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1. Introduction 

Photovoltaic systems are attractive renewable energy sources for Thailand because of high 

daily solar irradiation, about 18 MJ/m2/day. Furthermore, renewable energy is boosted by 

the government incentive on adders on electricity from renewable energy like solar PV, 

wind and biomass, introduced in the second half of 2000s. For PV systems, domestic rooftop 

PV units, commercial rooftop PV units and ground-based PV plants are appealing.  

Applications of electricity supply from PV plants that have been filed total more than 1000 

MW. With the adder incentive, more households will be attracted to produce electricity with 

a small generating capacity of less than 10 kW, termed a very small power producer (VSPP). 

A possibility of expanding domestic roof-top grid-connected units draw our attention to 

study single phase PV-grid connected systems. Increased PV penetration can have  

significant  [1-2] and detrimental impacts on  the power quality (PQ) of the distribution 

networks [3-5]. Fluctuation of weather condition, variations of loads and grids, connecting 

PV-based inverters to the power system, requires power quality control to meet standards of 

electrical utilities. PV can reduce or improve power quality levels [6-9]. Different aspects 

should be taken into account. In particular, large current variations during PV connection or 

disconnection can lead to significant voltage transients [10].  Cyclic variations of PV power 

output can cause voltage fluctuations [11]. Changes of PV active and reactive power and the 

presence of large numbers of single phase domestic generators can lead to long-duration 

voltage variations and unbalances [12]. The increasing values of fault currents modify the 

voltage sag characteristics. Finally, the waveform distortion levels are influenced in different 

ways according to types of PV connections to the grid, i.e. direct connection or by power 

electronic interfaces. PV can improve power quality levels, mainly as a consequence of 

increase of short circuit power and of advanced controls of PWM converters and custom 

devices. [13] 

Grid-connected inverter technology is one of the key technologies for reliable and safety 
grid interconnection operation of PV systems [14-15].  An inverter being a power 
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conditioner of a PV system consists of power electronic switching components, complex 
control systems [16]. In addition, their operations depends on several factors such as input 
weather condition, switching algorithm and maximum power point tracking (MPPT) 
algorithm implemented in  grid-connected inverters, giving rise to a variety of nonlinear 
behaviors and uncertainties [17]. Operating conditions of PV based inverters can be 
considered as steady state condition [18], transient condition [19-20], and fault condition 
such islanding [21-22]. In practical operations, inverters constantly change their operating 
conditions due to variation of irradiances, temperatures, load or grid impedance variations. 
In most cases, behavior of inverters is mainly considered in a steady state condition with 
slowly changing grid, load and weather conditions. However, in many instances conditions 
suddenly change, e.g. sudden changes of input weather, cloud or shading effects, loads and 
grid changes from faults occurring in near PV sites [23]. In these conditions, PV based 
inverters operate in transient conditions. Their average power increases or decreases upon 
the disturbances to PV systems [24]. In order to understand the behavior of PV based 
inverters, modeling and simulation of PV based inverter systems is the one of essential tools 
for analysis, operation and impacts of inverters on the power systems [25].  
There are two major approaches for modeling power electronics based systems, i.e. 
analytical and experimental approaches. The analytical methods to study steady state, 
transient models and islanding conditions of PV based inverter systems, such as state space 
averaging method [26], graphical techniques [27-28] and computation programming [29]. In 
using these analytic methods, one needs to know information of system. However, PV based 
inverters are usually commercial products having proprietary information; system operators 
do not know the necessary information of products to parameterize the models. In order to 
build models for nonlinear devices without prior information, system identification 
methods are exposed [33-34]. In the method reported in this paper, specific information of 
inverter is not required in modeling. Instead, it uses only measured input and output 
waveforms.  
Many recent research focuses on identification modeling and control for nonlinear systems 
[35-37].  One of the effective identification methods is block oriented nonlinear system 
identification. In the block oriented models, a system consists of numbers of linear and 
nonlinear blocks. The blocks are connected in various cascading and parallel combinations 
representing the systems. Many identification methods of well known nonlinear block 
oriented models have been reported in the literature [38-39].  They are, for example, a NARX 
model [40], a Hammerstein model [41], a Wiener model [42], a Wiener-Hammerstein model 
and a Hammerstein-Wiener model [43]. Advantages of a Hammerstein model and a Wiener 
model enables combination of both models to represent a system, sensors and actuators in to 
one model. The Hammerstein-Wiener model is recognized as being the most effective for 
modeling complex nonlinear systems such PV based inverters [44].  
In this paper, real operating conditions weather input variation, i.e. load variations and grid 
variations, of PV- based inverters are considered. Then two different experiments, steady 
state and transient condition, are designed and carried out.  Input-output data such as 
currents and voltages on both dc and ac sides of a PV grid-connected systems are recorded. 
The measured data are used to determine the model parameters by a Hammerstein-Wiener 
nonlinear model system identification process. In the Section II, PV system characteristics 
are introduced. The I-V characteristic, an equivalent model, effects of radiation and 
temperature on voltage and current of PV are described.  In the Section III, system 
identification methods, particularly a Hammerstein-Wiener Model is explained. In the 
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following section, the experimental design and implementation to model the system is 
illustrated. After that, the obtained model from prior sections is analyzed in terms of control 
theories. In the last section, the power quality analysis is discussed. The output prediction is 
performed to obtain electrical outputs of the model and its electrical power. The power 
quality nature is analyzed for comparison with outputs of model. Subsequently, voltage and 
current outputs from model are analyzed by mathematical tools such the Fast Fourier 
Transform-FFT, the Wavelet method in order to investigate the power quality in any 
operating situations.   

2. PV grid connected system (PVGCS) operation 

In this section, PV grid connected structures and components are introduced.  Structures of 
PBGCS consist of solar array, power conditioners, control systems, filtering, 
synchronization, protection units, and loads, shown in Fig. 1. 
 

 

PCC

Solar Array
Power 

Converter

Filtering

Control Unit

Synchronization & 

Protection

Load

Utility

 

Fig. 1. Block diagram of a PV grid connected system 

2.1 Solar array 
Environmental inputs affecting solar array/cell outputs are temperature (T) and irradiance 
(G), fluctuating with weather conditions. When the ambient temperature increases, the array 
short circuit current   slight increases with a significant voltage decrease. Temperature and I-
V characteristics are   related, characterized by array/cell temperature coefficients. Effects of 
irradiance, radiant solar energy flux density in W/m2, apart from solar radiation at sea level, 
are determined by incident angles and array/cell envelops. Typical characteristics of 
relationship between environmental inputs (irradiance and temperature) and electrical 
parameters (current and voltage of array/cells) are shown in Fig. 2 [45]. In our experimental 
designs, operating conditions of PV systems under test is designed and based on typical 
operating conditions.  

2.2 Operating conditions of a PV grid connected system  
A PV system, generating power and transmitting it into the utility, can be categorized in 
three cases, i.e. a steady state condition, a transient condition and a fault condition like 
islanding.  Three factors affecting the operation of inverters are input weather conditions, 
local loads and utility grid variations.  
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Fig. 2. Temperature and irradiance effects on  I-V characteristics of PV arrays/cells [46] 
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Fig. 3. Variations of solar irradiance and temperature throughout a day conditioning PVGCS 
operation   

Firstly, under a steady state condition, input, load and utility under consideration are 

treated as being constant with slightly change weather condition. Installed capacities of PV 

systems in a steady state are low, medium and high capacity. According to the weather 

conditions throughout a day as shown in Fig. 3 [47-48], a low radiation about 0-400 W/m2 is 

common in an early morning (6:00 AM-9:00 AM) and early evening (16:00 PM-19:00 PM), 

medium radiation of 400-800 W/m2 in late morning (9:00 AM-11:00 PM)  and early 

afternoon (14:00 PM-16:00 PM) and high radiation of 800-1000 W/m2 around noon (11.00 
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AM -  14:OO PM). Loads fluctuate upon  activities of customer groups, for example, a peak 

load  for industrial zones occurs in afternoon (13:00 - 17:00 PM) and a peak load for 

residential zones  occurs in evening(18:00 - 21:00 PM). Variations from steady state 

conditions impact power quality such as overvoltage, over-current, harmonics, and so on. In 

case of transients, there are variations in inputs, loads and utility. Weather variations such 

solar irradiance and temperature exhibit significant changes. Unexpected accidents happen. 

Local loads may sudden change due to activities of customers in each time. A utility has 

some faults in nearby locations which impact utility parameters such grid impedance. These 

conditions lead to short duration power quality problems with such spikes, voltage sag, 

voltage swell. In some extreme cases, abnormal conditions, such as very low solar irradiance 

or abnormal conditions such islanding, the gird-connected PV systems may collapse.  The 

PV systems are black out and cut out of the utility grid. Such can affect power quality, 

stability and reliability of power systems. 

2.3 Power converter 
There are several topologies for converting a DC to DC voltage with desired values, for 

example, Push-Pull, Flyback, Forward, Half Bridge and Full Bridge [49]. The choice for a 

specific application is often based on many considerations such as size, weight of switching 

converter, generation interference and economic evaluation [50-51]. Inverters can be 

classified into two types, i.e. voltage source inverter (VSI) if an input voltage remains 

constant and a current source inverter (CSI) if input current remains constant [52-53]. The 

CSI is mostly used in large motor applications, whereas the VSI is adopted for and alone 

systems. The CSI is a dual of a VSI. A control technique for voltage source inverters consists 

of two types, a voltage control inverter, shown in Fig. 4(a) and a current control inverter, 

Fig. 4(b) [54]. 

 

DC-DC with
Isolation

DC-AC AC Filter

PV Array

/ δ

L

N

Controller
V/0

V

 

DC-DC with
Isolation

DC-AC AC Filter

PV Array
L

N

Controller
Iac

I-ref

 
 (a) Voltage Control Inverter          (b) Current Control Inverter 

Fig. 4. Control techniques for an inverter 

3. System Identification 

System identification is the process for modeling dynamical systems by measuring the 

input/output from system. In this section, the principle of system identification is described. 

The classification is introduced and particularly a Hammerstein-Wiener model is explained. 

Finally, a MIMO (multi input multi output model with equation and characteristic is 

illustrated.  
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3.1 Principle of system identification 
A dynamical system can be classified in terms of known structures and parameters of the 
system, shown in Fig.5, and classified as a “White Box” if all structures and parameters are 
known, a “Grey Box” , if some structures and parameters known and a “Black Box” if none 
are known [55].  
 

  Structureure

Structure Parameter

Parameter

Structure Parameter

Structure Parameter

Structure Paramter

  Par

Known Missing

Black box

Grey box
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Fig. 5. Dynamical system classifications by structures and parameters 

Steps in system identification can be described as the following process, shown in Fig. 6.  
 

Goal of Modeling

Model structure selection

Experimental

Model Estimation

Model Validation

Application

Physical Modeling

Data collection and processing

 

Fig. 6. System identification processes 

Each step can be described as follows  

3.1.1 Goal of modeling   
The primary goal of modeling is to predict behaviors of inverters for PV systems or to 
simulate their outputs and related values. The other important goal is to acquire 
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mathematical and physical characteristics and details of systems for the purposes of 
controlling, maintenance and trouble shooting of systems, and planning of managing the 
power system.  

3.1.2 Physical modeling 
Photovoltaic inverters, particularly commercial products, compose of two parts, i.e. a power 
circuit and a control circuit. Power electronic components convert, transfer and control 
power from input to output. The control system, switching topologies of power electronics 
are done by complex digital controls.   

3.1.3 Model structure selection  
Model structure selection is the stage to classify the system and choose the method of 
system identification. The system identification can be classified to yield a nonparametric 
model and a parametric model, shown in Fig 7. A nonparametric model can be obtained 
from various methods, e.g. Covariance function, Correlation analysis. Empirical Transfer 
Function Estimate and Periodogram, Impulse response, Spectral analysis, and Step 
response.  
 

System Identification

Nonparametric Model Parametric Model

Covariance function

Correlation analysis

Empirical Transfer 
Function Estimate 
and Periodogram

Impulse response

Spectral analysis

Linear Model Nonlinear Model

Step response

Auto regressive (AR)

Auto regressive moving 
averaging with exogenous 
(ARMAX)

Auto regressive  
with exogenous (ARX)

Box-jenkin (BJ)

Linear state space model (LSS)

Laplace Transfer function (LTF)

Output Error (OE)

Nonlinear State space model (NSS)

Nonlinear Output Error Model (NOE)

Nonlinear Box-Jenkins (NBJ)

Nonlinear Autoregressive 
with exogenous (NARX)

Nonlinear Autoregressive with 
moving average exogenous 
(NARMAX)

Hammerstein

Hammerstein - Wiener 

Wiener

Wiener - Hammerstein 

 

Fig. 7. Classification of system identification 

Parametric models can be divided to two groups: linear parametric models and nonlinear 
parametric models.  Examples of linear parametric models are Auto Regressive (AR), Auto 
Regressive Moving Average (ARMA), and Auto Regressive with Exogenous (ARX), Box-
Jenkins, Output Error, Finite Impulse Response (FIR), Finite Step Response (FSR), Laplace 
Transfer Function (LTF) and Linear State Space (LSS). Examples of nonlinear parametric 
models are Nonlinear Finite Impulse Response (NFIR), Nonlinear Auto-Regressive with 
Exogenous (NARX), Nonlinear Output Error (NOE), and Nonlinear Auto-Regressive with 
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Moving Average Exogenous (NARMAX), Nonlinear Box-Jenkins (NBJ), Nonlinear State 
Space, Hammerstein model, Wiener Model, Hammerstein-Wiener model and Wiener-
Hammerstein model [56]. In practice, all systems are nonlinear; their outputs are a nonlinear 
function of the input variables. A linear model is often sufficient to accurately describe the 
system dynamics as long as it operates in linear range Otherwise a nonlinear is more 
appropriate. A nonlinear model is often associated with phenomena such as chaos, 
bifurcation and irreversibility. A common approach to nonlinear problems solution is 
linearization, but this can be problematic if one is trying to study aspects such as 
irreversibility, which are strongly tied to nonlinearity.  Inverters of PV systems can be 
identified based on nonlinear parametric models using various system identification 
methods.  

3.1.4 Experimental design  
The experimental design is an important stage in achieving goals of modeling. Number 

parameters such as sampling rates, types and amount of data should be concerned. Grid 

connected inverters have four important input/output parameters, i.e. DC voltage (Vdc), 

DC current voltage (Idc), AC voltage (Vac) and AC current (Iac).  In experiments, these data 

are measured, collected and send to a system identification process. Finally, a model of a PV 

inverter is obtained, shown in Fig. 8.  
 

 

Photovoltaic
Inverter

System Identification 

Model

input output

 

Fig. 8. Experimental design of a photovoltaic inverter modeling using system identification  

3.1.5 Model estimation 
Data from the system are divided into two groups, i.e., data for estimation (estimate data) 

and data for validation (validate data).  Estimate data are used in the system identification 

and validate data are used to check and improve the modeling to yield higher accuracy.  

3.1.6 Model validation 
Model validation is done by comparing experimental data or validates data and modeling 

data. Errors can then be calculated. In this paper, parameters of system identification are 

optimized to yield a high accuracy modeling by programming softwares. 
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3.2 Hammerstein-Wiener (HW) nonlinear model  
In this section, a combination of the Wiener model and the Hammerstein model called the 
Hammerstein-Wiener model is introduced, shown in Fig. 9. In the Wiener model, the front 
part being a dynamic linear block, representing the system, is cascaded with a static 
nonlinear block, being a sensor. In the Hammerstein model, the front block is a static 
nonlinear actuator, in cascading with a dynamic linear block, being the system. This model 
enables combination of a system, sensors and actuators in one model. The described 
dynamic system incorporates a static nonlinear input block, a linear output-error model and 
an output static nonlinear block.  
 

Inputnonlinear
f(.)

Outputnonlinear
h(.)

B(q)/F(q)

e(t)

u(t) w(t) x(t) y(t)

Linear Output error model

Static
Dynamic

Static

-

+

 

Fig. 9. Structure of Hammerstein-Weiner Model 

General equations describing the Hammerstein-Wiener structure are written as the Equation (1) 

 

( ) ( ( ))
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Which u(t) and y(t) are the inputs and outputs for the system. Where w(t) and x(t) are 
internal variables that define the input and output of the linear block.  

3.2.1 Linear subsystem 

The linear block is similar to an output error polynomial model, whose structure is shown in 

the Equation (2). The number of coefficients in the numerator polynomials B(q) is equal to 

the number of zeros plus 1, nb  is the number of zeros. The number of coefficients in 

denominator polynomials F(q) is equal to the number of poles, nf  is the number of poles. 

The polynomials B and F contain the time-shift operator q, essentially the z-transform which 

can be expanded as in the Equation (3). un is the total number of inputs. kn is the delay from 

an input to an output in terms of the number of samples. The order of the model is the sum 

of bn and fn .  This should be minimum for the best model. 
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3.2.2 Nonlinear subsystem 
The Hammerstein-Wiener Model composes of input and output nonlinear blocks which contain 

nonlinear functions f(•) and h(•) that corresponding to the input and output nonlinearities. 
The both nonlinear blocks are implemented using nonlinearity estimators. Inside nonlinear 
blocks, simple nonlinear estimators such deadzone or saturation functions are contained. 
i. The dead zone (DZ) function generates zero output within a specified region, called its 

dead zone or zero interval which shown in Fig. 10. The lower and upper limits of the 
dead zone are specified as the start of dead zone and the end of dead zone parameters. 
Deadzone can define a nonlinear function y = f(x), where f is a function of x, It 
composes of three intervals as following in the equation (4)  

 

( )

( ) 0

( )

x a f x x a

a x b f x

x b f x x b

≤ = − 


< < = 
≥ = − 

 (4) 

when x has a value between a and b, when an output of the function equal to ( ) 0F x =  , 

this zone is called as  a “zero interval”.  
 

a
b

F(x) = 0
F(x)=x-b

F(x)=x-a

bxa <<xa < bx ≥

 

Fig. 10. Deadzone function 

ii. Saturation (ST) function can define a nonlinear function y = f(x), where f is a function 
of x.  It composes of three interval as the following characteristics in the equation (5) 
and Fig. 11. The function is determined between a and b values. This interval is known 
as a “linear interval” 
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Fig. 11. Saturation function 
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iii. Piecewise linear (PW) function  is defined as a nonlinear function, y=f(x) where f is a 
piecewise-linear (affine) function of x and there are n breakpoints (x_k,y_k) which 
k=1,...,n. y_k = f(x_k). f is linearly interpolated between the breakpoints.  y and x are 
scalars. 

vi. Sigmoid network (SN) activation function Both sigmoid and wavelet network 
estimators which use the neural networks  composing an  input layer, an output layer 
and a hidden layer using wavelet and sigmoid activation functions as shown in Fig.12 

 

 Input layer Hidden layer Output layer

Activation function

Output (y)Input (u)

weightsweights

 

Fig. 12. Structure of nonlinear estimators 

A sigmoid network nonlinear estimator combines the radial basis neural network 
function using a sigmoid as the activation function. This estimator is based on the 
following expansion: 

 ( ) ( ) (( ) )
n

i i i
i

y u u r PL a f u r Qb c d= − + − − +  (6) 

when u is input and y is output. r is the the regressor. Q is a nonlinear subspace and P a 
linear subspace. L is a linear coefficient. d is an output offset. b is a dilation coefficient., 
c a translation coefficient and  a  an output coefficient. f is the sigmoid function, given 
by the following equation (7) 

 
1

( )
1z

f z
e−

=
+

 (7) 

v. Wavelet Network (WN) activation function. The term wavenet is used to describe 
wavelet networks. A wavenet estimator is a nonlinear function by combination of a 
wavelet theory and neural networks. Wavelet networks are feed-forward neural 
networks using wavelet as an activation function, based on the following expansion in 
the equation (8)   

 ( ) * ( ( ) ) * ( ( ) )
n n

i i i i
i i

y u r PL as f bs u r Q cs aw g bw u r Q cw d= − + − + + − + +   (8) 

Which u and y are input and output functions. Q and P are a nonlinear subspace and a 
linear subspace. L is a linear coefficient. d is output offset. as and aw are a scaling 
coefficient and a wavelet coefficient.  bs and bw are a scaling dilation coefficient and a 
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wavelet dilation coefficient. cs and cw are scaling translation and wavelet translation 
coefficients. The scaling function f (.) and the wavelet function g(.) are both radial 
functions, and can be  written as the equation (9)  

 
( ) exp( 0.5 * * )

( ) (dim( ) * ) * exp( 0.5 * * )

f u u u

g u u u u u u

′= −

′ ′= − −
 (9) 

In a system identification process, the wavelet coefficient (a), the dilation coefficient (b) and 
the translation coefficient (c) are optimized during model learning steps to obtain the best 
performance model.  

3.3 MIMO Hammerstein-Wiener system identification 
The voltage and current are two basic signals considered as input/output of PV grid 
connected systems. The measured electrical input and output waveforms of a system are 
collected and transmitted to the system identification process. In Fig. 13 show a PV based 
inverter system which are considered as SISO (single input-single output) or MIMO (multi 
input-multi output), depending on the relation of input-output under study [57]. In this 
paper, the MIMO nonlinear model of power inverters of PV systems is emphasized because 
this model gives us both voltage and current output prediction simultaneously.  
 

 Nonlinear model

Vdc-Vac
Vdc

Nonlinear model

Idc-Iac
Idc

Vac

Iac

 
a) SISO model 

 

 

Submodel
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Submodel

Vdc-Vac
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Vdc-Iac
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Vdc

Nonlinear model

Idc

Vac

Iac

 
b) MIMO model 

Fig. 13. Block diagram of nonlinear SISO and MIMO inverter model 

For one SISO model, there is only one corresponding set of nonlinear estimators for input 
and output, and one set of  linear parameters, i.e. pole bn, zero fn and delay nk , as written in 
the equation (9). For SIMO, MISO and MIMO models, there would be more than one set of 
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nonlinear estimators and linear parameters. The relationships between input-output of the 
MIMO model have been written in the equation (10) whereas vdc  is DC voltage, idc  DC 

current, vac  AC voltage, iac AC current. q is shift operator as equivalent to z transform. f(•) and 

h(•) are input and output nonlinear estimators. In this case a deadzone and saturation are 
selected into the model. In the MIMO model the relation between output and input has four 
relations as follows (i) DC voltage (vdc) – AC voltage (vac), (ii) DC voltage (vdc) – AC current 
(iac), (iii) DC current (idc) – AC voltage (vac) and (iv) DC current(vdc)–AC voltage  (vac). 
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Where bin , fin  and kin  are pole, zero and delay of linear model. Where as number of 

subscript i are 1,2,3 and 4 which stand for relation between DC voltage-AC voltage, DC 

current-AC voltage, DC voltage-AC current and DC current-AC current respectively. The 

output voltage and output current are key components for expanding to the other electrical 

values of a system such power, harmonic, power factor, etc. The linear parameters, zeros, 

poles and delays are used to represent properties and relation between the system input and 

output. There are two important steps to identify a MIMO system. The first step is to obtain 

experimental data from the MIMO system. According to different types of experimental 

data, the second step is to select corresponding identification methods and mathematical 

models to estimate model coefficients from the experimental data. The model is validated until 

obtaining a suitable model to represent the system. The obtained model provides properties of 

systems. State-space equations, polynomial equations as well as transfer functions are used to 

describe linear systems. Nonlinear systems can be describes by the above linear equations, but 

linearization of the nonlinear systems has to be carried out. Nonlinear estimators explain 

nonlinear behaviors of nonlinear system. Linear and nonlinear graphical tools are used to 

describe behaviors of systems regarding controllability, stability and so on. 

4. Experimental 

In this work, we model one type of a commercial grid connected single phase inverters, 
rating at 5,000 W. The experimental system setup composes of the inverter, a variable DC 
power supply (representing DC output from a PV array), real and complex loads,  a digital 
power meter, a digital oscilloscope, , a AC power system and a computer, shown 
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schematically in Fig 14. The system is connected directly to the domestic electrical system 
(low voltage). As we consider only domestic loads, we need not isolate our test system from 
the utility (high voltage) by any transformer. For system identification processes, waveforms 
are collected by an oscilloscope and transmitted to a computer for batch processing of 
voltage and current waveforms. 
 

 

Fig. 14. Experimental setup 
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Fig. 15. An inverter modeling using system identification process 

Major steps in experimentation, analysis and system identifications are composed of Testing 
scenarios of six steady state conditions and two transient conditions are carried out on the 
inverter, from collected data from experiments, voltage and current waveform data are 
divided in two groups to estimate models and to validate models previously mentioned. 
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The system identification scheme is shown in Fig.15. Good accuracy of models are achieved 
by selecting model structures and adjusting the model order of linear terms and nonlinear 
estimators of nonlinear systems. Finally, output voltage and current waveforms for any type 
of loads and operating conditions are then constructed from the models. This allows us to 
study power quality as required.  

4.1 Steady state conditions 
To emulate working conditions of PVGCS systems under environment changes (irradiance 
and temperature) affecting voltage and current inputs of inverters, six conditions of DC 
voltage variations and DC current variations. The six conditions are listed as Table 1. They 
are 3 conditions of a fixed DC current with DC low, medium and high voltage, i.e. , FCLV 
(Fixed Current Low Voltage), FCMV (Fixed Current Medium Voltage) and FCHV (Fixed 
Current High Voltage) which shown in Fig. 16. The other three corresponding conditions 
are a DC fixed voltage with DC low, medium and high current, i.e., FVLC (Fixed Voltage 
Low Current), FVMC (Fixed Voltage Medium Current), and FVHC (Fixed Voltage High 
Current) as shown in Fig.17. 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-400

-300

-200

-100

0

100

200

300

400

V
a
c
F

A
(V

)

Time(msec)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-20

-15

-10

-5

0

5

10

15

20

Ia
c
F

A
(A

)

Time(msec)
 

Fig. 16. AC voltage and current waveforms corresponding to FCLV, FCMV and FCHV 
conditions 
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Fig. 17. AC voltage and current waveforms corresponding to FVLC, FVMC and FVHC 
conditions 
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No. Case 
Idc 
(A)

Vdc 
(V)

Pdc 
(W)

Iac 
(A) 

Vac 
(A) 

Pac
(VA) 

1 FCLV 12 210 2520 11 220 2420 

2 FCMV 12 240 2880 13 220 2860 

3 FCHV 12 280 3360 15 220 3300 

4 FVLC 2 235 470 2 220 440 

5 FVMC 10 240 2,400 10 220 2,200 

6 FVHC 21 245 5,145 23 220 5,060 

Table 1. DC and AC parameters of an inverter under changing operating conditions 

4.2 Transient conditions  
Transient conditions are studied under two cases which composed of step up power 
transient and step down power transient. The step up condition is done by increasing power 
output from 440 to1,540 W, and the step down condition from 1,540 to 440 W, shown in 
Table 2.  Power waveform data of the two conditions are divided in two groups, the first 
group is used to estimate model, the second group to validate model. Examples of captured 
voltage and current waveforms under the step-up power transient condition (440 W or  2 A) 
to 1540 W  or 7A) and the step-down power transient condition (1540 W  or 7A) to 440 W 
(2A) are shown in Fig. 18 and 19, respectively.  
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Fig. 18. AC voltage and current waveforms under the step up transient condition 
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Fig. 19. AC voltage and current waveforms under the step down transient condition 

Electrical parameters Voltage, current and power  for
transient step down conditions 

Voltage, current and power  
for  transient step up 

conditions 

AC output voltage (V) 220 220 220 220 

AC output current ( A) 7 2 2 7 

AC output power  (W) 1540 440 440 1540 

Table 2. Inverter operations under step up/down conditions 

5. Results and discussion 

In the next step, data waveforms are divided into the “estimate data set” and the “validate 
data set”. Examples are shown in Fig. 20, whereby the first part of the AC and DC voltage 
waveforms are used as the estimate data set and the second part  the validate data set.  The 
system identification process is executed according to mentioned descriptions on the 
Hammerstein-Wiener modeling.  
The validation of models is taken by considering (i) model order by adjusting the number of 
poles plus zeros. The system must have the lowest-order model that adequately captures the 
system dynamics.(ii) the best fit, comparing  between modeling and experimental outputs, 
(iii) FPE and AIC, both of these values need be lowest for high accuracy of modeling (iv) 
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Nonlinear behavior characteristics. For example, linear interval of saturation, zero interval 
of dead-zone, wavenet, sigmoid network requiring  the simplest and less complex function 
to explain the system. Model properties, estimators, percentage of accuracy, final Prediction 
Error-FPE and Akaikae Information Criterion-AIC are as follows [58]:   
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Fig. 20. Data divided into Estimated and validated data  

Criteria for Model selection  

The percentage of the best fit accuracy in equation (13) is obtained from comparison 
between experimental waveform and simulation modeling waveform.  

 *100 * (1 ( ) / ( ))Best fit norm y y norm y y= − − −   (13) 

where y*  is the simulated output,  y is the  measured output and y  is the mean of output.  
FPE is the Akaike Final Prediction Error for the estimated model, of which the error 
calculation is defined as equation (14)        

 
1

1

d
NFPE V

d
N

 +
 =
 − 

  (14) 

where V is the loss function, d is the number of estimated parameters, N is the number of 

estimation data.  The loss function V is defined in Equation (15) where Nθ represents the 

estimated parameters.  

 ( ) ( )( )
1

1
det , ,

N
T

N NV t t
N

ε θ ε θ
 

=  
 
   (15) 

The Final Prediction Error (FPE) provides a measure of a model quality by simulating 
situations where the model is tested on a different data set. The Akaike Information 
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Criterion (AIC), as shown in equation (16),  is used to calculate a  comparison of models 
with different structures. 

 
2

log
d

AIC V
N

= +   (16) 

Waveforms of input and output from the experimental setup consist of DC voltage, DC 
output current, AC voltage and AC output current. Model properties, estimators, 
percentage of accuracy, Final Prediction Error - FPE and Akaikae Information Criterion - AIC 
of the model are shown in Table 3.  Examples of voltage and current output waveforms of 
multi input-multi output (MIMO) model in steady state condition (FVMC) having accuracy 
97.03% and 91.7 % are shown in Fig 21.  
 

Type I/P
 

O/P
 

Linear model 
parameters 

[nb1 nb2 nb3 nb4] poles 
[nf1  nf2  nf3  nf4] zeros 

[nk1 nk2 nk3 nk4] delays

% fit
Voltage 
Current

 

FPE AIC 

Steady state conditions 

FCLV DZ DZ 
[4 4 3 5]; 
[5 5 3 6]; 
[3 4 4 2] 

87.3 
85.7 

3,080.90 10.9 

FCMV PW PW 
[5 2 4 4]; 
[4 2 3 4]; 
[2 2 4 3]; 

84.5 
86.4 

729.03 6.59 

FCHV ST ST 
[2 2 3 4]; 
[1 2 1 2]; 
[2 1 3 2]; 

89.5 
88.7 

26.27 3.26 

FVLC SN SN 
[3 6 3 2]; 
[8 5 4 3]; 
[2 4 3 5]; 

56.8 
60.5 

0.07 2.57 

FVMC WN WN 
[3 4 2 5]; 
[4 2 3 4]; 
[2 3 2 4]; 

97.03 

91.7 
254.45 7.89 

FVHC WN WN 
[1 4 3 5]; 
[5 2 3 5]; 
[1 3 2 4]; 

88 
94 

3,079.8 10.33 

Transient conditions

Step Up DZ DZ 

[3 4 2 4]; 
[4 5 4 3]; 
[2 3 5 5]; 
[ 4 5 2 2]; 

91.75 
87.20 

3,230 7.40 

Step Down PW PW 

[3 5 5 3]; 
[3 5 4 3]; 
[3 5 5 4]; 
[4 4 4 1]; 

85.99 
85.12 

3,233 10.0 

Table 3. Results of a PV inverter modeling using a Hammerstein-Wiener model  
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Fig. 21. Comparison of AC voltage and current output waveforms of a steady state FVMC 
MIMO model 

In Table 3 bin , fin  and kin  are poles, zeros and delays of a linear model. The subscript (1, 2, 

3 and 4) stands for relations between DC voltage-AC voltage, DC current-AC voltage, DC 

voltage-AC current and DC current-AC current respectively. Therefore, the linear 

parameters of the model are 1 2 3 4[ , , , ]b b b bn n n n , 1 2 3 4[ , , , ]f f f fn n n n , 1 2 3 4[ , , , ]k k k kn n n n .  
The first value of percentages of fit in each type, shown in the Table 3, is the accuracy of the 
voltage output, the second the current output from the model. From the results, nonlinear 
estimators can describe the photovoltaic grid connected system. The estimators are good in 
terms of accuracy, with a low order model or a low FPE and AIC. Under most of testing 
conditions, high accuracy of more than 85% is achieved, except the case of FVLC. This is 
because of under such an operating condition, the inverter has very small current, and it is 
operating under highly nonlinear behavior. Then complex of nonlinear function and 
parameter adjusted is need for achieve the high accuracy and low order of model. After 
obtaining the appropriate model, the PVGCS system can be analyzed by nonlinear and 
linear analyses. Nonlinear parts are analyzed from the properties of nonlinear function such 
as dead-zone interval, saturation interval, piecewise range, Sigmoid and Wavelet properties. 
Nonlinear properties are also considered, e.g. stability and irreversibility In order to use 
linear analysis, Linearization of a nonlinear model is required for linear control design and 
analysis, with acceptable representation of the input/output behaviors. After linearizing the 
model,  we can use control system theory to design a controller and perform linear analysis. 
The linearized command for computing a first-order Taylor series approximation for a 
system requires specification of an operating point. Subsequently, mathematical 
representation can be obtained, for example, a discrete time invariant state space model, a 
transfer function and graphical tools.   
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6. Applications: Power quality problem analysis 

A power quality analysis from the model follows the Standard IEEE 1159 Recommend 

Practice for Monitoring Electric Power Quality [59]. In this Standard, the definition of power 

quality problem is defined. In summary, a procedure of this Standard when applied to 

operating systems can be divided into 3 stages (i) Measurement Transducer, (ii) 

Measurement Unit and (iii) Evaluation Unit. In comparing operating systems and modeling, 

modeling is more advantageous because of its predictive power, requiring no actual 

monitoring. Based on proposed modeling, the measurement part is replaced by model 

prediction outputs, electrical values such as RMS and peak values, frequency and power are 

calculated, rather than measured. The actual evaluation is replaced by power quality 

analysis. The concept representation is shown in Fig.22. 
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Fig. 22. Diagram of power quality analysis from IEEE 1159 and application to modeling  

6.1 Model output prediction  
In this stage, the model output prediction is demonstrated. From the 8 operation conditions 

selected  in experimental, we choose two representative case. One is the steady state Fix 

Voltage High Current (FVHC) condition, the other the transient step down condition.  To 

illustrate model predictive power, Fig.23 shows an actual and  predictive output current  

waveforms of the transient step down condition. We see good agreement between 

experimental results and modeling results. 

6.2 Electrical parameter calculation 
In this stage, output waveforms are used to  calculate RMS, peak  and per unit (p.u.) values, 

period, frequency, phase angle, power factor, complex power (real, reactive and apparent 

power) Total Harmonic Distortion - THD.   

6.2.1 Root mean square  
RMS values of voltage and current can be calculated from the following equations:  
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Fig. 23. Prediction and experiment results of  AC output current under a  transient step 
down condition   

6.2.2 Period, frequency and phase angle 
We calculate a phase shift between voltage and current from the equation (19), and the 
frequency (f) from equation (20).  

  
( ) 360t ms

T ms
φ

Δ ⋅
=



 (19) 

 
1

f
T

=  (20) 

tΔ  is time lagging or leading between voltage and current (ms), T is the waveform period. 
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6.2.3 Power factor, apparent power, active power and reactive power  
The power factor, the apparent power  S (VA), the active power P (W), and the reactive 
power  Q (Var) are related through the equations 

 
( )

cos
( )

P W
PF

S VA
φ= =  (21) 

    S VI′=  (22) 

     cosP S φ=  (23)                         

     sinQ S φ=  (24) 

6.2.4 Harmonic calculation 
Total  harmonic distortion of voltage (THDv) and current (THDi)  can be calculated by the  
Equations 25 and 26, respectively.    
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Where Vh (rms) is RMS value of h th voltage harmonic , Ih (rms)  RMS value of  h th current 
harmonic,  V1 (rms) RMS value of fundamental voltage and I1 (rms)  RMS value of 
fundamental current  
 

Parameter Steady state  FVHC condition Transient  step down condition 

 Experimental Modeling % Error Experimental Modeling % Error 

Vrms (V) 218.31 218.04 0.12 217.64 218.20 -0.26 

Irms  (A) 23.10 23.21 -0.48 4.47 4.45 0.45 

Frequency (Hz) 50 50 0.00 50.00 50.00 0.00 

Power Factor 0.99 0.99 0.00 0.99 0.99 0.00 

THDv   (%) 1.15 1.2 -4.35 1.18 1.24 -5.08 

THDi    (%) 3.25 3.12 4.00 3.53 3.68 -4.25 

S (VA) 5044.38 5060.7 -0.32 972.85 970.99 0.19 

P (W) 4993.94 5010.1 -0.32 963.12 961.28 0.19 

Q (Var) 711.59 713.85 -0.32 137.24 136.97 0.19 

V p.u. 0.99 0.99 0.00 0.98 0.99 -1.02 

Table 4. Comparison of measured and modeled electrical parameters of the FVHC condition 
and the transient step down condition  
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We next demonstrate accuracy and precision of power quality prediction from modeling. 

Table 4 shows the comparisons. Two representative cases mentioned above are given, i.e. 

the steady state Fix Voltage High Current (FVHC) condition, and the transient step down 

condition. Comparison of THDs is shown in Fig. 23. Agreements between experiments and 

modeling results are good. 
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Fig. 24. Comparison of measured and modeled THD of AC current of the transient step 
down condition  

6.3 Power quality problem analysis  
The power quality phenomena are classified in terms of typical duration, typical voltage 

magnitude and typical spectral content. They can be broken down into 7 groups on 

transient, short duration voltage, long duration voltage, voltage unbalance, waveform 

distortion, voltage fluctuation or flicker, frequency variation. Comparisons of the Standard 

values and modeled outputs of the FVHC and the transient step down conditions are shown 

in Table 5. The results show that under both the steady state and the transient cases, good 

power quality is achieved from the PVGCS.  
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Type Typical 
Duration 

Typical 
Voltage 

Magnitude

Typical 
Spectral 
Content 

Steady
State 

FVHC

Transient 
Step 

down 

Result 

1.Transient  
- Impulsive 
- Oscillation  
 - low frequency 
 - medium frequency
 - high frequency 

 
5 ns – 0.1ms
 
0.3-50 ms 
5-20 ms 
0-5 ms 

 
 
 
0.4 pu. 
0-8 pu. 
0.4 pu. 

 
 
 
< 5 kHz 
5-500 kHz 
0.5–5 MHz 

 
 
 
0.99 pu.
 
 

 
 
 
0.99 pu. 
 

 
 
 
Pass 

2.Short Duration 
- voltage sag  
- voltage swell 

 
10 ms-1 min
10 ms-1 min

 
0.1-0.9 pu. 
 1.1-1.8 pu.

 
- 

 
0.99 pu.

 

0.99 pu. 
 
Pass 

3. Long Duration  
- overvoltage (OV) 
- undervoltage (UV) 
- voltage Interruption

 

> 1 min 
> 1 min 
> 1 min 

 
> 1.1 pu. 
< 0.9 pu. 
0 pu. 

 
 
- 

 
0.99 pu.
 

 
0.99 pu. 
 

 
Pass 

4. Voltage Unbalance Steady state 0.5-2%  - - - - 

5.Waveform 
distortion  
- Harmonic voltage 
- Harmonic Current 
- Interharmonic 
- DC offset 
- Notching 
- Noise 

 
 
Steady state
Steady state
Steady state
Steady state
Steady state
Steady state

 
 
< 5% THD 
< 20% THD
0-2% 
0-0.1% 
- 
0-1% 

 
 
0-100th  
0-100th  
0-6 kHz 
< 200 kHz 
- 
Broad band

 
 
1.20 %  
3.25 % 
- 
- 
- 
- 

 
 
1.24 % 
3.68 % 
- 
- 
- 
- 

 
 
Pass 
Pass 
- 
- 
- 
- 

6.Voltage fluctuation 
- Flicker 

 
Intermittent

 
0.1-7% 

 
< 25 Hz 

 
0.01% 

 
0.01% 

 
Pass 

7.Frequency variation
- Overfrequency 
- Underfrequency 

 
< 10 s 

 
- 

±  3 Hz 
> 53 Hz 
< 47 Hz 

 
50 

 
50 

 
Pass 

Table 5. Comparison modeling output with Categories and Typical Characteristics of power 
system electromagnetic phenomena  

7. Conclusions 

In this paper, a PVGCS system is modeled by the Hammerstein-Wiener nonlinear system 

identification method. Two main steps to obtain models from a system identification process 

are implemented. The first step is to set up experiments to obtain waveforms of DC inverter 

voltage/current, AC inverter voltage/current, point of common coupling (PCC) voltage, 

and grid and load current. Experiments are conducted under steady state and transient 

conditions for commercial rooftop inverters with rating of few kW, covering resistive and 

complex loads. In the steady state experiment, six conditions are carried out. In the transient 

case, two conditions of operating conditions are conducted. The second stage is to derive 

system models from system identification software. Collected waveforms are transmitted 
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into a computer for data processing. Waveforms data are divided in two groups. One group 

is used to estimate models whereas the other group to validate models.  The developed 

programming determines various model waveforms and search for model waveforms of 

maximum accuracy compared with actual waveforms. This is achieved through selecting 

model structures and adjusting the model order of the linear terms and nonlinear estimators 

of nonlinear terms. The criteria for selection of a suitable model are the “Best Fits” as 

defined by the software, and a model order which should be minimum. 

After obtaining appropriate models, analysis and prediction of power quality are carried 

out. Modeled output waveforms relating to power quality analysis are determined from 

different scenarios. For example, irradiances and ambient temperature affecting DC PV 

outputs and nature of complex local load can be varied. From the model output waveforms, 

determination is made on power quality aspects such as voltage level, total harmonic 

distortion, complex power, power factor, power penetration and frequency deviation. 

Finally, power quality problems are classified.  

Such modelling techniques can be used for system planning, prevention of system failures 

and improvement of power quality of roof-top grid connected systems. Furthermore, they 

are not limited to PVGCS but also applicable to other distributed energy generators 

connected to grids.  
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