoided, because otherwise the 

closed-loop system is very sensitive to input uncertainty (Skogestad and Morari, 1987b). Fig. 

9 shows the magnitude of the diagonal element of the RGA (ǌ11). As seen in the figure, the 

plant is ill-conditioned at low frequencies, while at higher frequencies, the value of the 

RGA-element drops. This says that only based on the RGA plot, making a decision on the 

ill-conditionedness of the control problem may be misleading. On the other hand, the 

bandwidth area is located in a frequency range where the RGA elements are small or at 

lower frequencies where the RGA elements are large. 

 

 

Fig. 9. Plot of 11 as a function of frequency. 

4.2 Ill-conditionedness and process gain directionality 

The common definition of an ill-conditioned plant is that it has a model with a large 
condition number (  ). The condition number is defined as the ratio between the largest and 

smallest singular values ( /  ) of a process model. However, the condition number 

depends on the scaling of the process model. This problem arises from the scaling 
dependency of the Singular Value Decomposition (SVD). To eliminate the effect of scaling, 

the minimized condition number ( min ) is defined as the smallest possible condition 

number that can be achieved by varying the scaling. Close relationship between min  and 

RGA is proposed by Grosdidier et al. (1985). For 2  2 systems 

 
2

min 1 1
( ) ( ) ( ) 1G G G      , (21) 

where the 1-norm of the RGA is defined as 

 11
max m

iji
j

   . (22) 
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According to the above relationship, a 2  2 system with small RGA elements always has a 

small min . In particular, if 110 1   the minimized condition number is always equal to 

one. A process model with a large span in the possible gain of the model is said to show 

high directionality and a process model with the smallest singular value equal to the largest 

singular value is said to show no directionality. Waller et al. (1994) suggest redefined 

definition of process directionality. The definition divides the concept of process 

directionality into two parts. The minimized condition number is connected to stability 

aspects, whereas the condition number of a process model scaled according to the weight of 

the variables is connected to performance aspects. Fig. 10 shows the largest and smallest 

singular values and condition number of the process model as a function of frequency. 

 

 

Fig. 10. Singular values () and condition number (- - - - ) of the distillation column. 

The condition number of the process is about 10 times lower at high frequencies than at low 

frequencies (steady state). Fig. 11(a) represents the values of   and min  as a function of 

frequency. Values of   and min  match each other from low to intermediate frequencies, 

but min  approaches one at high frequencies. For 2  2 systems (Grosdidier et al., 1985): 

 min1 1
min

1
( )

( )
G

G



     . (23) 

Consequently, for 2  2 systems the difference between these quantities is at most one and 

1
  approaches min  as min  . Since 

1
  is much easy to compute than min , it is 

the preferred quantity to use. In Fig. 11(b), min  and 
1

  are plotted as a function of 

frequency. The value of min  at low frequencies is approximately twice 
1

 . At high 

frequencies, both min  and 
1

  approach one (after ω  20 rad/min). This is in agreement 

with the result obtained from ǌ11-vs-frequency plot (Fig. 9). Since min  is independent of 

scaling, therefore it is better to use min  instead of  , which is scale dependent. 
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(a) (b) 

Fig. 11. (a) Plots of γ and γmin as a function of frequency ( γ and - - - -  γmin); (b) plots of 

||Λ||1 and γmin as a function of frequency ( ||Λ||1 and - - - -  γmin). 

4.3 Synthesis of the controller 

The plots of the singular values of the sensitivity functions 1( )S GC  I  demonstrate good 

disturbance rejection properties, which indicate the closed-loop system is insensitive to 

uncertainties in inputs and outputs (Fig. 12(a)). The tracking properties of this controller are 

also adequate, which is illustrated by plots of the complementary sensitivity function, 

T S I  (Fig. 12(b)). Up to the mid-frequency range, the singular values are close to one 

and the maximum of the upper singular values is slightly greater than one. 

 

 
(a) (b) 

Fig. 12. Singular values of the closed-loop system. (a) Sensitivity function;  
(b) complementary sensitivity function. 

4.4 PID-tuning of the controller 

Table 2 summarizes the PID controller setting that is used for the column. Fig. 13 shows Ǎ-
plots of the controller. From a maximum peak-value point of view, it is seen that both robust 
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and nominal performance plots are less than one which satisfy the criterion. The plots 
approach 0.5 as frequency approaches infinity. 
 

Type of controller k I (min) D (min) 
PID Controller  

   Top composition control loop 0.37 5.16 0.58 

   Bottom composition control loop 0.20 3.70 1.18 
Ǎ-Optimal Controller  

   Top composition control loop 0.26 3.43 1.33 

   Bottom composition control loop 0.31 4.71 0.67 

Table 2. Tuning parameters for PID and Ǎ-optimal controllers. 

 

Fig. 13. Ǎ plots for PID controller:  robust performance; - - - -  nominal performance. 

 

 

Fig. 14. Ǎ-plots for the Ǎ-optimal controller:  robust performance; - - - -  nominal 
performance. 
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4.5 Comparison with μ-optimal controller 

Nominal and robust performance plots of the Ǎ-optimal controller is shown in Fig. 14. 
Comparison of nominal performance of the controllers shows that for the Ǎ-optimal 
controller, the plot is nearly flat over a large frequency range which indicates that an 
optimal controller is achieved. Comparing robust performance of the controllers indicates 
that obtaining robust performance with the LV-configuration is also possible. This is also in 
agreement with the results presented by Skogestad and Lundström (1990). 

5. Simulations 

Simulations of a set-point change in yD using the PID- and Ǎ-optimal controllers are shown 
in Figs. 15 and 16, respectively. As it is seen, the introduced uncertainties do not seriously 
affect the performance of the Ǎ-optimal controller, while for the PID-controller, the effect of 
uncertainties is more rather the Ǎ-optimal controller. It should be noted that the reference 
signal is filtered by a prefilter with a time constant of 5 min. Fig. 16 also shows that the PID 
controller has a slow return to steady state. This is due to the high ǍNP value at lower 
frequencies compared with the Ǎ-optimal controller (Figs. 13 and 14). In Table 3, numerical 
values of Ǎ for nominal and robust performance are presented. 
 

 

Fig. 15. Closed-loop response to small set-point change in yD (Ǎ-optimal controller):  no 
uncertainty; - - - -  10% uncertainty on input and output. 

 

Controller Nominal Performance Robust Performance 

PID 0.661 0.830 

Ǎ-optimal 
(both input and output uncertainties) 

0.506 0.648 

Ǎ-optimal 
(only input uncertainty) 

0.611 0.721 

Table 3. Ǎ values of the controllers. 
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Fig. 16. Closed-loop response to small set-point change in yD (PID controller):  no 
uncertainty; - - - -  10% uncertainty on input and output. 

Fig. 17 shows the closed-loop response of the Ǎ-optimal controller to a 20% increase in feed 
flow rate. In Fig. 18, the closed-loop response for both controllers is shown simultaneously. 
As the figure shows, the PID controller needs considerably more times to reach steady state 
than the Ǎ-optimal controller (see next page for the figures). 

5.1 Effect of output uncertainty 
Fig. 19 shows the effect of output uncertainty on closed-loop response of the Ǎ-optimal 
controller. For the case that both input and output uncertainties are considered, the response 
is faster than for the case that only input uncertainty is considered, however, this difference 
is not so large. The reason for this again returns to the ǍNP values at low frequencies. The Ǎ-
values of nominal performance for the case including both input and output uncertainties is 
close to the case where only input uncertainty included (Table 3) 
 

 

Fig. 17. Closed-loop response to a 20% increase in feed flow rate (Ǎ-optimal controller):   
no uncertainty; - - - -  10% uncertainty on inputs and outputs. 
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Fig. 18. Closed-loop response to a 20% increase in feed flow rate (including input and output 

uncertainties):    Ǎ-optimal controller; - - - -  PID controller. 

 

 

Fig. 19. Closed-loop response to a 20% increase in feed flow rate (Ǎ-optimal controller):  
both input and output uncertainty; - - - -  input uncertainty only. 

6. Discussion 

The structured singular value (Ǎ) is used to investigate the robust performance and robust 
stability of the PID controller. The control problem formulation used in this study is using 
weighted input and output uncertainties. Although other sources of uncertainty could be 
included, however, these two are the most severe uncertainties that may be considered. The 
inclusion of both input and output uncertainty prevents the control system from becoming 
sensitive to the uncertainties, as may happen with inverting controllers. 
The solution of the problem leads to the inequality of Eq. (8). The numerical solution of this 
design task is difficult. At present, there is no direct method to synthesize a Ǎ-optimal 
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controller, however, combination of Ǎ-analysis and H-synthesis which called Ǎ-synthesis or 
DK-iteration, often yields good results. This algorithm has two drawbacks. Firstly, the 
algorithm cannot guarantee convergence, and secondly, the algorithm requires a scaling of 
the plant in each iteration step, which increases the order of the plant. 
The Ǎ analysis advantageously avoids dealing explicitly with the bad condition of the plant. 
With the Ǎ-approach, the upper bound for the bandwidth of the control system is provided 
by the uncertainty model, whereas the lower bound is a matter of optimization. Ǎ-synthesis 
is ideally suited to deal with complex uncertainty models which takes into account such 
aspects as various operating points. A difficulty that one may encountered in synthesis of 
controller is high computation time, because the Ǎ approach requires scaling in each 
iteration. If, however, loop-shaping ideas are used to form the augmented plant, H∞-
synthesis may be used to advantage. In this case, the results are as good as with the Ǎ-
synthesis, but are obtained with less numerical efforts (Christen et al., 1997). 
In this case study, the LV-configuration is used. The use of this configuration for columns 
with high condition number may be doubtful, but under special considerations, this 
configuration may yield acceptable performance. It is shown (Skogestad and Lundström, 
1990) that it is possible to achieve good control behavior using the LV-configuration for two-
point composition control provided measurement delays are not too large (typically less 
than 1–2 min). In addition, severe interactions and poor control often reported with the LV-
configuration may be almost eliminated if the loops are tuned sufficiently tight. However, 
this does not imply that the LV-configuration is the best structure to use. Shinskey (1984) 
showed that the use of the (L/D)(V/B)-configuration is probably better in most cases, and in 
particular for columns with large reflux. 

7. Concluding remarks 

Based on a structured uncertainty model, which describes the column dynamics within the 
entire operating range, a decentralized PID controller is calculated using the Ǎ-synthesis 
technique. The controller was found to be robust with respect to model-plant mismatch, 
provided the RGA values of the column transfer function are not too large in the cross-over 
frequency range. The response of the system is improved by using a Ǎ-optimal controller. 
In spite of high condition number of the process, nominal and robust performance is 
achieved by insertion of input and output uncertainties in the control system and using the 
structured singular value to synthesis the controller. Good set-point tracking and 
disturbance rejection of the controller is observed by simulations that carried out for the 
closed-loop system. It was also shown that good control performance can be obtained by 
using the LV-configuration which is difficult to implement for two-point control. The 
obtained results also verify the findings of Skogestad and Lundström (1990). 

Symbols 

B Bottom product 
C Controller 
D Distillate, scaling matrix 
D Set of scaling matrices 
F Feed flow rate, Linear Fractional Transformation (LFT) 
gL Liquid flow dynamics 

G Plant transfer function 
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I Identity matrix 
L Reflux 

n Number of trays in the column 
N Lower LFT 
NT Number of theoretical trays in the column 

P Set of all possible plants 
S Sensitivity function 
T Complementary sensitivity function 

u Uncertain input 

u  Weighted input 

V Vapor boilup 
w Scalar weight, input signal 

W Diagonal matrix weight 
xB Bottom composition 

y Output 

y  Weighted output 

yD Distillate composition 
z Output signal 

zF Feed composition 

||||1 1-norm 

|||| -norm 

Greek letters 

α Relative volatility 
γ Condition number 

Δ Perturbation matrix 

 Relative gain array 
ǌij i, j element of the RGA 

Ǎ Structured singular value (SSV) 
σ Singular value 

 Time constant 
ω Frequency (rad/min) 

Subscripts 

D Derivative 
I Integral 

l Lower, left 
min Minimized 

NP Nominal performance 

o Nominal 
P Performance 

r Right 
RP Robust performance 
u Input, upper 

y Output 
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