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1. Introduction 

The technological advances of the last decades favored a widespread of power electronics 

converters in the majority of household appliances, industrial equipment connected to the 

Low Voltage (LV) grid and, more recently, in distributed power generation, near the 

consumer – microgeneration (µG). 

Most of this electronic equipment is a strong producer of current harmonics, polluting the 

LV network and generating sensitivity to dips, unbalances and harmonics, being also more 

sensitive to Power Quality issues. In the future, the massive use of renewable and 

decentralized sources of energy will probably worsen the problem, increasing Total 

Harmonic Distortion (THD), RMS voltage values, increasing unbalances and decreasing 

Power Factor in Low Voltage Networks. 

In these and in other Power Quality related issues, power electronics became, to a certain 

extent, the cause of the problem. However, due to the continuous development of power 

semiconductors characteristics, less demanding drive circuits, integration in dedicated 

modules, microelectronic control circuits improvement, allowing their operation at higher 

frequencies and with higher performance modulation and control methods, power 

electronics converters also have the potential to become the solution for the problem. Still, 

even the non polluting grid connected converters are not usually exploited to their full 

capability as, in general, they are not used to mitigate Power Quality problems. 

The smart exploitation of µG systems may become very attractive, using power electronics 

converters and adequate control strategies to allow the local mitigation of some power 

quality problems, minimizing the LV grid harmonics pollution (near unitary power factor) 

and guaranteeing their operation as active power filters (APF). 

Based on these new challenges, the main aim of this work is to create a virtual LV grid 

laboratory to evaluate some power quality indicators, including power electronics based 

models to guarantee a more realistic representation of the most significant loads connected 

to the LV grid. The simulated microgenerators are represented as Voltage Source Inverters 

(VSI) and may be controlled to guarantee: a) near unity power factor (conventional µG); b) 

local compensation of reactive power and harmonics (active µG). 

www.intechopen.com



  
Electrical Generation and Distribution Systems and Power Quality Disturbances 

 

186 

From the obtained results, active µG have the capability to guarantee an overall Power 

Quality improvement (voltage THD decrease and Power Factor increase) allowing a voltage 

THD decrease when compared to voltage THD values obtained with conventional µG. 

2. Model of Low Voltage grid 

The power electronics based low voltage network model is obtained using the 

SimPowerSystems Toolbox of Matlab/ Simulink. The models include the Medium/ Low 

voltage (MV/ LV) transformer, the distribution lines, the most significant electrical loads and 

the microgenerators connected to the grid. 

2.1 Distribution transformer 

It is assumed that the distribution MV/ LV transformer is ∆YN, with the secondary neutral 

directly connected to ground. The transformer used in the simulations is fed by a 30kV 

voltage on MV (medium voltage) and, in LV (Low Voltage) the line/ phase voltage is 400V /  

230V. The magnetization and the primary and secondary windings reactance and resistance 

are calculated from the transformer manufacturer no-load, short-circuit and nominal load 

tests [Elgerd, 1985]. 

 

 R1 X1 R2 X2

Bm Gm

 

Fig. 1. Equivalent single phase model of a distribution transformer 

From the no-load test, applying the nominal voltage Un to the secondary side of the 

transformer, and leaving the primary side open, it is possible to obtain the transformer 

magnetizing current Im. As the series impedance is much lower than the magnetizing 

impedance, it is assumed that the iron losses are nearly equal to the no-load losses P0. Then, 

from the nominal voltage Un, the magnetizing current Im and the no load losses P0, it is 

possible to determine the transformer magnetizing reactance and resistance. The 

magnetizing conductance is given by (1). 

 0

2m

n

P
G

U
=  (1) 

The magnetizing resistance Rm (2) is obtained from the magnetizing conductance Gm (1). 

 
1

m

m

R
G

=  (2) 

From the magnetizing current Im and the magnetizing conductance Rm it is possible to 

determine the magnetizing susceptance Bm (3): 
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The magnetizing reactance Xm is given by (4): 

 
1

m

m

X
B

=  (4) 

The magnetizing impedance is much higher than the series branch impedances (Fig. 1). 

Then, from the short-circuit test, it is possible to obtain the short-circuit impedance Zcc (5) 

and the total resistance Rt (6) from the transformer primary and secondary windings, 

knowing the short-circuit voltage Ucc, necessary to guarantee the current nominal value In 

and the short-circuit losses Pcc. 

 cc
cc

n

U
Z

I
=  (5) 

 
2

n

cc
t

I

P
R =  (6) 

Then, from (5) and (6) it is possible to determine the leakage reactance Xt (7): 

 2 2

t cc tX Z R= −  (7) 

The resistance and leakage reactance from the primary and secondary windings may be 

assumed to be equal. Then: 

 1 2
2

tR
R R= =  (8) 

 1 2
2

tX
X X= =  (9) 

In this work a 400kVA 30kV/ 400V distribution transformer (base values Sb=400kVA, 

Ub=30kV, / ( 3 )b b bI S U= ) is used. From the no-load test a magnetizing current Im=2.9% 

and no-load losses of P0=1450W are considered. From the short-circuit test it is assumed 

Ucc=4.5%, with nominal current In (1 pu) and short-circuit losses Pcc=8.8 kW. 

2.2 Distribution cables 

The distribution cables models are based on the π model (Fig. 2) and their section is chosen 

according to the current nominal values. The series resistance and inductance and the shunt 

admittance may be obtained from the manufacturers values depending on the cables section 

and length. 

In LV distribution networks four-wire cables are used (three phase conductors and a neutral 

conductor insulated separately), all enclosed by an outer polyethylene insulation mantle. 

Usually the conductors are sector shaped. The shunt and series impedance are determined 

by the physical construction of the cable. 
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Fig. 2. π model of the distribution electrical network 

Based on the single phase model of Fig.2, the model of a three phase distribution cable is 

obtained, Fig. 3 [Ciric et all 2003], [Ciric et all 2005]. 
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Fig. 3. Modified π model of the distribution electrical network 

The series resistance R (Ω/ km) [Jensen et all, 2001] depends on the cable internal resistance, 

on the ground resistance (there is no screen and the current diverted to ground must be 

included in the model) and on the proximity effect resistance. The skin effect and the 

proximity effect result in the increase of the conductors resistance.  

The cable apparent inductance Ls depends on the self inductance, on the mutual inductance 

and on the inductance due to non-ideal ground. 

The cable shunt admittance depends on the capacitances between conductors and on the 

conductors to ground capacitances [Jensen et all, 2001]. 

In overhead lines only the series impedance is considered. The capacitance is usually 

negligible. 

Both for underground cables and overhead lines, the length should be adequate to 

guarantee their protection, according to the manufacturer values, and to assure that despite 

the voltage drops, the compliance with RMS voltage standard values [EN 50160] is always 

guaranteed. 

2.3 Linear loads 
Linear loads are represented as simple resistances (R) and inductances (RL). Resistive loads 

may be used to simulate incandescent lamps or conventional heaters, whether inductive 

loads may be used to simulate refrigerators, according to the measurements performed with 

a FLUKE 435 and shown in figure 4. 
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Fig. 4. Grid voltage and current waveform obtained for a refrigerator: a) Measured with a 

Fluke 435, THDi=10.8% and PF=0.57; b) Obtained with the simulated model, considering 

THDv=5%; c) Simulated current harmonics, THDi=1.66% and PF=0.57 

2.4 Nonlinear loads 
Nonlinear loads are assumed to be mainly represented as diode rectifiers and are divided in 

three groups depending on their rated power. 

The first group includes low power electronic equipment as TV sets, DVD players or 

computers. Usually, these electronic apparatus have isolated DC supplies connected to the 

grid through single phase rectifiers and they can be modelled as their first stage converter: a 

single phase rectifier feeding a DC Ro/ / Co load (Fig. 5) [Mohan et all, 1995]. 
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Fig. 5. Single phase rectifier as a model for the majority of electronic apparatus 
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Fig. 6 shows the voltage and current measurements obtained for a TV set and the equivalent 

simulated waveforms. 
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Fig. 6. Grid voltage and current waveform obtained for a TV set; a) b) Measured with a 

Fluke 435, THDi=65.6% and PF=0.75; c) Obtained with the simulated model, considering 

voltage THDv=5%; d) Simulated current harmonics, THDi=69.9% and PF=0.76 

Fig. 7 shows the voltage and current measurements obtained for a washing machine and the 

equivalent simulated waveforms.  

The virtual lab models of these non linear loads are sized based on their rated power. Then, 

assuming an adequate DC voltage Vo
av

, the value of the equivalent output resistance Ro is 

obtained from (10). For the TV set an output voltage average value Vo
av

=300V is assumed. 

 

2

avo

o

V
R

P
≈  (10) 

The capacitor Co is designed to limit the output voltage ripple ∆Vo. Also, it depends on the 

output voltage average value Vo
av

, on the equivalent output resistance Ro, and on the time 

interval when all the diodes are OFF (approximately equal to one half of the grid period 

∆t=10ms). In the simulations, the ripple is assumed to be lower than ∆Vo=50V. 

 avo

o

o o

V t
C

R V

∆
≈

∆
 (11) 
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Fig. 7. Grid voltage and current waveform obtained for a washing machine; a) b) Measured 

with a Fluke 435, THDi=46.7%; c) Obtained with the simulated model, considering voltage 

THDv=5%; d) Simulated current harmonics, THDi=47.85% and PF=0.76; e) Obtained with 

the simulated model, considering voltage THDv=5% and a saturated inductance; f) 

Simulated current harmonics, THDi=45% and PF=0.5 

To smooth the current absorbed from the LV network, the rectifier is connected to the grid 

through a filtering inductance, which is calculated as a percentage of the output load 

impedance (3), where f represents the grid frequency and k is a constant, usually k=0.03 for 

lower power equipment as TV sets. 

 
2

o
R

kR
L

f
=

π
 (12) 
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As an example, with the designed model it is possible to obtain current waveforms similar 

to those measured on a TV set (Fig. 6), using the previously calculated values of Ro, Co and 

LR and assuming P=150W.  

For other higher power household appliances as modern washing or dishwashing machines, 

a similar model may be used but the average rated power P should be higher, as well as the 

input filtering inductance. The voltage and current measurements obtained for a washing 

machine are shown in Fig. 7 a) b) and the equivalent simulated waveforms are shown in 

figures 7 c) d) where P=1kW, and the filtering inductance is obtained from (12) assuming 

k=0.1. Comparing figures 7 b) and 7 d) the measured and simulated currents THD as well as 

the harmonic contents are similar. Still, the current waveforms of Fig. 7 a) c) present some 

differences. To obtain similar current waveforms, the saturation effect of the input 

inductance should be considered, as shown in Fig. 7 c) d). 

Even though the majority of LV grid connected loads are single phase, there may be a few 

three phase loads, as welding machines or three phase drives in small industries. Again, this 

equipment may be represented as their first stage converter, usually a three phase diode 

rectifier feeding an equivalent Ro3/ / Co3 load (Fig. 8). 
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Fig. 8. Three phase rectifier as a model for an electronic equipment of a small industry 
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Fig. 9. a) Grid voltage and current waveform obtained for a three phase rectifier obtained 

with the simulated model, considering voltage THDv=5%; b) Current harmonics and 

THDi=34.86%, PF=0.91 
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In this model the equivalent output load may be calculated from (1) assuming P=6kW and 

Vo
av

=520V. The output filter capacitor is obtained from (2) considering ∆t=3.3ms (in a 6 pulse 

rectifier ∆t=T/ 6). The input filtering inductance is obtained from (3) considering k=0.03. Fig. 

9 shows the voltage and current waveforms obtained with the designed model. 

2.5 Conventional single phase microgenerators 
Microgenerators are connected to the LV grid through single phase VSI (voltage source 

inverters) (Fig. 10) [Pogaku et all, 2007] and they are designed to guarantee the compliance 

with international standards (as EN 50438) and to have characteristics similar to the 

authorized equipment (maximum rated power, current THD and input power factor). 

 

 

Photovoltaic
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+ MPPT

Voltage Source

Inverter

AC

Filter

UDC vPWM V
grid

Grid

 

Fig. 10. Block diagram of a conventional µG 

For simplicity reasons and minimization of simulation times, the microgenerators are 

simulated considering only the grid connection stage, as current controlled inverters fed by 

a DC voltage source UDC (Fig. 11). 

It is assumed that the VSI is connected to the grid through a filtering inductance designed to 

guarantee a current ripple lower than ∆Igrid. To minimize filtering, a three level PWM is 

used. Then, the inductance LL (Fig. 11) is calculated according to (13), where UDC is the DC 

link voltage, fs is the switching frequency and ∆Igrid is the current ripple. 

 
4

DC
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L

f I
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∆
 (13) 
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Fig. 11. Model of the single phase microgenerator 

The VSI is controlled using a linear control approach, assuming that the maximum power is 

supplied to the grid and guaranteeing that the current injected in LV grid has a nearly 

unitary power factor. 
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Generally, the association of the modulator and the power converter may be represented as 

a first order model (14), with a gain KD and a dominant pole dependent on the average delay 

time Td (usually one half of the switching period Td=Ts/ 2) [Rashid, 2007]. 

 
( )

( )
( ) 1

avPWM D
C

c d

v s K
G s

u s sT
= ≈

+
 (14) 

The incremental gain KD (15) depends on UDC voltage and on the maximum value 
maxcu of 

the triangular modulator voltage. 

 

max

DC
D

c

U
K

u
=  (15) 

To control the current injected in the LV grid it is usual to choose a PI compensator (to 

guarantee fast response times and zero steady-state error to the step response). The block 

diagram of the current controller is then represented in Fig. 12, where αi represents the gain 

of the current sensor. 
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Fig. 12. Block diagram of the current controlled VSI 

To design the current controller it is then necessary to obtain the closed loop transfer 

function of the whole system. To guarantee some insensitivity to the disturbance introduced 

by the grid voltage Vgrid, it is assumed that the disturbance is known (is the grid voltage). 

For simplicity in the controller design, it is considered that the µG sees an equivalent 

resistance R0=Vgrid/ igrid connected to its terminals. From the controller point of view, this 

results in R=RL+R0. Then, making the compensator zero Tz coincident with the pole 

introduced by the input filter Z LT L R= , the second order transfer function of the current 

controlled VSI is obtained from (16). 

 
2

( )
( )

1( )
ref

D i

grid p d

cl
D igrid

d p d

K

i s T T R
G s

Ki s
s s

T T T R

α

= =
α

+ +

 (16) 

The transfer function (16) is then compared to the second order transfer function (17) written 

in the canonical form. 

 
2

2 2 2
( )

2
n

n n

G s
s s

ω
=

+ ξω + ω
 (17) 
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From (16) and (17), assuming a damping factor 2 2ξ = , the value of Tp is obtained from 

(18). 

 
2 D i d
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K T
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R

α
=  (18) 
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Fig. 13. a) Current and voltage waveforms of a single phase VSI obtained with the simulated 

model; b) Current harmonics and THDi=2.33%, PF=-0.999 

Figure 13 shows the results obtained for the proposed µG model, assuming that the µG 

apparent power is S=3450VA, the DC voltage is UDC=400V, the switching frequency is near 

10kHz and ∆Igrid<0.1 Igrid. 

The µG power factor is negative, even though nearly unitary as the displacement factor 

between the voltage and the current is 180º. The current THD is lower than 3%. However, 

considering only the first 50 harmonics, as in most power quality meters, the current THD 

decreases to THDi=0.35% These results are according to the manufacturers values, 

guaranteeing the compliance with international standards. 

Even though these microgenerators are designed to present high power quality parameters 

(high power factor and low current THD), still they are not usually exploited to their full 

extent as in general, they are sized and the controllers are designed only to minimize the 

impact on the LV grid. The mitigation of Power Quality issues is not considered. 

As an example, consider a small LV grid, as the one represented in figure 14, with a µG and 

a non-linear load. 
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Fig. 14. Example of a small LV grid with a µG and a non-linear load 
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Using the previously designed µG the current iµG (Fig. 14) will be equal to the one obtained 

in Fig. 13. The non-linear load current inl is represented in Fig. 15 and is characterized by 

THDi=47.55%. 
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Fig. 15. a) Grid voltage Vgrid and current waveform inl obtained for the non-linear load;  

b) Current harmonics and THDi=47.55%, PF=0.15 

The grid current igrid is represented in Fig. 16 and, as a result of the non-linear load 

THDi=18.79%. 
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Fig. 16. a) Waveforms of grid voltage Vgrid and current igrid; b) Current harmonics and 

THDi=18.79% 

From this example it is possible to conclude that even though the µG injects nearly 

sinusoidal currents in the grid (Fig. 13), still it is not capable of guaranteeing sinusoidal 

currents when other nonlinear loads are connected to the grid. 

2.6 Active microgenerators 

To minimize some power quality problems as current and voltage THD, an active µG is 

included in this Lab (Fig. 17). Even though using the same power electronics converters as 

the conventional µG, with adequate control strategies and adequate filtering, it is possible to 

guarantee its operation as active power filter (APF), allowing the local mitigation of some 
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power quality issues, as current THD, reducing the LV grid harmonic pollution (and near 

unitary power factor). 
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Fig. 17. Block diagram of an active µG 

Based on the conventional µG model (Fig. 11), the proposed active µG is simulated 

according to Fig. 18, considering the DC link filtering stage and the disturbance introduced 

by the current ipv of the photovoltaic panel + boost stage. 
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Fig. 18. Model of the single phase active microgenerator 
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Fig. 19. Diagram block of the DC voltage controller and of the grid current controller to 

guarantee active filtering of the current harmonics introduced by the non-linear load 
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Assuming that the Vc voltage dynamics in the DC link is considerably slower than the 

dynamics of the microgenerator AC current iµG, then the active µG current iµG and the 

voltage Vc may be controlled according to the diagram block of Fig. 19. 

The active µG current controller design is equal to the design of the controller used for the 

conventional µG. Then, neglecting the high frequency poles, the current controlled system 

may be represented according to (19), where the controller gain Gi (20) is obtained from the 

input/ output power constraint, where Vmax represents the amplitude of the grid voltage. 

 
( )

( ) 1

i

i

Gref dv
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Then, the current controlled system may be represented as a current source (19), as shown in 

Fig. 20. 
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Fig. 20. Simplified block diagram used to design the voltage controller 

From Fig. 20, the block diagram of the DC voltage controller is obtained and represented in 

figure 21. 
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Fig. 21. Block diagram of DC stage voltage controller 

From Fig. 21, the voltage response to the disturbance introduced by the photovoltaic panel is 

given by (21): 
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Simplifying (21) it is possible to obtain the transfer function in the canonical form (22). 
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From the final value theorem (23), the response to the disturbance introduced by ipv current 

is zero, meaning that in steady-state, the PI controller guarantees the minimization of the 

disturbances. 
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To determine the PI controller parameters, the denominator of (22) is compared to the third 

order polynomial (24). 
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Solving (25), the proportional gain Kp and the integral gain Ki are obtained: 
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 (26) 

Assuming that the dynamics of Vc voltage is considerably slower than the dynamics of the 

microgenerator AC current iµG, then the pole Tdv is assumed to be 2dvT T≈ , where T is the 

grid period. 

Figures 22 to 24 show the results obtained for the proposed active µG model, assuming that 

the µG apparent power is S=3450VA, the DC voltage is controlled to be Vc=400V, the 

semiconductors switching frequency is near 10kHz and ∆Igrid<0.1 Igrid. The DC link capacitor 

www.intechopen.com



  
Electrical Generation and Distribution Systems and Power Quality Disturbances 

 

200 

is C=2.7mF, guaranteeing a voltage ripple lower than 5%. The results obtained for the non-

linear load are those presented in figure 15. 

From Fig. 22 it is possible to conclude that the proposed active µG acts as an active power 

filter, guaranteeing nearly sinusoidal grid currents. Comparing the results of Fig. 22 and Fig. 

16, there is a clear reduction of the grid current THD. This reduction will become more 

obvious for more complex grids and highly non-linear loads. 
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Fig. 22. a) Waveforms of grid voltage and current; b) Grid current harmonics and 

THDi=3.56%, PF=0.9999.; c) Grid current harmonics and THDi50=1.55% (considering only till 

the 50th order harmonic) 
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To guarantee nearly sinusoidal grid currents, the µG current will be the one presented in 

Fig. 23. 

The average value of the capacitor voltage is Vc=400V, as shown in Fig. 24. 
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Fig. 23. a) Waveforms of grid voltage and µG current; b) µG current harmonics and 

THDi=13% 

 

 

1.9 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2
0

50

100

150

200

250

300

350

400

450

500

 

Fig. 24. Waveform of the DC link capacitor voltage 

The proposed models will be further tested in a low voltage grid. 
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3. Modelling the Low Voltage grid 

The performance of microgenerators can be compared in this virtual lab using the designed 

low voltage grid model with six clusters of loads (Fig. 25). It is assumed that 85% of these 

loads are non-linear and 15% are linear. Also, on the transformer Medium Voltage side the 

5th and 7th harmonics are considered. At the Low Voltage side it is assumed that the voltage 

RMS value is 2.5% above the nominal value. 
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Fig. 25. Topology of the simulated LV grid 

The simulations are carried out assuming two different load scenarios: 

a. Distribution transformer at 15% of its nominal power (SN) (nearly no load scenario, 

assuming 15% of values represented in Fig. 25); 

b. Distribution transformer at 85% of its nominal power (full load scenario, assuming 85% 

of values represented in Fig. 25). 

Each one of these scenarios is tested: 

a. without µG; 

b. with conventional µG; 

c. with active µG. 

It is assumed that the microgeneration total power never exceeds 25% of the transformer 

rated power SN. 

Figure 26 presents the results obtained without µG, assuming that the transformer may be at 

15 % or at 85 % of its rated power SN. The measurements of phase voltages and currents are 

carried out on the transformer LV side for each one of the groups of loads L1 to L6. 
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Fig. 26. Results obtained for 15 % and 85 % of the transformer rated power, without µG. 

Measurements carried out on the transformer LV side for each one of the groups of loads L1 

to L6: a) Voltage THD; b) Current THD; c) Power Factor; d) Value of RMS voltage 

Fig. 26 shows that the voltage THD increases more than 50% (as in load 6) from the no-load 

(15% SN) to the full load (85% SN) scenario. As the percentage of linear and non-linear loads 

is nearly equal for both scenarios, the current THD does not present significant changes (it 

even decreases slightly in the full load scenario). Also, the Power Factor results are similar 

for both scenarios, even though slightly lower for the no-load scenario. As for the load 

voltages RMS values, higher loads result in higher voltage drops. Also, as the transformer to 

load distance increases, the voltage drop increases as well. 

Figure 27 presents the results obtained with µG assuming that the transformer is at 15 % of 

its rated power SN (no load scenario). The measurements of phase voltages and currents are 

carried out on the transformer LV side for each one of the groups of loads L1 to L6. 
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Fig. 27. Results obtained for 15% SN of conventional µG or active µG: a) Voltage THD; b) 

Current THD; c) Power Factor; d) Value of RMS voltage 

From the results obtained for the first scenario (15% SN) (Fig. 27), the use of active µG 

guarantees a clear improvement of voltage and current THD, when compared to the 

conventional µG. Also, the use of active µG guarantees near unity power factor, even though 

it is negative. This results from the fact that the power flows from the microgenerators to the 

transformer, instead of flowing from the transformer to the loads. 

Figure 28 presents the results obtained with µG assuming that the transformer is at 85 % of 

its rated power SN (full load scenario). The measurements of phase voltages and currents are 

carried out on the transformer LV side for each one of the groups of loads L1 to L6. 

The results obtained for the full load scenario (85% SN) (Fig. 28) show the improvement 

introduced by active µG in voltage THD (Fig 28a), as well as current THD (Fig 28b) and 

power factor (Fig 28c). From Fig. 28 active microgeneration allows a voltage THD reduction 

up to 30%, when compared to conventional microgeneration. Also, comparing with the 

values obtained without microgeneration (Fig. 26) it is possible to conclude that 
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conventional microgeneration slightly increases voltage THD, while active microgeneration 

reduces voltage THD. 
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Fig. 28. Results obtained for 85% SN of conventional µG or active µG; a) Voltage THD; b) 

Current THD; c) Power Factor 

4. Conclusions 

In this paper a virtual lab was designed to evaluate and mitigate some power quality 

problems introduced by µG. The virtual lab includes the Medium/ Low voltage (MV/ LV) 

transformer, the distribution lines, linear and non-linear loads, conventional µG  

and active µG. To validate the designed models, the current waveforms and distortion 

obtained for each one of the virtual lab loads were compared to those measured with  

the most used electric and electronic equipment, showing that the obtained results are 

similar. 

The µG model is simulated based on its final stage converter, a single phase inverter, while 

the active µG also includes high order harmonics compensation, to perform as an active 

power filter. 
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Using the proposed models a small low voltage grid model with six clusters of loads is 

designed to evaluate the impact of conventional µG and active µG on Power Quality for a 

no-load and a full load scenario. 

From the results obtained with the virtual lab LV grid, it was possible to conclude that 

conventional µG slightly increases voltage THD, while active µG reduces voltage THD (up 

to 30% when compared to voltage THD values obtained with conventional µG), 

guaranteeing an overall Power Quality improvement (Power Factor increase). 

Even though the µG total power never exceeds 25% of the transformer rated power SN, with 

a high percentage of non linear loads, as the one considered in the proposed virtual lab LV 

grid model (85% of the transformer rated power), the active µG presents promising results 

and it can be concluded that it may be a solution to mitigate some power quality problems. 
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